/usr/share/vtk/Medical/Python/Medical3.py is in vtk-examples 5.8.0-5.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 | #!/usr/bin/env python
# This example reads a volume dataset, extracts two isosurfaces that
# represent the skin and bone, creates three orthogonal planes
# (saggital, axial, coronal), and displays them.
import vtk
from vtk.util.misc import vtkGetDataRoot
VTK_DATA_ROOT = vtkGetDataRoot()
# Create the renderer, the render window, and the interactor. The
# renderer draws into the render window, the interactor enables mouse-
# and keyboard-based interaction with the scene.
aRenderer = vtk.vtkRenderer()
renWin = vtk.vtkRenderWindow()
renWin.AddRenderer(aRenderer)
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renWin)
# The following reader is used to read a series of 2D slices (images)
# that compose the volume. The slice dimensions are set, and the
# pixel spacing. The data Endianness must also be specified. The reader
# usese the FilePrefix in combination with the slice number to construct
# filenames using the format FilePrefix.%d. (In this case the FilePrefix
# is the root name of the file: quarter.)
v16 = vtk.vtkVolume16Reader()
v16.SetDataDimensions(64, 64)
v16.SetDataByteOrderToLittleEndian()
v16.SetFilePrefix(VTK_DATA_ROOT + "/Data/headsq/quarter")
v16.SetImageRange(1, 93)
v16.SetDataSpacing(3.2, 3.2, 1.5)
# An isosurface, or contour value of 500 is known to correspond to the
# skin of the patient. Once generated, a vtkPolyDataNormals filter is
# is used to create normals for smooth surface shading during rendering.
# The triangle stripper is used to create triangle strips from the
# isosurface these render much faster on may systems.
skinExtractor = vtk.vtkContourFilter()
skinExtractor.SetInputConnection(v16.GetOutputPort())
skinExtractor.SetValue(0, 500)
skinNormals = vtk.vtkPolyDataNormals()
skinNormals.SetInputConnection(skinExtractor.GetOutputPort())
skinNormals.SetFeatureAngle(60.0)
skinStripper = vtk.vtkStripper()
skinStripper.SetInputConnection(skinNormals.GetOutputPort())
skinMapper = vtk.vtkPolyDataMapper()
skinMapper.SetInputConnection(skinStripper.GetOutputPort())
skinMapper.ScalarVisibilityOff()
skin = vtk.vtkActor()
skin.SetMapper(skinMapper)
skin.GetProperty().SetDiffuseColor(1, .49, .25)
skin.GetProperty().SetSpecular(.3)
skin.GetProperty().SetSpecularPower(20)
# An isosurface, or contour value of 1150 is known to correspond to the
# skin of the patient. Once generated, a vtkPolyDataNormals filter is
# is used to create normals for smooth surface shading during rendering.
# The triangle stripper is used to create triangle strips from the
# isosurface these render much faster on may systems.
boneExtractor = vtk.vtkContourFilter()
boneExtractor.SetInputConnection(v16.GetOutputPort())
boneExtractor.SetValue(0, 1150)
boneNormals = vtk.vtkPolyDataNormals()
boneNormals.SetInputConnection(boneExtractor.GetOutputPort())
boneNormals.SetFeatureAngle(60.0)
boneStripper = vtk.vtkStripper()
boneStripper.SetInputConnection(boneNormals.GetOutputPort())
boneMapper = vtk.vtkPolyDataMapper()
boneMapper.SetInputConnection(boneStripper.GetOutputPort())
boneMapper.ScalarVisibilityOff()
bone = vtk.vtkActor()
bone.SetMapper(boneMapper)
bone.GetProperty().SetDiffuseColor(1, 1, .9412)
# An outline provides context around the data.
outlineData = vtk.vtkOutlineFilter()
outlineData.SetInputConnection(v16.GetOutputPort())
mapOutline = vtk.vtkPolyDataMapper()
mapOutline.SetInputConnection(outlineData.GetOutputPort())
outline = vtk.vtkActor()
outline.SetMapper(mapOutline)
outline.GetProperty().SetColor(0, 0, 0)
# Now we are creating three orthogonal planes passing through the
# volume. Each plane uses a different texture map and therefore has
# diferent coloration.
# Start by creatin a black/white lookup table.
bwLut = vtk.vtkLookupTable()
bwLut.SetTableRange(0, 2000)
bwLut.SetSaturationRange(0, 0)
bwLut.SetHueRange(0, 0)
bwLut.SetValueRange(0, 1)
bwLut.Build()
# Now create a lookup table that consists of the full hue circle (from
# HSV).
hueLut = vtk.vtkLookupTable()
hueLut.SetTableRange(0, 2000)
hueLut.SetHueRange(0, 1)
hueLut.SetSaturationRange(1, 1)
hueLut.SetValueRange(1, 1)
hueLut.Build()
# Finally, create a lookup table with a single hue but having a range
# in the saturation of the hue.
satLut = vtk.vtkLookupTable()
satLut.SetTableRange(0, 2000)
satLut.SetHueRange(.6, .6)
satLut.SetSaturationRange(0, 1)
satLut.SetValueRange(1, 1)
satLut.Build()
# Create the first of the three planes. The filter vtkImageMapToColors
# maps the data through the corresponding lookup table created above.
# The vtkImageActor is a type of vtkProp and conveniently displays an
# image on a single quadrilateral plane. It does this using texture
# mapping and as a result is quite fast. (Note: the input image has to
# be unsigned char values, which the vtkImageMapToColors produces.)
# Note also that by specifying the DisplayExtent, the pipeline
# requests data of this extent and the vtkImageMapToColors only
# processes a slice of data.
saggitalColors = vtk.vtkImageMapToColors()
saggitalColors.SetInputConnection(v16.GetOutputPort())
saggitalColors.SetLookupTable(bwLut)
saggital = vtk.vtkImageActor()
saggital.SetInput(saggitalColors.GetOutput())
saggital.SetDisplayExtent(32, 32, 0, 63, 0, 92)
# Create the second (axial) plane of the three planes. We use the same
# approach as before except that the extent differs.
axialColors = vtk.vtkImageMapToColors()
axialColors.SetInputConnection(v16.GetOutputPort())
axialColors.SetLookupTable(hueLut)
axial = vtk.vtkImageActor()
axial.SetInput(axialColors.GetOutput())
axial.SetDisplayExtent(0, 63, 0, 63, 46, 46)
# Create the third (coronal) plane of the three planes. We use the same
# approach as before except that the extent differs.
coronalColors = vtk.vtkImageMapToColors()
coronalColors.SetInputConnection(v16.GetOutputPort())
coronalColors.SetLookupTable(satLut)
coronal = vtk.vtkImageActor()
coronal.SetInput(coronalColors.GetOutput())
coronal.SetDisplayExtent(0, 63, 32, 32, 0, 92)
# It is convenient to create an initial view of the data. The FocalPoint
# and Position form a vector direction. Later on (ResetCamera() method)
# this vector is used to position the camera to look at the data in
# this direction.
aCamera = vtk.vtkCamera()
aCamera.SetViewUp(0, 0, -1)
aCamera.SetPosition(0, 1, 0)
aCamera.SetFocalPoint(0, 0, 0)
aCamera.ComputeViewPlaneNormal()
# Actors are added to the renderer.
aRenderer.AddActor(outline)
aRenderer.AddActor(saggital)
aRenderer.AddActor(axial)
aRenderer.AddActor(coronal)
#aRenderer.AddActor(axial)
#aRenderer.AddActor(coronal)
aRenderer.AddActor(skin)
aRenderer.AddActor(bone)
# Turn off bone for this example.
bone.VisibilityOff()
# Set skin to semi-transparent.
skin.GetProperty().SetOpacity(0.5)
# An initial camera view is created. The Dolly() method moves
# the camera towards the FocalPoint, thereby enlarging the image.
aRenderer.SetActiveCamera(aCamera)
aRenderer.ResetCamera()
aCamera.Dolly(1.5)
# Set a background color for the renderer and set the size of the
# render window (expressed in pixels).
aRenderer.SetBackground(1, 1, 1)
renWin.SetSize(640, 480)
# Note that when camera movement occurs (as it does in the Dolly()
# method), the clipping planes often need adjusting. Clipping planes
# consist of two planes: near and far along the view direction. The
# near plane clips out objects in front of the plane the far plane
# clips out objects behind the plane. This way only what is drawn
# between the planes is actually rendered.
aRenderer.ResetCameraClippingRange()
# Interact with the data.
iren.Initialize()
renWin.Render()
iren.Start()
|