/usr/share/doc/yacas-doc/html/refchapter15.html is in yacas-doc 1.3.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 | <html>
<head>
<title>Differential Equations</title>
<link rel="stylesheet" href="yacas.css" TYPE="text/css" MEDIA="screen">
</head>
<body>
<a name="c15">
</a>
(directly go to documentation on : <a href="refchapter15.html#OdeSolve" target='Chapters' title="general ODE solver">OdeSolve</a>, <a href="refchapter15.html#OdeTest" target='Chapters' title="test the solution of an ODE">OdeTest</a>, <a href="refchapter15.html#OdeOrder" target='Chapters' title="return order of an ODE">OdeOrder</a>.
)<h1>
15. Differential Equations
</h1>
In this chapter, some facilities for solving differential
equations are described. Currently only simple equations without
auxiliary conditions are supported.
<p> </p>
<center><table>
<tr BGCOLOR=#E0E0E0>
<td><a href="refchapter15.html#OdeSolve" target='Chapters' title="general ODE solver">OdeSolve</a></td>
<td>general ODE solver</td>
</tr>
<tr BGCOLOR=#E0E0E0>
<td><a href="refchapter15.html#OdeTest" target='Chapters' title="test the solution of an ODE">OdeTest</a></td>
<td>test the solution of an ODE</td>
</tr>
<tr BGCOLOR=#E0E0E0>
<td><a href="refchapter15.html#OdeOrder" target='Chapters' title="return order of an ODE">OdeOrder</a></td>
<td>return order of an ODE</td>
</tr>
</table></center>
<p>
<a name="OdeSolve">
</a>
<a name="odesolve">
</a>
<h3>
<hr>OdeSolve -- general ODE solver
</h3>
<h5 align=right>Standard library</h5><h5>
Calling format:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
OdeSolve(expr1==expr2)
</pre></tr>
</table>
<h5>
Parameters:
</h5>
<b><tt>expr1,expr2</tt></b> -- expressions containing a function to solve for
<p>
<h5>
Description:
</h5>
This function currently can solve second order homogeneous linear real constant
coefficient equations. The solution is returned with unique constants
generated by <b><tt>UniqueConstant</tt></b>. The roots of the auxiliary equation are
used as the arguments of exponentials. If the roots are complex conjugate
pairs, then the solution returned is in the form of exponentials, sines
and cosines.
<p>
First and second derivatives are entered as <b><tt>y',y''</tt></b>. Higher order derivatives
may be entered as <b><tt>y(n)</tt></b>, where <b><tt>n</tt></b> is any integer.
<p>
<h5>
Examples:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In> OdeSolve( y'' + y == 0 )
Out> C42*Sin(x)+C43*Cos(x);
In> OdeSolve( 2*y'' + 3*y' + 5*y == 0 )
Out> Exp(((-3)*x)/4)*(C78*Sin(Sqrt(31/16)*x)+C79*Cos(Sqrt(31/16)*x));
In> OdeSolve( y'' - 4*y == 0 )
Out> C132*Exp((-2)*x)+C136*Exp(2*x);
In> OdeSolve( y'' +2*y' + y == 0 )
Out> (C183+C184*x)*Exp(-x);
</pre></tr>
</table>
<p>
<h5>
See also:
</h5>
<a href="ref.html?Solve" target="Chapters">
Solve
</a>
, <a href="ref.html?RootsWithMultiples" target="Chapters">
RootsWithMultiples
</a>
.<a name="OdeTest">
</a>
<a name="odetest">
</a>
<h3>
<hr>OdeTest -- test the solution of an ODE
</h3>
<h5 align=right>Standard library</h5><h5>
Calling format:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
OdeTest(eqn,testsol)
</pre></tr>
</table>
<h5>
Parameters:
</h5>
<b><tt>eqn</tt></b> -- equation to test
<p>
<b><tt>testsol</tt></b> -- test solution
<p>
<h5>
Description:
</h5>
This function automates the verification of the solution of an ODE.
It can also be used to quickly see how a particular equation operates
on a function.
<p>
<h5>
Examples:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In> OdeTest(y''+y,Sin(x)+Cos(x))
Out> 0;
In> OdeTest(y''+2*y,Sin(x)+Cos(x))
Out> Sin(x)+Cos(x);
</pre></tr>
</table>
<p>
<h5>
See also:
</h5>
<a href="ref.html?OdeSolve" target="Chapters">
OdeSolve
</a>
.<a name="OdeOrder">
</a>
<a name="odeorder">
</a>
<h3>
<hr>OdeOrder -- return order of an ODE
</h3>
<h5 align=right>Standard library</h5><h5>
Calling format:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
OdeOrder(eqn)
</pre></tr>
</table>
<h5>
Parameters:
</h5>
<b><tt>eqn</tt></b> -- equation
<p>
<h5>
Description:
</h5>
This function returns the order of the differential equation, which is
order of the highest derivative. If no derivatives appear, zero is returned.
<p>
<h5>
Examples:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In> OdeOrder(y'' + 2*y' == 0)
Out> 2;
In> OdeOrder(Sin(x)*y(5) + 2*y' == 0)
Out> 5;
In> OdeOrder(2*y + Sin(y) == 0)
Out> 0;
</pre></tr>
</table>
<p>
<h5>
See also:
</h5>
<a href="ref.html?OdeSolve" target="Chapters">
OdeSolve
</a>
.
<script src="http://www.google-analytics.com/urchin.js" type="text/javascript">
</script>
<script type="text/javascript">
_uacct = "UA-2425144-1";
urchinTracker();
</script>
</body>
</html>
|