/usr/share/vtk/Annotation/Python/xyPlot.py is in vtk-examples 5.8.0-5.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 | #!/usr/bin/env python
# This example demonstrates the use of vtkXYPlotActor to display three
# probe lines using three different techniques. In this example, we
# are loading data using the vtkPLOT3DReader. We are using the
# vtkProbeFilter to extract the underlying point data along three
# probe lines.
import vtk
from vtk.util.misc import vtkGetDataRoot
VTK_DATA_ROOT = vtkGetDataRoot()
# Create a PLOT3D reader and load the data.
pl3d = vtk.vtkPLOT3DReader()
pl3d.SetXYZFileName(VTK_DATA_ROOT + "/Data/combxyz.bin")
pl3d.SetQFileName(VTK_DATA_ROOT + "/Data/combq.bin")
pl3d.SetScalarFunctionNumber(100)
pl3d.SetVectorFunctionNumber(202)
pl3d.Update()
# Create three the line source to use for the probe lines.
line = vtk.vtkLineSource()
line.SetResolution(30)
# Move the line into place and create the probe filter. For
# vtkProbeFilter, the probe line is the input, and the underlying data
# set is the source.
transL1 = vtk.vtkTransform()
transL1.Translate(3.7, 0.0, 28.37)
transL1.Scale(5, 5, 5)
transL1.RotateY(90)
tf = vtk.vtkTransformPolyDataFilter()
tf.SetInputConnection(line.GetOutputPort())
tf.SetTransform(transL1)
probe = vtk.vtkProbeFilter()
probe.SetInputConnection(tf.GetOutputPort())
probe.SetSource(pl3d.GetOutput())
# Move the line again and create another probe filter.
transL2 = vtk.vtkTransform()
transL2.Translate(9.2, 0.0, 31.20)
transL2.Scale(5, 5, 5)
transL2.RotateY(90)
tf2 = vtk.vtkTransformPolyDataFilter()
tf2.SetInputConnection(line.GetOutputPort())
tf2.SetTransform(transL2)
probe2 = vtk.vtkProbeFilter()
probe2.SetInputConnection(tf2.GetOutputPort())
probe2.SetSource(pl3d.GetOutput())
# Move the line again and create a third probe filter.
transL3 = vtk.vtkTransform()
transL3.Translate(13.27, 0.0, 33.40)
transL3.Scale(4.5, 4.5, 4.5)
transL3.RotateY(90)
tf3 = vtk.vtkTransformPolyDataFilter()
tf3.SetInputConnection(line.GetOutputPort())
tf3.SetTransform(transL3)
probe3 = vtk.vtkProbeFilter()
probe3.SetInputConnection(tf3.GetOutputPort())
probe3.SetSource(pl3d.GetOutput())
# Create a vtkAppendPolyData to merge the output of the three probe
# filters into one data set.
appendF = vtk.vtkAppendPolyData()
appendF.AddInput(probe.GetPolyDataOutput())
appendF.AddInput(probe2.GetPolyDataOutput())
appendF.AddInput(probe3.GetPolyDataOutput())
# Create a tube filter to represent the lines as tubes. Set up the
# associated mapper and actor.
tuber = vtk.vtkTubeFilter()
tuber.SetInputConnection(appendF.GetOutputPort())
tuber.SetRadius(0.1)
lineMapper = vtk.vtkPolyDataMapper()
lineMapper.SetInputConnection(tuber.GetOutputPort())
lineActor = vtk.vtkActor()
lineActor.SetMapper(lineMapper)
# Create an xy-plot using the output of the 3 probe filters as input.
# The x-values we are plotting are arc length.
xyplot = vtk.vtkXYPlotActor()
xyplot.AddInput(probe.GetOutput())
xyplot.AddInput(probe2.GetOutput())
xyplot.AddInput(probe3.GetOutput())
xyplot.GetPositionCoordinate().SetValue(0.0, 0.67, 0)
xyplot.GetPosition2Coordinate().SetValue(1.0, 0.33, 0) #relative to Position
xyplot.SetXValuesToArcLength()
xyplot.SetNumberOfXLabels(6)
xyplot.SetTitle("Pressure vs. Arc Length (Zoomed View)")
xyplot.SetXTitle("")
xyplot.SetYTitle("P")
xyplot.SetXRange(.1, .35)
xyplot.SetYRange(.2, .4)
xyplot.GetProperty().SetColor(0, 0, 0)
xyplot.GetProperty().SetLineWidth(2)
# Set text prop color (same color for backward compat with test)
# Assign same object to all text props
tprop = xyplot.GetTitleTextProperty()
tprop.SetColor(xyplot.GetProperty().GetColor())
xyplot.SetAxisTitleTextProperty(tprop)
xyplot.SetAxisLabelTextProperty(tprop)
# Create an xy-plot using the output of the 3 probe filters as input.
# The x-values we are plotting are normalized arc length.
xyplot2 = vtk.vtkXYPlotActor()
xyplot2.AddInput(probe.GetOutput())
xyplot2.AddInput(probe2.GetOutput())
xyplot2.AddInput(probe3.GetOutput())
xyplot2.GetPositionCoordinate().SetValue(0.00, 0.33, 0)
xyplot2.GetPosition2Coordinate().SetValue(1.0, 0.33, 0) #relative to Position
xyplot2.SetXValuesToNormalizedArcLength()
xyplot2.SetNumberOfXLabels(6)
xyplot2.SetTitle("Pressure vs. Normalized Arc Length")
xyplot2.SetXTitle("")
xyplot2.SetYTitle("P")
xyplot2.PlotPointsOn()
xyplot2.PlotLinesOff()
xyplot2.GetProperty().SetColor(1, 0, 0)
xyplot2.GetProperty().SetPointSize(2)
# Set text prop color (same color for backward compat with test)
# Assign same object to all text props
tprop = xyplot2.GetTitleTextProperty()
tprop.SetColor(xyplot2.GetProperty().GetColor())
xyplot2.SetAxisTitleTextProperty(tprop)
xyplot2.SetAxisLabelTextProperty(tprop)
# Create an xy-plot using the output of the 3 probe filters as input.
# The x-values we are plotting are the underlying point data values.
xyplot3 = vtk.vtkXYPlotActor()
xyplot3.AddInput(probe.GetOutput())
xyplot3.AddInput(probe2.GetOutput())
xyplot3.AddInput(probe3.GetOutput())
xyplot3.GetPositionCoordinate().SetValue(0.0, 0.0, 0)
xyplot3.GetPosition2Coordinate().SetValue(1.0, 0.33, 0) #relative to Position
xyplot3.SetXValuesToIndex()
xyplot3.SetNumberOfXLabels(6)
xyplot3.SetTitle("Pressure vs. Point Id")
xyplot3.SetXTitle("Probe Length")
xyplot3.SetYTitle("P")
xyplot3.PlotPointsOn()
xyplot3.GetProperty().SetColor(0, 0, 1)
xyplot3.GetProperty().SetPointSize(3)
# Set text prop color (same color for backward compat with test)
# Assign same object to all text props
tprop = xyplot3.GetTitleTextProperty()
tprop.SetColor(xyplot3.GetProperty().GetColor())
xyplot3.SetAxisTitleTextProperty(tprop)
xyplot3.SetAxisLabelTextProperty(tprop)
# Draw an outline of the PLOT3D data set.
outline = vtk.vtkStructuredGridOutlineFilter()
outline.SetInputConnection(pl3d.GetOutputPort())
outlineMapper = vtk.vtkPolyDataMapper()
outlineMapper.SetInputConnection(outline.GetOutputPort())
outlineActor = vtk.vtkActor()
outlineActor.SetMapper(outlineMapper)
outlineActor.GetProperty().SetColor(0, 0, 0)
# Create the Renderers, RenderWindow, and RenderWindowInteractor.
ren = vtk.vtkRenderer()
ren2 = vtk.vtkRenderer()
renWin = vtk.vtkRenderWindow()
renWin.AddRenderer(ren)
renWin.AddRenderer(ren2)
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renWin)
# Set the background, viewport (necessary because we want to have the
# renderers draw to different parts of the render window) of the first
# renderer. Add the outline and line actors to the renderer.
ren.SetBackground(0.6784, 0.8471, 0.9020)
ren.SetViewport(0, 0, .5, 1)
ren.AddActor(outlineActor)
ren.AddActor(lineActor)
# Set the background and viewport of the second renderer. Add the
# xy-plot actors to the renderer. Set the size of the render window.
ren2.SetBackground(1, 1, 1)
ren2.SetViewport(0.5, 0.0, 1.0, 1.0)
ren2.AddActor2D(xyplot)
ren2.AddActor2D(xyplot2)
ren2.AddActor2D(xyplot3)
renWin.SetSize(500, 250)
# Set up the camera parameters.
cam1 = ren.GetActiveCamera()
cam1.SetClippingRange(3.95297, 100)
cam1.SetFocalPoint(8.88908, 0.595038, 29.3342)
cam1.SetPosition(-12.3332, 31.7479, 41.2387)
cam1.SetViewUp(0.060772, -0.319905, 0.945498)
iren.Initialize()
renWin.Render()
iren.Start()
|