This file is indexed.

/usr/share/vtk/Medical/Tcl/Medical3.tcl is in vtk-examples 5.8.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
package require vtk
package require vtkinteraction

#
# This example reads a volume dataset, extracts two isosurfaces that
# represent the skin and bone, creates three orthogonal planes (saggital,
# axial, coronal), and displays them.
#

# Create the renderer, the render window, and the interactor. The renderer
# draws into the render window, the interactor enables mouse- and 
# keyboard-based interaction with the scene.
#
vtkRenderer aRenderer
vtkRenderWindow renWin
  renWin AddRenderer aRenderer
vtkRenderWindowInteractor iren
  iren SetRenderWindow renWin

# The following reader is used to read a series of 2D slices (images)
# that compose the volume. The slice dimensions are set, and the
# pixel spacing. The data Endianness must also be specified. The reader
# usese the FilePrefix in combination with the slice number to construct
# filenames using the format FilePrefix.%d. (In this case the FilePrefix
# is the root name of the file: quarter.)
vtkVolume16Reader v16
  v16 SetDataDimensions 64 64
  v16 SetDataByteOrderToLittleEndian 
  v16 SetFilePrefix  "$VTK_DATA_ROOT/Data/headsq/quarter"
  v16 SetImageRange 1 93
  v16 SetDataSpacing  3.2 3.2 1.5

# An isosurface, or contour value of 500 is known to correspond to the
# skin of the patient. Once generated, a vtkPolyDataNormals filter is
# is used to create normals for smooth surface shading during rendering.
# The triangle stripper is used to create triangle strips from the
# isosurface these render much faster on may systems.
vtkContourFilter skinExtractor
  skinExtractor SetInputConnection [v16 GetOutputPort]
  skinExtractor SetValue 0 500
vtkPolyDataNormals skinNormals
  skinNormals SetInputConnection [skinExtractor GetOutputPort]
  skinNormals SetFeatureAngle 60.0
vtkStripper skinStripper
  skinStripper SetInputConnection [skinNormals GetOutputPort]
vtkPolyDataMapper skinMapper
  skinMapper SetInputConnection [skinStripper GetOutputPort]
  skinMapper ScalarVisibilityOff
vtkActor skin
  skin SetMapper skinMapper
  [skin GetProperty]  SetDiffuseColor 1 .49 .25
  [skin GetProperty] SetSpecular .3
  [skin GetProperty] SetSpecularPower 20

# An isosurface, or contour value of 1150 is known to correspond to the
# skin of the patient. Once generated, a vtkPolyDataNormals filter is
# is used to create normals for smooth surface shading during rendering.
# The triangle stripper is used to create triangle strips from the
# isosurface these render much faster on may systems.
vtkContourFilter boneExtractor
  boneExtractor SetInputConnection [v16 GetOutputPort]
  boneExtractor SetValue 0 1150
vtkPolyDataNormals boneNormals
  boneNormals SetInputConnection [boneExtractor GetOutputPort]
  boneNormals SetFeatureAngle 60.0
vtkStripper boneStripper
  boneStripper SetInputConnection [boneNormals GetOutputPort]
vtkPolyDataMapper boneMapper
  boneMapper SetInputConnection [boneStripper GetOutputPort]
  boneMapper ScalarVisibilityOff
vtkActor bone
  bone SetMapper boneMapper
  [bone GetProperty] SetDiffuseColor 1 1 .9412

# An outline provides context around the data.
#
vtkOutlineFilter outlineData
  outlineData SetInputConnection [v16 GetOutputPort]
vtkPolyDataMapper mapOutline
  mapOutline SetInputConnection [outlineData GetOutputPort]
vtkActor outline
  outline SetMapper mapOutline
  [outline GetProperty] SetColor 0 0 0

# Now we are creating three orthogonal planes passing through the
# volume. Each plane uses a different texture map and therefore has
# diferent coloration.

# Start by creatin a black/white lookup table.
vtkLookupTable bwLut
  bwLut SetTableRange  0 2000
  bwLut SetSaturationRange  0 0
  bwLut SetHueRange  0 0
  bwLut SetValueRange  0 1

# Now create a lookup table that consists of the full hue circle (from HSV).
vtkLookupTable hueLut
  hueLut SetTableRange  0 2000
  hueLut SetHueRange  0 1
  hueLut SetSaturationRange 1 1
  hueLut SetValueRange 1 1

# Finally, create a lookup table with a single hue but having a range
# in the saturation of the hue.
vtkLookupTable satLut
  satLut SetTableRange  0 2000
  satLut SetHueRange  .6 .6
  satLut SetSaturationRange  0 1
  satLut SetValueRange  1 1

# Create the first of the three planes. The filter vtkImageMapToColors
# maps the data through the corresponding lookup table created above.
# The vtkImageActor is a type of vtkProp and conveniently displays an image
# on a single quadrilateral plane. It does this using texture mapping and
# as a result is quite fast. (Note: the input image has to be unsigned
# char values, which the vtkImageMapToColors produces.) Note also that
# by specifying the DisplayExtent, the pipeline requests data of this
# extent and the vtkImageMapToColors only processes a slice of data.
vtkImageMapToColors saggitalColors
  saggitalColors SetInputConnection [v16 GetOutputPort]
  saggitalColors SetLookupTable bwLut
vtkImageActor saggital
  saggital SetInput [saggitalColors GetOutput]
  saggital SetDisplayExtent 32 32  0 63  0 92

# Create the second (axial) plane of the three planes. We use the same 
# approach as before except that the extent differs.
vtkImageMapToColors axialColors
  axialColors SetInputConnection [v16 GetOutputPort]
  axialColors SetLookupTable hueLut
vtkImageActor axial
  axial SetInput [axialColors GetOutput]
  axial SetDisplayExtent 0 63  0 63  46 46

# Create the third (coronal) plane of the three planes. We use the same 
# approach as before except that the extent differs.
vtkImageMapToColors coronalColors
  coronalColors SetInputConnection [v16 GetOutputPort]
  coronalColors SetLookupTable satLut
vtkImageActor coronal
  coronal SetInput [coronalColors GetOutput]
  coronal SetDisplayExtent 0 63  32 32  0 92

# It is convenient to create an initial view of the data. The FocalPoint
# and Position form a vector direction. Later on (ResetCamera() method)
# this vector is used to position the camera to look at the data in
# this direction.
vtkCamera aCamera
  aCamera SetViewUp  0 0 -1
  aCamera SetPosition  0 1 0
  aCamera SetFocalPoint  0 0 0
  aCamera ComputeViewPlaneNormal

# Actors are added to the renderer. 
aRenderer AddActor outline
aRenderer AddActor saggital
aRenderer AddActor axial
aRenderer AddActor coronal
aRenderer AddActor axial
aRenderer AddActor coronal
aRenderer AddActor skin
aRenderer AddActor bone

# Turn off bone for this example.
bone VisibilityOff 

# Set skin to semi-transparent.
[skin GetProperty] SetOpacity 0.5

# An initial camera view is created.  The Dolly() method moves 
# the camera towards the FocalPoint, thereby enlarging the image.
aRenderer SetActiveCamera aCamera
aRenderer ResetCamera 
aCamera Dolly 1.5

# Set a background color for the renderer and set the size of the
# render window (expressed in pixels).
aRenderer SetBackground 1 1 1
renWin SetSize 640 480

# Note that when camera movement occurs (as it does in the Dolly()
# method), the clipping planes often need adjusting. Clipping planes
# consist of two planes: near and far along the view direction. The 
# near plane clips out objects in front of the plane the far plane
# clips out objects behind the plane. This way only what is drawn
# between the planes is actually rendered.
aRenderer ResetCameraClippingRange

# Set up a callback (using command/observer) to bring up the Tcl 
# command GUI when the keypress-u (UserEvent) key is pressed.
iren AddObserver UserEvent {wm deiconify .vtkInteract}

# Interact with data. The Tcl/Tk event loop is started automatically.
iren Initialize
wm withdraw .