This file is indexed.

/usr/share/vtk/Medical/Python/Medical3.py is in vtk-examples 5.8.0-5.

This file is owned by root:root, with mode 0o755.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
#!/usr/bin/env python

# This example reads a volume dataset, extracts two isosurfaces that
# represent the skin and bone, creates three orthogonal planes
# (saggital, axial, coronal), and displays them.

import vtk
from vtk.util.misc import vtkGetDataRoot
VTK_DATA_ROOT = vtkGetDataRoot()

# Create the renderer, the render window, and the interactor. The
# renderer draws into the render window, the interactor enables mouse-
# and keyboard-based interaction with the scene.
aRenderer = vtk.vtkRenderer()
renWin = vtk.vtkRenderWindow()
renWin.AddRenderer(aRenderer)
iren = vtk.vtkRenderWindowInteractor()
iren.SetRenderWindow(renWin)

# The following reader is used to read a series of 2D slices (images)
# that compose the volume. The slice dimensions are set, and the
# pixel spacing. The data Endianness must also be specified. The reader
# usese the FilePrefix in combination with the slice number to construct
# filenames using the format FilePrefix.%d. (In this case the FilePrefix
# is the root name of the file: quarter.)
v16 = vtk.vtkVolume16Reader()
v16.SetDataDimensions(64, 64)
v16.SetDataByteOrderToLittleEndian()
v16.SetFilePrefix(VTK_DATA_ROOT + "/Data/headsq/quarter")
v16.SetImageRange(1, 93)
v16.SetDataSpacing(3.2, 3.2, 1.5)

# An isosurface, or contour value of 500 is known to correspond to the
# skin of the patient. Once generated, a vtkPolyDataNormals filter is
# is used to create normals for smooth surface shading during rendering.
# The triangle stripper is used to create triangle strips from the
# isosurface these render much faster on may systems.
skinExtractor = vtk.vtkContourFilter()
skinExtractor.SetInputConnection(v16.GetOutputPort())
skinExtractor.SetValue(0, 500)
skinNormals = vtk.vtkPolyDataNormals()
skinNormals.SetInputConnection(skinExtractor.GetOutputPort())
skinNormals.SetFeatureAngle(60.0)
skinStripper = vtk.vtkStripper()
skinStripper.SetInputConnection(skinNormals.GetOutputPort())
skinMapper = vtk.vtkPolyDataMapper()
skinMapper.SetInputConnection(skinStripper.GetOutputPort())
skinMapper.ScalarVisibilityOff()
skin = vtk.vtkActor()
skin.SetMapper(skinMapper)
skin.GetProperty().SetDiffuseColor(1, .49, .25)
skin.GetProperty().SetSpecular(.3)
skin.GetProperty().SetSpecularPower(20)

# An isosurface, or contour value of 1150 is known to correspond to the
# skin of the patient. Once generated, a vtkPolyDataNormals filter is
# is used to create normals for smooth surface shading during rendering.
# The triangle stripper is used to create triangle strips from the
# isosurface these render much faster on may systems.
boneExtractor = vtk.vtkContourFilter()
boneExtractor.SetInputConnection(v16.GetOutputPort())
boneExtractor.SetValue(0, 1150)
boneNormals = vtk.vtkPolyDataNormals()
boneNormals.SetInputConnection(boneExtractor.GetOutputPort())
boneNormals.SetFeatureAngle(60.0)
boneStripper = vtk.vtkStripper()
boneStripper.SetInputConnection(boneNormals.GetOutputPort())
boneMapper = vtk.vtkPolyDataMapper()
boneMapper.SetInputConnection(boneStripper.GetOutputPort())
boneMapper.ScalarVisibilityOff()
bone = vtk.vtkActor()
bone.SetMapper(boneMapper)
bone.GetProperty().SetDiffuseColor(1, 1, .9412)

# An outline provides context around the data.
outlineData = vtk.vtkOutlineFilter()
outlineData.SetInputConnection(v16.GetOutputPort())
mapOutline = vtk.vtkPolyDataMapper()
mapOutline.SetInputConnection(outlineData.GetOutputPort())
outline = vtk.vtkActor()
outline.SetMapper(mapOutline)
outline.GetProperty().SetColor(0, 0, 0)

# Now we are creating three orthogonal planes passing through the
# volume. Each plane uses a different texture map and therefore has
# diferent coloration.

# Start by creatin a black/white lookup table.
bwLut = vtk.vtkLookupTable()
bwLut.SetTableRange(0, 2000)
bwLut.SetSaturationRange(0, 0)
bwLut.SetHueRange(0, 0)
bwLut.SetValueRange(0, 1)
bwLut.Build()

# Now create a lookup table that consists of the full hue circle (from
# HSV).
hueLut = vtk.vtkLookupTable()
hueLut.SetTableRange(0, 2000)
hueLut.SetHueRange(0, 1)
hueLut.SetSaturationRange(1, 1)
hueLut.SetValueRange(1, 1)
hueLut.Build()

# Finally, create a lookup table with a single hue but having a range
# in the saturation of the hue.
satLut = vtk.vtkLookupTable()
satLut.SetTableRange(0, 2000)
satLut.SetHueRange(.6, .6)
satLut.SetSaturationRange(0, 1)
satLut.SetValueRange(1, 1)
satLut.Build()

# Create the first of the three planes. The filter vtkImageMapToColors
# maps the data through the corresponding lookup table created above.
# The vtkImageActor is a type of vtkProp and conveniently displays an
# image on a single quadrilateral plane. It does this using texture
# mapping and as a result is quite fast. (Note: the input image has to
# be unsigned char values, which the vtkImageMapToColors produces.)
# Note also that by specifying the DisplayExtent, the pipeline
# requests data of this extent and the vtkImageMapToColors only
# processes a slice of data.
saggitalColors = vtk.vtkImageMapToColors()
saggitalColors.SetInputConnection(v16.GetOutputPort())
saggitalColors.SetLookupTable(bwLut)
saggital = vtk.vtkImageActor()
saggital.SetInput(saggitalColors.GetOutput())
saggital.SetDisplayExtent(32, 32, 0, 63, 0, 92)

# Create the second (axial) plane of the three planes. We use the same
# approach as before except that the extent differs.
axialColors = vtk.vtkImageMapToColors()
axialColors.SetInputConnection(v16.GetOutputPort())
axialColors.SetLookupTable(hueLut)
axial = vtk.vtkImageActor()
axial.SetInput(axialColors.GetOutput())
axial.SetDisplayExtent(0, 63, 0, 63, 46, 46)

# Create the third (coronal) plane of the three planes. We use the same
# approach as before except that the extent differs.
coronalColors = vtk.vtkImageMapToColors()
coronalColors.SetInputConnection(v16.GetOutputPort())
coronalColors.SetLookupTable(satLut)
coronal = vtk.vtkImageActor()
coronal.SetInput(coronalColors.GetOutput())
coronal.SetDisplayExtent(0, 63, 32, 32, 0, 92)

# It is convenient to create an initial view of the data. The FocalPoint
# and Position form a vector direction. Later on (ResetCamera() method)
# this vector is used to position the camera to look at the data in
# this direction.
aCamera = vtk.vtkCamera()
aCamera.SetViewUp(0, 0, -1)
aCamera.SetPosition(0, 1, 0)
aCamera.SetFocalPoint(0, 0, 0)
aCamera.ComputeViewPlaneNormal()

# Actors are added to the renderer.
aRenderer.AddActor(outline)
aRenderer.AddActor(saggital)
aRenderer.AddActor(axial)
aRenderer.AddActor(coronal)
#aRenderer.AddActor(axial)
#aRenderer.AddActor(coronal)
aRenderer.AddActor(skin)
aRenderer.AddActor(bone)

# Turn off bone for this example.
bone.VisibilityOff()

# Set skin to semi-transparent.
skin.GetProperty().SetOpacity(0.5)

# An initial camera view is created.  The Dolly() method moves
# the camera towards the FocalPoint, thereby enlarging the image.
aRenderer.SetActiveCamera(aCamera)
aRenderer.ResetCamera()
aCamera.Dolly(1.5)

# Set a background color for the renderer and set the size of the
# render window (expressed in pixels).
aRenderer.SetBackground(1, 1, 1)
renWin.SetSize(640, 480)

# Note that when camera movement occurs (as it does in the Dolly()
# method), the clipping planes often need adjusting. Clipping planes
# consist of two planes: near and far along the view direction. The
# near plane clips out objects in front of the plane the far plane
# clips out objects behind the plane. This way only what is drawn
# between the planes is actually rendered.
aRenderer.ResetCameraClippingRange()

# Interact with the data.
iren.Initialize()
renWin.Render()
iren.Start()