This file is indexed.

/usr/share/texmf-texlive/metapost/mp3d/3d.mp is in texlive-metapost 2009-15.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
%%\input epsf
%%\def\newpage{\vfill\eject}
%%\advance\vsize1in
%%\let\ora\overrightarrow
%%\def\title#1{\hrule\vskip1mm#1\par\vskip1mm\hrule\vskip5mm}
%%\def\figure#1{\par\centerline{\epsfbox{#1}}}
%%\title{{\bf 3D.MP: 3-DIMENSIONAL REPRESENTATIONS IN METAPOST}}

%% version 1.34, 17 August 2003
%% {\bf Denis Roegel} ({\tt roegel@loria.fr}) 

%% This package provides definitions enabling the manipulation
%% and animation of 3-dimensional objects.
%% Such objects can be included in a \TeX{} file or used on web pages
%% for instance. See the documentation enclosed in the distribution for
%% more details.

%% Thanks to John Hobby and Ulrik Vieth for helpful hints.

%% PROJECTS FOR THE FUTURE:

%%   $-$ take light sources into account and show shadows and darker faces

%%   $-$ handle overlapping of objects ({\it obj\_name\/} can be used when
%%     going through all faces)

if known three_d_version: 
  expandafter endinput % avoids loading this package twice
fi;

message "*** 3d,          v1.34 (c) D. Roegel, 17 August 2003 ***";
numeric three_d_version;
three_d_version=1.34;

% This package needs |3dgeom| in a few places. |3dgeom| also loads |3d|
% but that's not a problem.
%
input 3dgeom; 

%%\newpage
%%\title{Vector operations}

% components of vector |i|
def xval(expr i)=vec[i]x enddef;
def yval(expr i)=vec[i]y enddef;
def zval(expr i)=vec[i]z enddef;

% vector (or point) equality (absolute version)
def vec_eq_(expr i,j)=
  ((xval(i)=xval(j)) and (yval(i)=yval(j)) and (zval(i)=zval(j)))
enddef;

% vector (or point) equality (local version)
def vec_eq(expr i,j)=vec_eq_(pnt(i),pnt(j)) enddef;

% vector inequality (absolute version)
def vec_neq_(expr i,j)=(not vec_eq_(i,j)) enddef;

% vector inequality (local version)
def vec_neq(expr i,j)=(not vec_eq(i,j)) enddef;

% definition of vector |i| by its coordinates (absolute version)
def vec_def_(expr i,xi,yi,zi)= vec[i]x:=xi;vec[i]y:=yi;vec[i]z:=zi; enddef;

% definition of vector |i| by its coordinates (local version)
def vec_def(expr i,xi,yi,zi)= vec_def_(pnt(i),xi,yi,zi) enddef;

% a point is stored as a vector (absolute version)
let set_point_ = vec_def_;

% a point is stored as a vector (local version)
let set_point = vec_def;

def set_point_vec_(expr i,v)=
  set_point_(i,xval(v),yval(v),zval(v))
enddef;

def set_point_vec(expr i,v)=set_point_vec_(pnt(i),v) enddef;

let vec_def_vec_=set_point_vec_;
let vec_def_vec=set_point_vec;

% vector sum: |vec[k]| $\leftarrow$ |vec[i]|$+$|vec[j]| (absolute version)
def vec_sum_(expr k,i,j)=
  vec[k]x:=vec[i]x+vec[j]x;
  vec[k]y:=vec[i]y+vec[j]y;
  vec[k]z:=vec[i]z+vec[j]z;
enddef;

% vector sum: |vec[k]| $\leftarrow$ |vec[i]|$+$|vec[j]| (local version)
def vec_sum(expr k,i,j)=vec_sum_(pnt(k),pnt(i),pnt(j)) enddef;

% vector translation: |vec[i]| $\leftarrow$ |vec[i]|$+$|vec[v]|
def vec_translate_(expr i,v)=vec_sum_(i,i,v) enddef;

% Here, the second parameter is absolute, because this is probably
% the most common case.
def vec_translate(expr i,v)=vec_translate_(pnt(i),v) enddef;

% vector difference: |vec[k]| $\leftarrow$ |vec[i]|$-$|vec[j]|
def vec_diff_(expr k,i,j)=
  vec[k]x:=vec[i]x-vec[j]x;
  vec[k]y:=vec[i]y-vec[j]y;
  vec[k]z:=vec[i]z-vec[j]z;
enddef;

def vec_diff(expr k,i,j)=vec_diff_(pnt(k),pnt(i),pnt(j)) enddef;

% dot product of |vec[i]| and |vec[j]|
vardef vec_dprod_(expr i,j)=
  (vec[i]x*vec[j]x+vec[i]y*vec[j]y+vec[i]z*vec[j]z)
enddef;

vardef vec_dprod(expr i,j)=vec_dprod_(pnt(i),pnt(j)) enddef;

% modulus of |vec[i]|, absolute version
% In the computation, we try to avoid overflows or underflows;
% we perform a scaling in order to avoid losing too much
% information in certain cases
vardef vec_mod_(expr i)=
  save prod,m_;
  hide(
    new_vec(v_a);
    m_=max(abs(xval(i)),abs(yval(i)),abs(zval(i)));
    if m_>0:vec_mult_(v_a,i,1/m_);else:vec_def_vec_(v_a,vec_null);fi;
    prod=m_*sqrt(vec_dprod_(v_a,v_a));
    free_vec(v_a);
  )
  prod      
enddef;

% modulus of |vec[i]|, local version
% If the return value must be compared to 0,
% use |vec_eq| with |vec_null| instead.
vardef vec_mod(expr i)= vec_mod_(pnt(i)) enddef;

% unit vector |vec[i]| corresponding to vector |vec[j]|
% only non-null vectors are changed
def vec_unit_(expr i,j)=
  if vec_mod_(j)>0: vec_mult_(i,j,1/vec_mod_(j));
  else:vec_def_vec_(i,j);
  fi;
enddef;

def vec_unit(expr i,j)=vec_unit_(pnt(i),pnt(j)) enddef;

% vector product: |vec[k]| $\leftarrow$ |vec[i]| $\land$ |vec[j]|
def vec_prod_(expr k,i,j)=
  vec[k]x:=vec[i]y*vec[j]z-vec[i]z*vec[j]y;
  vec[k]y:=vec[i]z*vec[j]x-vec[i]x*vec[j]z;
  vec[k]z:=vec[i]x*vec[j]y-vec[i]y*vec[j]x;
enddef;

def vec_prod(expr k,i,j)=vec_prod_(pnt(k),pnt(i),pnt(j)) enddef;

% scalar multiplication: |vec[j]| $\leftarrow$ |vec[i]*v| (absolute version)
def vec_mult_(expr j,i,v)=
  vec[j]x:=v*vec[i]x;vec[j]y:=v*vec[i]y;vec[j]z:=v*vec[i]z;
enddef;

% scalar multiplication: |vec[j]| $\leftarrow$ |vec[i]*v| (local version)
def vec_mult(expr j,i,v)=vec_mult_(pnt(j),pnt(i),v) enddef;

% middle of two points (absolute version)
def mid_point_(expr k,i,j)= vec_sum_(k,i,j);vec_mult_(k,k,.5); enddef;

% middle of two points (local version)
def mid_point(expr k,i,j)= mid_point_(pnt(k),pnt(i),pnt(j)); enddef;

%%\newpage
%%\title{Vector rotation}
% Rotation of |vec[v]| around |vec[axis]| by an angle |alpha|

%% The vector $\vec{v}$ is first projected on the axis
%% giving vectors $\vec{a}$ and $\vec{h}$:
%%\figure{vect-fig.9}
%% If we set 
%% $\vec{b}={\ora{axis}\over \left\Vert\vcenter{\ora{axis}}\right\Vert}$,
%% the rotated vector $\vec{v'}$ is equal to $\vec{h}+\vec{f}$
%% where $\vec{f}=\cos\alpha \cdot \vec{a} + \sin\alpha\cdot \vec{c}$.
%% and $\vec{h}=(\vec{v}\cdot\vec{b})\vec{b}$ 
%%\figure{vect-fig.10}

% The rotation is independent of |vec[axis]|'s module.
% |v| = old and new vector
% |axis| = rotation axis
% |alpha| = rotation angle
%
vardef vec_rotate_(expr v,axis,alpha)=
  new_vec(v_a);new_vec(v_b);new_vec(v_c);
  new_vec(v_d);new_vec(v_e);new_vec(v_f);
  new_vec(v_g);new_vec(v_h);
  vec_mult_(v_b,axis,1/vec_mod_(axis));
  vec_mult_(v_h,v_b,vec_dprod_(v_b,v)); % projection of |v| on |axis|
  vec_diff_(v_a,v,v_h);
  vec_prod_(v_c,v_b,v_a);
  vec_mult_(v_d,v_a,cosd(alpha));
  vec_mult_(v_e,v_c,sind(alpha));
  vec_sum_(v_f,v_d,v_e);
  vec_sum_(v,v_f,v_h);
  free_vec(v_h);free_vec(v_g);
  free_vec(v_f);free_vec(v_e);free_vec(v_d);
  free_vec(v_c);free_vec(v_b);free_vec(v_a);
enddef;

% The second parameter is left absolute because this is probably the most
% common case.
vardef vec_rotate(expr v,axis,alpha)=vec_rotate_(pnt(v),axis,alpha) enddef;

%%\newpage
%%\title{Operations on objects}
% |iname| is the handler for an instance of an object of class |name|
% |iname| must be a letter string
% |vardef| is not used because at some point we give other names
% to |assign_obj| with |let| and this cannot be done with |vardef|.
% (see MFbook for details)
def assign_obj(expr iname,name)=
  begingroup 
  save tmpdef;
  string tmpdef; % we need to add double quotes (char 34)
  tmpdef="def " & iname & "_class=" & ditto & name & ditto & " enddef";
  scantokens tmpdef;
  def_obj(iname);
  endgroup
enddef;

% |name| is the the name of an object instance
% It must be made only of letters (or underscores), but no digits.
def def_obj(expr name)=
  scantokens begingroup 
    save tmpdef;string tmpdef;
    tmpdef="def_" & obj_class_(name) & "(" & ditto & name & ditto & ")";
    tmpdef
  endgroup
enddef;

% This macro puts an object back where it was right at the beginning,
% or rather, where the |set| definition puts it (which may be different
% than the initial position, in case it depends on parameters).
% |iname| is the name of an object instance.
vardef reset_obj(expr iname)=
  save tmpdef;
  string tmpdef;
  define_current_point_offset_(iname);
  tmpdef="set_" & obj_class_(iname) & "_points";
  scantokens tmpdef(iname);
enddef;

% Put an object at position given by |pos| (a vector) and
% with orientations given by angles |psi|, |theta|, |phi|.
% The object is scaled by |scale|.
% |iname| is the name of an object instance.
% If the shape of the object has been changed since it was
% created, these changes are lost.
vardef put_obj(expr iname,pos,scale,psi,theta,phi)=
  reset_obj(iname);scale_obj(iname,scale);
  new_vec(v_x);new_vec(v_y);new_vec(v_z);
  vec_def_vec_(v_x,vec_I);
  vec_def_vec_(v_y,vec_J);
  vec_def_vec_(v_z,vec_K);
  rotate_obj_abs_pv(iname,point_null,v_z,psi);
  vec_rotate_(v_x,v_z,psi);vec_rotate_(v_y,v_z,psi);
  rotate_obj_abs_pv(iname,point_null,v_y,theta);
  vec_rotate_(v_x,v_y,theta);vec_rotate_(v_z,v_y,theta);
  rotate_obj_abs_pv(iname,point_null,v_x,phi);
  vec_rotate_(v_y,v_x,phi);vec_rotate_(v_z,v_x,phi);
  free_vec(v_z);free_vec(v_y);free_vec(v_x);    
  translate_obj(iname,pos);
enddef;

%%\newpage
%%\title{Rotation, translation and scaling of objects}
% Rotation of an object instance |name| around an axis 
% going through a point |p| (local to the object)
% and directed by vector |vec[v]|. The angle of rotation is |a|.
vardef rotate_obj_pv(expr name,p,v,a)=
  define_current_point_offset_(name);
  rotate_obj_abs_pv(name,pnt(p),v,a);
enddef;

vardef rotate_obj_abs_pv(expr name,p,v,a)=
  define_current_point_offset_(name);
  new_vec(v_a);
  for i:=1 upto obj_points_(name):
    vec_diff_(v_a,pnt(i),p);
    vec_rotate_(v_a,v,a);
    vec_sum_(pnt(i),v_a,p);
  endfor;
  free_vec(v_a);
enddef;

% Rotation of an object instance |name| around an axis 
% going through a point |p| (local to the object)
% and directed by vector $\ora{pq}$. The angle of rotation is |a|.
vardef rotate_obj_pp(expr name,p,q,a)=
  define_current_point_offset_(name);
  new_vec(v_a);new_vec(axis);
  vec_diff_(axis,pnt(q),pnt(p));
  for i:=1 upto obj_points_(name):
    vec_diff_(v_a,pnt(i),pnt(p));
    vec_rotate_(v_a,axis,a);
    vec_sum_(pnt(i),v_a,pnt(p));
  endfor;
  free_vec(axis);free_vec(v_a);
enddef;

% Translation of an object instance |name| by a vector |vec[v]|.
vardef translate_obj(expr name,v)=
  define_current_point_offset_(name);
  for i:=1 upto obj_points_(name):
    vec_sum_(pnt(i),pnt(i),v);
  endfor;
enddef;

% Scalar multiplication of an object instance |name| by a scalar |v|.
vardef scale_obj(expr name,v)=
  define_current_point_offset_(name);
  for i:=1 upto obj_points_(name):
    vec_mult(i,i,v);
  endfor;
enddef;


%%\newpage
%%\title{Functions to build new points in space}
% Rotation in a plane: this is useful to define a regular polygon.
% |k| is a new point obtained from point |j| by rotation around |o|
% by a angle $\alpha$ equal to the angle from |i| to |j|.
%%\figure{vect-fig.11}
vardef rotate_in_plane_(expr k,o,i,j)=
  save cosalpha,sinalpha,alpha;
  new_vec(v_a);new_vec(v_b);new_vec(v_c);
  vec_diff_(v_a,i,o);vec_diff_(v_b,j,o);vec_prod_(v_c,v_a,v_b);
  cosalpha=vec_dprod_(v_a,v_b)/vec_mod_(v_a)/vec_mod_(v_b);
  sinalpha=sqrt(1-cosalpha**2);
  alpha=angle((cosalpha,sinalpha));
  vec_rotate_(v_b,v_c,alpha);
  vec_sum_(k,o,v_b);
  free_vec(v_c);free_vec(v_b);free_vec(v_a);
enddef;

vardef rotate_in_plane(expr k,o,i,j)=
  rotate_in_plane_(pnt(k),o,pnt(i),pnt(j)) 
enddef;

% Build a point on a adjacent face.
%% The middle $m$ of points $i$ and $j$ is such that
%% $\widehat{(\ora{om},\ora{mc})}=\alpha$ 
%% This is useful to define regular polyhedra
%%\figure{vect-fig.7}
vardef new_face_point_(expr c,o,i,j,alpha)=
  new_vec(v_a);new_vec(v_b);new_vec(v_c);new_vec(v_d);new_vec(v_e);
  vec_diff_(v_a,i,o);vec_diff_(v_b,j,o);
  vec_sum_(v_c,v_a,v_b);
  vec_mult_(v_d,v_c,.5);
  vec_diff_(v_e,i,j);
  vec_sum_(c,v_d,o);
  vec_rotate_(v_d,v_e,alpha);
  vec_sum_(c,v_d,c);
  free_vec(v_e);free_vec(v_d);free_vec(v_c);free_vec(v_b);free_vec(v_a);
enddef;

vardef new_face_point(expr c,o,i,j,alpha)=
  new_face_point_(pnt(c),pnt(o),pnt(i),pnt(j),alpha)
enddef;

vardef new_abs_face_point(expr c,o,i,j,alpha)=
  new_face_point_(c,o,pnt(i),pnt(j),alpha)
enddef;

%%\newpage
%%\title{Computation of the projection of a point on the ``screen''}
% |p| is the projection of |m|
% |m| = point in space (3 coordinates)
% |p| = point of the intersection plane 
%%\figure{vect-fig.8}
vardef project_point(expr p,m)=
  save tmpalpha;
  new_vec(v_a);new_vec(v_b);
  if projection_type=2: % oblique
    if point_in_plane_p_pl_(m)(projection_plane):
      % |m| is on the projection plane
      vec_diff_(v_a,m,ObliqueCenter_);
      y[p]:=drawing_scale*vec_dprod_(v_a,ProjJ_);
      x[p]:=drawing_scale*vec_dprod_(v_a,ProjK_);
    else: % |m| is not on the projection plane
      new_line_(l)(m,ObliqueCenter_);
      vec_diff_(l2,l2,Obs);
      vec_sum_(l2,l2,m);
      % (the direction does not depend on Obs)
      if def_inter_p_l_pl_(v_a)(l)(projection_plane):
        vec_diff_(v_a,v_a,ObliqueCenter_);
        y[p]:=drawing_scale*vec_dprod_(v_a,ProjJ_);
        x[p]:=drawing_scale*vec_dprod_(v_a,ProjK_);
      else: message "Point " & decimal m & " cannot be projected";
        x[p]:=too_big_;y[p]=too_big_;
      fi;
      free_line(l);
    fi;
  else:
    vec_diff_(v_b,m,Obs); % vector |Obs|-|m|
      % |vec[v_a]| is |vec[v_b]| expressed in (|ObsI_|,|ObsJ_|,|ObsK_|)
      % coordinates.
    vec[v_a]x:=vec[IObsI_]x*vec[v_b]x
    +vec[IObsJ_]x*vec[v_b]y+vec[IObsK_]x*vec[v_b]z;
    vec[v_a]y:=vec[IObsI_]y*vec[v_b]x
    +vec[IObsJ_]y*vec[v_b]y+vec[IObsK_]y*vec[v_b]z;
    vec[v_a]z:=vec[IObsI_]z*vec[v_b]x
    +vec[IObsJ_]z*vec[v_b]y+vec[IObsK_]z*vec[v_b]z;
    if vec[v_a]x<Obs_dist: % then, point |m| is too close
      message "Point " & decimal m & " too close -> not drawn";
      x[p]:=too_big_;y[p]=too_big_;
    else:
      if (angle(vec[v_a]x,vec[v_a]z)>h_field/2)
        or (angle(vec[v_a]x,vec[v_a]y)>v_field/2):
        message "Point " & decimal m & " out of screen -> not drawn";
        x[p]:=too_big_;y[p]=too_big_;
      else:
        if projection_type=0: % central perspective
	  tmpalpha:=Obs_dist/vec[v_a]x;
        else:
	  tmpalpha:=1; % parallel
        fi;
        y[p]:=drawing_scale*tmpalpha*vec[v_a]y;
        x[p]:=drawing_scale*tmpalpha*vec[v_a]z;
      fi;
    fi;
  fi;
  free_vec(v_b);free_vec(v_a);
enddef;

% At some point, we may need to do an oblique projection
% of vectors |ObsK_| and |ObsI_| on a plane, and to normalize
% and orthogonalize the projections (with the projection of |ObsK_|
% keeping the same direction). This is done here,
% where we take two vectors, a direction (line) and
% a plane, and return two vectors. This function assumes
% there is an intersection between line |l| and plane |p|.
% We do not test it here.

vardef project_vectors(expr va,vb)(expr k,i)(text l)(text p)=
  save vc;new_vec(vc);
  if proj_v_v_l_pl_(va,k)(l)(p): % |va| is the projection of vector |k|
  else: message "THIS SHOULD NOT HAPPEN";
  fi;
  if proj_v_v_l_pl_(vb,i)(l)(p): % |vb| is the projection of vector |i|
  else: message "THIS SHOULD NOT HAPPEN";
  fi;
  % now, we orthonormalize these vectors:
  vec_prod_(vc,va,vb);
  vec_unit_(va,va);vec_unit_(vc,vc);vec_prod_(vb,vc,va);
  free_vec(vc);
enddef;

% Object projection
% This is a mere iteration on |project_point|
def project_obj(expr name)=
  define_current_point_offset_(name);
  for i:=1 upto obj_points_(name):
    project_point(ipnt_(i),pnt(i));endfor;
enddef;

% Projection screen
vardef show_projection_screen=
  save dx,dy;
  dx=Obs_dist*sind(h_field/2)/cosd(h_field/2);
  dy=Obs_dist*sind(v_field/2)/cosd(v_field/2);
  new_vec(pa);new_vec(pb);new_vec(pc);new_vec(pd);new_vec(op);
  new_vec(w);new_vec(h);
  vec_mult_(op,ObsI_,Obs_dist);vec_sum_(op,op,Obs); % center of screen
  vec_mult_(w,ObsK_,dx);vec_mult_(h,ObsJ_,dy);
  vec_sum_(pa,op,w);vec_sum_(pa,pa,h); % upper right corner
  vec_mult_(w,w,-2);vec_mult_(h,h,-2);
  vec_sum_(pb,pa,w);vec_sum_(pc,pb,h);vec_sum_(pd,pa,h);
  message "Screen at corners:";
  show_point("urcorner: ",pa);
  show_point("ulcorner: ",pb);
  show_point("llcorner: ",pc);
  show_point("lrcorner: ",pd);
  show_point("Obs:",Obs);
  free_vec(h);free_vec(w);
  free_vec(op);free_vec(pd);free_vec(pc);free_vec(pb);free_vec(pa);
enddef;


%%\newpage
%%\title{Draw one face, hiding it if it is hidden}
% The order of the vertices determines what is the visible side
% of the face. The order must be clockwise when the face is seen.
% |drawhidden| is a boolean; if |true| only hidden faces are drawn; if |false|,
% only visible faces are drawn. Therefore, |draw_face| is called twice
% by |draw_faces|.
vardef draw_face(text vertices)(expr col,drawhidden)=
  save p,num,overflow,i,j,k,nv;
  path p;boolean overflow;
  overflow=false;
  forsuffixes $=vertices:
    if z[ipnt_($)]=(too_big_,too_big_):overflow:=true; fi;
    exitif overflow;
  endfor;
  if overflow: message "Face can not be drawn, due to overflow";
  else:
    p=forsuffixes $=vertices:z[ipnt_($)]--endfor cycle;
    % we do now search for three distinct and non-aligned suffixes:
    % usually, the first three suffixes do
    new_vec(normal_vec);new_vec(v_a);new_vec(v_b);new_vec(v_c);
    % first, we copy all the indexes in an array, so that
    % it is easier to go through them
    i=1; % num0 is not used
    forsuffixes $=vertices:num[i]=$;i:=i+1;endfor;
    nv=i-1;
    for $:=1 upto nv:
      for $$:=$+1 upto nv:
	for $$$:=$$+1 upto nv:
	  vec_diff_(v_a,pnt(num[$$]),pnt(num[$]));
          vec_diff_(v_b,pnt(num[$$$]),pnt(num[$$]));
          vec_prod_(normal_vec,v_a,v_b);
          exitif vec_neq_(normal_vec,vec_null);
	      % |vec_mod_| must not be used for such a test
	endfor;
	exitif vec_neq_(normal_vec,vec_null);
      endfor;
      exitif vec_neq_(normal_vec,vec_null);
    endfor;
    if projection_type=0: % perspective
      vec_diff_(v_c,pnt(num1),Obs);
    else: % parallel
      vec_def_vec_(v_c,ObsI_); 
    fi;
    if filled_faces:
      if vec_dprod_(normal_vec,v_c)<0:
        fill p withcolor col;drawcontour(p,contour_width,contour_color)();
      else: % |draw p dashed evenly;| if this is done, you must ensure
              % that hidden faces are (re)drawn at the end    
      fi;
    else:
      if vec_dprod_(normal_vec,v_c)<0:%visible
        if not drawhidden:drawcontour(p,contour_width,contour_color)();fi;
      else: % hidden
        if drawhidden:
	  drawcontour(p,contour_width,contour_color)(dashed evenly);
        fi;
      fi;
    fi;
    free_vec(v_c);free_vec(v_b);free_vec(v_a);free_vec(normal_vec);
  fi;
enddef;

% |p| is the path to draw (a face contour), |thickness| is the pen width
% |col| is the color and |type| is a line modifier.
def drawcontour(expr p,thickness,col)(text type)=
  if draw_contours and (thickness>0):
    pickup pencircle scaled thickness;
    draw p withcolor background; % avoid strange overlapping dashes
    draw p type withcolor col;
    pickup pencircle scaled .4pt;
  fi;
enddef;

%%\newpage
% Variables for face handling. First, we have an array for lists of vertices
% corresponding to faces. 
string face_points_[];% analogous to |vec| arrays

% Then, we have an array of colors. A color needs to be a string
% representing an hexadecimal RGB coding of a color.
string face_color_[];

% |name| is the name of an object instance
vardef draw_faces(expr name)=
  save tmpdef;string tmpdef;
  define_current_face_offset_(name);
    % first the hidden faces (dashes must be drawn first):
  for i:=1 upto obj_faces_(name):
    tmpdef:="draw_face(" & face_points_[face(i)] 
      & ")(hexcolor(" & ditto & face_color_[face(i)] & ditto 
      & "),true)";scantokens tmpdef;
  endfor;
    % then, the visible faces:
  for i:=1 upto obj_faces_(name):
    tmpdef:="draw_face(" & face_points_[face(i)] 
      & ")(hexcolor(" & ditto & face_color_[face(i)] & ditto 
      & "),false)";scantokens tmpdef;
  endfor;
enddef;

% Draw point |n| of object instance |name|
vardef draw_point(expr name,n)=
  define_current_point_offset_(name);
  project_point(ipnt_(n),pnt(n));
  if z[ipnt_(n)] <> (too_big_,too_big_):
    pickup pencircle scaled 5pt;
    drawdot(z[ipnt_(n)]);
    pickup pencircle scaled .4pt;
  fi;
enddef;

vardef draw_axes(expr r,g,b)=
  project_point(1,vec_null);
  project_point(2,vec_I);
  project_point(3,vec_J);
  project_point(4,vec_K);
  if (z1<>(too_big_,too_big_)):
    if (z2<>(too_big_,too_big_)):
      drawarrow z1--z2 dashed evenly withcolor r;
    fi;
    if (z3<>(too_big_,too_big_)):
      drawarrow z1--z3 dashed evenly withcolor g;
    fi;
    if (z4<>(too_big_,too_big_)):
      drawarrow z1--z4 dashed evenly withcolor b;
    fi;
  fi;
enddef;

% Draw a polygonal line through the list of points
% This implementation does not work if you call
% |draw_lines(i,i+4)| because \MP{} adds parentheses around
% the value of |i|.
def draw_lines(text vertices)=
  begingroup % so that we can |let| |draw_lines|
  save j,num,np;
  % first, we copy all the indexes in an array, so that
  % it is easier to go through them
  j=1;
  for $=vertices:num[j]=$;j:=j+1;endfor;
  np=j-1;
  for j:=1 upto np-1:
    draw z[ipnt_(num[j])]--z[ipnt_(num[j+1])];
  endfor;
  endgroup
enddef;

let draw_line=draw_lines;

% Draw an arrow between points |i| and |j| of current object
% This is used from the |draw| definition of an object.
def draw_arrow(expr i,j)=
  drawarrow z[ipnt_(i)]--z[ipnt_(j)];
enddef;

% Draw a line between points |i| of object |obja| and |j| of |objb|
% This is used when outside an object (i.e., we can't presuppose
% any object offset)
vardef draw_line_inter(expr obja, i, objb, j)=
  project_point(1,pnt_obj(obja,i));
  project_point(2,pnt_obj(objb,j));
  draw z1--z2;
enddef;

% Draw an arrow between points |i| of object |obja| and |j| of |objb|
% This is used when outside an object (i.e., we can't presuppose
% any object offset)
vardef draw_arrow_inter(expr obja, i, objb, j)=
  project_point(1,pnt_obj(obja,i));
  project_point(2,pnt_obj(objb,j));
  draw z1--z2;
enddef;

%%\newpage
% Definition of a macro |obj_name| returning an object name 
% when given an absolute
% face number. This definition is built incrementally through a string, 
% everytime a new object is defined.
% |obj_name| is defined by |redefine_obj_name_|.

% Initial definition
string index_to_name_;
index_to_name_="def obj_name(expr i)=if i<1:";

% |name| is the name of an object instance
% |n| is the absolute index of its last face
def redefine_obj_name_(expr name,n)=
  index_to_name_:=index_to_name_ & "elseif i<=" & decimal n & ":" & ditto
      & name & ditto;
  scantokens begingroup index_to_name_ & "fi;enddef;" endgroup;
enddef;

% |i| is an absolute face number
% |vertices| is a string representing a list of vertices
% |rgbcolor| is a string representing a color in rgb hexadecimal
def set_face(expr i,vertices,rgbcolor)=
  face_points_[i]:=vertices;face_color_[i]:=rgbcolor;
enddef;

% |i| is a local face number
% |vertices| is a string representing a list of vertices
% |rgbcolor| is a string representing a color in rgb hexadecimal
def set_obj_face(expr i,vertices,rgbcolor)=set_face(face(i),vertices,rgbcolor)
enddef;

% |i| is a local face number of object |inst|
% |rgbcolor| is a string representing a color in rgb hexadecimal
def set_obj_face_color(expr inst,i,rgbcolor)=
  face_color_[face_obj(inst,i)]:=rgbcolor;
enddef;


%%\newpage
%%\title{Compute the vectors corresponding to the observer's viewpoint}
% (vectors |ObsI_|,|ObsJ_| and |ObsK_| in the |vec_I|,|vec_J|,
% |vec_K| reference; and vectors |IObsI_|,|IObsJ_| and |IObsK_| 
% which are |vec_I|,|vec_J|,|vec_K| 
% in the |ObsI_|,|ObsJ_|,|ObsK_| reference)
%%\figure{vect-fig.16}
%% (here, $\psi>0$, $\theta<0$ and $\phi>0$; moreover, 
%% $\vert\theta\vert \leq 90^\circ$)

def compute_reference(expr psi,theta,phi)=
   % |ObsI_| defines the direction of observation; 
   % |ObsJ_| and |ObsK_| the orientation
   % (but one of these two vectors is enough,
   % since |ObsK_| = |ObsI_| $\land$ |ObsJ_|)
   % The vectors are found by rotations of |vec_I|,|vec_J|,|vec_K|.
  vec_def_vec_(ObsI_,vec_I);vec_def_vec_(ObsJ_,vec_J);
  vec_def_vec_(ObsK_,vec_K);
  vec_rotate_(ObsI_,ObsK_,psi);
  vec_rotate_(ObsJ_,ObsK_,psi);% gives ($u$,$v$,$z$)
  vec_rotate_(ObsI_,ObsJ_,theta);
  vec_rotate_(ObsK_,ObsJ_,theta);% gives ($Obs_x$,$v$,$w$)
  vec_rotate_(ObsJ_,ObsI_,phi);
  vec_rotate_(ObsK_,ObsI_,phi);% gives ($Obs_x$,$Obs_y$,$Obs_z$)
   % The passage matrix $P$ from |vec_I|,|vec_J|,|vec_K| 
   % to |ObsI_|,|ObsJ_|,|ObsK_| is the matrix
   % composed of the vectors |ObsI_|,|ObsJ_| and |ObsK_| expressed 
   % in the base |vec_I|,|vec_J|,|vec_K|.
   % We have $X=P X'$ where $X$ are the coordinates of a point 
   % in |vec_I|,|vec_J|,|vec_K|
   % and $X'$ the coordinates of the same point in |ObsI_|,|ObsJ_|,|ObsK_|.
   % In order to get $P^{-1}$, it suffices to build vectors using
   % the previous rotations in the inverse order.
  vec_def_vec_(IObsI_,vec_I);vec_def_vec_(IObsJ_,vec_J);
  vec_def_vec_(IObsK_,vec_K);
  vec_rotate_(IObsK_,IObsI_,-phi);vec_rotate_(IObsJ_,IObsI_,-phi);
  vec_rotate_(IObsK_,IObsJ_,-theta);vec_rotate_(IObsI_,IObsJ_,-theta);
  vec_rotate_(IObsJ_,IObsK_,-psi);vec_rotate_(IObsI_,IObsK_,-psi);
enddef;

%%\newpage
%%\title{Point of view}
% This macro computes the three angles necessary for |compute_reference|
% |name| =  name of an instance of an object 
% |target| = target point (local to object |name|)
% |phi| = angle
vardef point_of_view_obj(expr name,target,phi)=
  define_current_point_offset_(name);% enables |pnt|
  point_of_view_abs(pnt(target),phi);
enddef;

% Compute absolute perspective. |target| is an absolute point number
% |phi| = angle
% This function also computes two vectors needed in case
% of an oblique projection.
vardef point_of_view_abs(expr target,phi)=
  save psi,theta;
  new_vec(v_a);
  vec_diff_(v_a,target,Obs);
  vec_mult_(v_a,v_a,1/vec_mod_(v_a));
  psi=angle((vec[v_a]x,vec[v_a]y));
  theta=-angle((vec[v_a]x++vec[v_a]y,vec[v_a]z));
  compute_reference(psi,theta,phi);
  if projection_type=2: % oblique
    % we start by checking that at a minimum the three points defining
    % the projection plane have different indexes; it doesn't mean
    % the plane if well defined, but if two values are identical,
    % the plane can't be well defined.
    if ((projection_plane1<>projection_plane2) and
      (projection_plane1<>projection_plane3) and
      (projection_plane2<>projection_plane3)):
      new_line_(l)(Obs,Obs);
      vec_sum_(l2,ObsI_,Obs);
      if def_inter_p_l_pl_(ObliqueCenter_)(l)(projection_plane):
        project_vectors(ProjK_,ProjJ_)(ObsK_,ObsJ_)(l)(projection_plane);
	% define the projection direction
	set_line_(projection_direction)(Obs,ObliqueCenter_);
      else:
	message "Anomalous oblique projection:";
	message "  the observer is watching parallely to the plane";
      fi;
      free_line(l);
    else:
      message "Anomalous projection plane; did you define it?";
    fi;
  fi;
  free_vec(v_a);
enddef;


% Distance between the observer and point |n| of object |name|
% Result is put in |dist|
vardef obs_distance(text dist)(expr name,n)=
  new_vec(v_a);
  define_current_point_offset_(name);% enables |pnt|
  dist:=vec_mod_(v_a,pnt(n),Obs);
  free_vec(v_a);
enddef;

%%\newpage
%%\title{Vector and point allocation}
% Allocation is done through a stack of vectors
numeric last_vec_;
last_vec_=0;

% vector allocation
% (this must not be a |vardef| because the vector |v| saved is not saved
% in this macro, but in the calling context)
def new_vec(text v)=
  save v;
  new_vec_(v);
enddef;

def new_vec_(text v)=
  v:=incr(last_vec_);
       %|message "Vector " & decimal (last_vec_+1) & " allocated";|
enddef;

let new_point = new_vec;
let new_point_ = new_vec_;

def new_points(text p)(expr n)=
  save p;
  numeric p[];
  for i:=1 upto n:new_point_(p[i]);endfor;
enddef;

% Free a vector
% A vector can only be freed safely when it was the last vector created.
def free_vec(expr i)=
  if i=last_vec_: last_vec_:=last_vec_-1;
     %|message "Vector " & decimal i & " freed";|
  else: errmessage("Vector " & decimal i & " can't be freed!");
  fi;
enddef;

let free_point = free_vec;

def free_points(text p)(expr n)=
  for i:=n step-1 until 1:free_point(p[i]);endfor;
enddef;

%%\title{Debugging}

def show_vec(expr t,i)=
  message "Vector " & t & "="
  & "(" & decimal vec[i]x & "," & decimal vec[i]y & ","
    & decimal vec[i]z & ")";
enddef;

% One can write |show_point("2",pnt_obj("obj",2));|
let show_point=show_vec;

def show_pair(expr t,zz)=
  message t & "=(" & decimal xpart(zz) & "," & decimal ypart(zz) & ")";
enddef;

%%\newpage
%%\title{Access to object features}
% |a| must be a string representing a class name, such as |"dodecahedron"|.
% |b| is the tail of a macro name.

def obj_(expr a,b,i)=
  scantokens
  begingroup save n;string n;n=a & b & i;n
  endgroup
enddef;

def obj_points_(expr name)=
  obj_(obj_class_(name),"_points",name)
enddef;

def obj_faces_(expr name)=
  obj_(obj_class_(name),"_faces",name)
enddef;

vardef obj_point_offset_(expr name)=
  obj_(obj_class_(name),"_point_offset",name)
enddef;

vardef obj_face_offset_(expr name)=
  obj_(obj_class_(name),"_face_offset",name)
enddef;

def obj_class_(expr name)=obj_(name,"_class","") enddef;

%%\newpage
def define_point_offset_(expr name,o)=
  begingroup save n,tmpdef;
    string n,tmpdef;
    n=obj_class_(name) & "_point_offset" & name;
    expandafter numeric scantokens n;
    scantokens n:=last_point_offset_;
    last_point_offset_:=last_point_offset_+o;
    tmpdef="def " & obj_class_(name) & "_points" & name & 
      "=" & decimal o & " enddef";
    scantokens tmpdef;
  endgroup
enddef;

def define_face_offset_(expr name,o)=
  begingroup save n,tmpdef;
    string n,tmpdef;
    n=obj_class_(name) & "_face_offset" & name;
    expandafter numeric scantokens n;
    scantokens n:=last_face_offset_;
    last_face_offset_:=last_face_offset_+o;
    tmpdef="def " & obj_class_(name) & "_faces" & name & 
      "=" & decimal o & " enddef";
    scantokens tmpdef;
  endgroup
enddef;

def define_current_point_offset_(expr name)=
  save current_point_offset_;
  numeric current_point_offset_;
  current_point_offset_:=obj_point_offset_(name);
enddef;

def define_current_face_offset_(expr name)=
  save current_face_offset_;
  numeric current_face_offset_;
  current_face_offset_:=obj_face_offset_(name);
enddef;


%%\newpage
%%\title{Drawing an object}
% |name| is an object instance
vardef draw_obj(expr name)=
  save tmpdef;
  string tmpdef;
  current_obj:=name; 
  tmpdef="draw_" & obj_class_(name);
  project_obj(name);% compute screen coordinates
  save overflow; boolean overflow; overflow=false;
  for $:=1 upto obj_points_(name): 
    if z[ipnt_($)]=(too_big_,too_big_):overflow:=true;
      x[ipnt_($)] := 10; % so that the figure can be drawn anyway
      y[ipnt_($)] := 10;
      % why can't I write z[ipnt_($)]:=(10,10); ?
    fi;
    exitif overflow;
  endfor;
  if overflow:
    message "Figure has overflows";
    message "  (at least one point is not visible ";
    message "   and had to be drawn at a wrong place)";
  fi;
  scantokens tmpdef(name);
enddef;

%%\title{Normalization of an object}
% This macro translates an object so that a list of vertices is centered
% on the origin, and the last vertex is put on a sphere whose radius is 1.
% |name| is the name of the object and |vertices| is a list
% of points whose barycenter will define the center of the object.
% (|vertices| need not be the list of all vertices)
vardef normalize_obj(expr name)(text vertices)=
  save nvertices,last;
  nvertices=0;
  new_vec(v_a);vec_def_(v_a,0,0,0)
  forsuffixes $=vertices:
    vec_sum_(v_a,v_a,pnt($));
    nvertices:=nvertices+1;
    last:=$;
  endfor;
  vec_mult_(v_a,v_a,-1/nvertices);
  translate_obj(name,v_a);% object centered on the origin
  scale_obj(name,1/vec_mod(last));
  free_vec(v_a);
enddef;


%%\newpage
%%\title{General definitions}
% Vector arrays
numeric vec[]x,vec[]y,vec[]z;

% Reference vectors $\vec{0}$, $\vec{\imath}$, $\vec{\jmath}$ and $\vec{k}$ 
% and their definition
new_vec(vec_null);new_vec(vec_I);new_vec(vec_J);new_vec(vec_K);
vec_def_(vec_null,0,0,0);
vec_def_(vec_I,1,0,0);vec_def_(vec_J,0,1,0);vec_def_(vec_K,0,0,1);
numeric point_null;
point_null=vec_null;

% Observer 
new_point(Obs);
% default value:
set_point_(Obs,0,0,20); 

% Observer's vectors
new_vec(ObsI_);new_vec(ObsJ_);new_vec(ObsK_);
% default values: 
vec_def_vec_(ObsI_,vec_I);
vec_def_vec_(ObsJ_,vec_J);
vec_def_vec_(ObsK_,vec_K);

new_vec(IObsI_);new_vec(IObsJ_);new_vec(IObsK_);

% These vectors will be vectors of the projection plane,
% in case of oblique projections:
new_vec(ProjK_);new_vec(ProjJ_); % there is no |ProjI_|

% This will be the center of the projection plane, in oblique projections
new_point(ObliqueCenter_);


% distance observer/plane (must be $>0$)
numeric Obs_dist; % represents |Obs_dist| $\times$ |drawing_scale|
% default value:
Obs_dist=2; % means |Obs_dist| $\times$ |drawing_scale|

% current object being drawn
string current_obj;

% kind of projection: 0 for linear (or central) perspective, 1 for parallel,
% 2 for oblique projection
% (default is 0)
numeric projection_type;
projection_type:=0;

% Definition of a projection plane (only used in oblique projections)
%
new_plane_(projection_plane)(1,1,1); % the initial value is irrelevant

% Definition of a projection direction (only used in oblique projections)
new_line_(projection_direction)(1,1);  % the initial value is irrelevant

% this positions the observer at vector |p| (the point observed)
% + |d| (distance) * (k-(i+j))
def isometric_projection(expr i,j,k,p,d,phi)=
  trimetric_projection(i,j,k,1,1,1,p,d,phi);
enddef;

% this positions the observer at vector |p| (the point observed)
% + |d| (distance) * (ak-(i+j))
def dimetric_projection(expr i,j,k,a,p,d,phi)=
  trimetric_projection(i,j,k,1,1,a,p,d,phi);
enddef;

% this positions the observer at vector |p| (the point observed)
% + |d| (distance) * (k-(i+j))
% |a|, |b| and |c| are multiplicative factors to vectors |i|, |j| and |k|
vardef trimetric_projection(expr i,j,k,a,b,c,p,d,phi)=
  save v_a,v_b,v_c;
  new_vec(v_a);new_vec(v_b);new_vec(v_c);
  vec_mult_(v_a,i,a);vec_mult_(v_b,j,b);vec_mult_(v_c,k,c);
  vec_sum_(Obs,v_a,v_b);
  vec_diff_(Obs,v_c,Obs);
  vec_mult_(Obs,Obs,d);
  vec_sum_(Obs,Obs,p);
  point_of_view_abs(p,phi);
  projection_type:=1;
  free_vec(v_c);free_vec(v_b);free_vec(v_a);
enddef;

% |hor| is an horizontal plane (in the sense that it will represent
% the horizontal for the observer)
% |p| is the point in space that the observer targets (center of screen)
% |a| is an angle (45 degrees corresponds to cavalier drawing)
% |b| is an angle (see examples defined below)
% |d| is the distance of the observer
vardef oblique_projection(text hor)(expr p,a,b,d)=
  save _l,v_a,v_b,v_c,xxx_,obsJangle_;
  new_vec(v_a);new_vec(v_b);new_vec(v_c);
  % we first compute a horizontal line:
  new_line_(_l)(1,1);
  if def_inter_l_pl_pl(_l)(hor)(projection_plane):
    vec_diff_(v_a,_l2,_l1); % horizontal vector
    % then, we find a normal to the projection plane:
    def_normal_p_(v_b)(projection_plane);
    % complete the line and the vector by a third vector (=vertical)
    vec_prod_(v_c,v_a,v_b);
    % we make |v_a| a copy of |v_b| since we no longer need |v_b|
    vec_def_vec_(v_a,v_b);
    % we rotate |v_b| by an angle |a| around |v_c|
    vec_rotate_(v_b,v_c,a);
    % we rotate |v_b| by an angle |b| around |v_a|
    vec_rotate_(v_b,v_a,b);
    % we put the observer at the distance |d| of |p| in
    % the direction of |v_b|:
    vec_unit_(v_b,v_b);
    vec_mult_(v_b,v_b,d);vec_sum_(Obs,p,v_b);
    % We now have to make sure that point |p| and point |Obs|
    % are on different sides of the projection plane. For this,
    % we compute two dot products:
    new_vec(v_d);new_vec(v_e);
    vec_diff_(v_d,p,_l1);vec_diff_(v_e,Obs,_l1);
    if vec_dprod_(v_d,v_a)*vec_dprod_(v_e,v_a)>=0:
      % |p| and |Obs| are on the same side of the projection plane
      % |Obs| needs to be recomputed.
      vec_mult_(v_b,v_b,-1);
      vec_sum_(Obs,p,v_b);
    fi;
    free_vec(v_e);free_vec(v_d);
    projection_type:=2;    % needs to be set before |point_of_view_abs|
    point_of_view_abs(p,90); % this computes |ObliqueCenter_|
    % and now, make sure the vectors defining the observer are right:
    % Create the plane containing lines _l and projection_direction
    %  (defined by point_of_view_abs):
    new_plane_(xxx_)(1,1,1);
    def_plane_pl_l_l(xxx_)(_l)(projection_direction);
    % Compute the angle of |ObsK_| with this plane:
    obsJangle_=vangle_v_pl_(ObsK_)(xxx_);
    % rotate |ObsJ_| and |ObsK_| by |obsJangle_| around |ObsI_|
    vec_rotate_(ObsJ_,ObsI_,obsJangle_);
    vec_rotate_(ObsK_,ObsI_,obsJangle_);
    if abs(vangle_v_pl_(ObsK_)(xxx_))>1: % the rotation was done
                                         % in the wrong direction
      vec_rotate_(ObsJ_,ObsI_,-2obsJangle_);
      vec_rotate_(ObsK_,ObsI_,-2obsJangle_);
    fi;
    % |vec_rotate_(ObsJ_,ObsI_,45);| % planometric test
    % |vec_rotate_(ObsK_,ObsI_,45);| % planometric test
    free_plane(xxx_);
    % and now, |ProjJ_| and |ProjK_| must be recomputed:
    project_vectors(ProjK_,ProjJ_)(ObsK_,ObsJ_)%
               (projection_direction)(projection_plane);
  else:
    message "Error: the ``horizontal plane'' cannot be";
    message "  parallel to the projection plane.";
  fi;
  free_line(_l);
  free_vec(v_c);free_vec(v_b);free_vec(v_a);
enddef;

% These two are the most common values for the third parameter
% of |oblique_projection|
numeric CAVALIER;CAVALIER=45;
numeric CABINET;CABINET=angle((1,.5)); % atn(.5)

% Screen Size
% The screen size is defined through two angles: the horizontal field
% and the vertical field
numeric h_field,v_field;
h_field=100; % degrees 
v_field=70; % degrees

% Observer's orientation, defined by three angles
numeric Obs_psi,Obs_theta,Obs_phi; 
% default value:
Obs_psi=0;Obs_theta=90;Obs_phi=0;

% This array relates an absolute object point number to the
% absolute point number (that is, to the |vec| array).
% The absolute object point number is the rank of a point
% with respect to all object points. The absolute point number
% considers in addition the extra points, such as |Obs|, which do
% not belong to an object.
% If |i| is an absolute object point number, |points_[i]|
% is the absolute point number.
numeric points_[]; 

% |name| is the name of an object instance
% |npoints| is its number of defining points
def new_obj_points(expr name,npoints)= 
  define_point_offset_(name,npoints);define_current_point_offset_(name);
  for i:=1 upto obj_points_(name):new_point_(pnt(i));endfor;
enddef;

% |name| is the name of an object instance
% |nfaces| is its number of defining faces
def new_obj_faces(expr name,nfaces)= 
  define_face_offset_(name,nfaces);define_current_face_offset_(name);
  redefine_obj_name_(name,current_face_offset_+nfaces);
enddef;

%%\newpage
% Absolute point number corresponding to object point number |i|
% This macro must only be used within the function defining an object
% (such as |def_cube|) or the function drawing an object (such as
% |draw_cube|).
def ipnt_(expr i)=i+current_point_offset_ enddef;
def pnt(expr i)=points_[ipnt_(i)] enddef;

def face(expr i)=(i+current_face_offset_) enddef;

% Absolute point number corresponding to local point |n|
% in object instance |name|
vardef pnt_obj(expr name,n)=
  points_[n+obj_point_offset_(name)]
  %hide(define_current_point_offset_(name);) pnt(n) % HAS SIDE EFFECTS
enddef;

% Absolute face number corresponding to local face |n|
% in object instance |name|
vardef face_obj(expr name,n)=
  (n+obj_face_offset_(name))
  %hide(define_current_face_offset_(name);) face(n) % HAS SIDE EFFECTS
enddef;


% Scale
numeric drawing_scale;
drawing_scale=2cm;

% Color
% This function is useful when a color is expressed in hexadecimal.
% This does the opposite from |tohexcolor|
def hexcolor(expr s)=
  (hex(substring (0,2) of s)/255,hex(substring (2,4) of s)/255,
    hex(substring (4,6) of s)/255)
enddef;

% Convert a color triple into a hexadecimal color string.
% |rv|, |gv| and |bv| are values between 0 and 1.
% This does the opposite from |hexcolor|
vardef tohexcolor(expr rv,gv,bv)=
  save dig;numeric dig[];
  hide(
    dig2=floor(rv*255);dig1=floor((dig2)/16);dig2:=dig2-16*dig1;
    dig4=floor(gv*255);dig3=floor((dig4)/16);dig4:=dig4-16*dig3;
    dig6=floor(bv*255);dig5=floor((dig6)/16);dig6:=dig6-16*dig5;
    for i:=1 upto 6:
      if dig[i]<10:dig[i]:=dig[i]+48;
      else:dig[i]:=dig[i]+87;
      fi;
    endfor;
  )
  char(dig1)&char(dig2)&char(dig3)&char(dig4)&char(dig5)&char(dig6)
enddef;

% Conversions

% Returns a string encoding the integer |n| as follows:
% if $n=10*a+b$ with $b<10$,
%   |alphabetize|(|n|)=|alphabetize|(|a|) |&| |char (65+b)|
% For instance, alphabetize(3835) returns "DIDF"
% This function is useful in places where digits are not allowed.
def alphabetize(expr n)=
  if (n>9):
    alphabetize(floor(n/10)) & fi
  char(65+n-10*floor(n/10))
enddef;

% Filling and contours
boolean filled_faces,draw_contours;
filled_faces=true;
draw_contours=true;
numeric contour_width; % thickness of contours
contour_width=1pt;
color contour_color; % face contours
contour_color=black;

% Overflow control
% An overflow can occur when an object is too close from the observer
% or if an object is out of sight. We use a special value to mark
% coordinates which would lead to an overflow.
numeric too_big_;
too_big_=4000;


% Object offset (the points defining an object are arranged
% in a single array, and the objects are easier to manipulate
% if the point numbers are divided into a number and an offset).
numeric last_point_offset_,last_face_offset_;
last_point_offset_=0;last_face_offset_=0;

endinput