This file is indexed.

/usr/share/doc/yacas-doc/html/refchapter15.html is in yacas-doc 1.3.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
<html>
<head>
  <title>Differential Equations</title>
  <link rel="stylesheet" href="yacas.css" TYPE="text/css" MEDIA="screen">
</head>
<body>
<a name="c15">

</a>
(directly go to documentation on : <a href="refchapter15.html#OdeSolve" target='Chapters' title="general ODE solver">OdeSolve</a>, <a href="refchapter15.html#OdeTest" target='Chapters' title="test the solution of an ODE">OdeTest</a>, <a href="refchapter15.html#OdeOrder" target='Chapters' title="return order of an ODE">OdeOrder</a>.
)<h1>
15. Differential Equations
</h1>
In this chapter, some facilities for solving differential
equations are described. Currently only simple equations without
auxiliary conditions are supported.

<p> </p>
<center><table>
<tr BGCOLOR=#E0E0E0>
<td><a href="refchapter15.html#OdeSolve" target='Chapters' title="general ODE solver">OdeSolve</a></td>
<td>general ODE solver</td>
</tr>
<tr BGCOLOR=#E0E0E0>
<td><a href="refchapter15.html#OdeTest" target='Chapters' title="test the solution of an ODE">OdeTest</a></td>
<td>test the solution of an ODE</td>
</tr>
<tr BGCOLOR=#E0E0E0>
<td><a href="refchapter15.html#OdeOrder" target='Chapters' title="return order of an ODE">OdeOrder</a></td>
<td>return order of an ODE</td>
</tr>
</table></center>

<p>

<a name="OdeSolve">

</a>
<a name="odesolve">

</a>
<h3>
<hr>OdeSolve -- general ODE solver
</h3>
<h5 align=right>Standard library</h5><h5>
Calling format:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
OdeSolve(expr1==expr2)
</pre></tr>
</table>

<h5>
Parameters:
</h5>
<b><tt>expr1,expr2</tt></b> -- expressions containing a function to solve for


<p>

<h5>
Description:
</h5>
This function currently can solve second order homogeneous linear real constant
coefficient equations. The solution is returned with unique constants
generated by <b><tt>UniqueConstant</tt></b>. The roots of the auxiliary equation are 
used as the arguments of exponentials. If the roots are complex conjugate
pairs, then the solution returned is in the form of exponentials, sines
and cosines.


<p>
First and second derivatives are entered as <b><tt>y',y''</tt></b>. Higher order derivatives
may be entered as <b><tt>y(n)</tt></b>, where <b><tt>n</tt></b> is any integer. 


<p>

<h5>
Examples:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; OdeSolve( y'' + y == 0 )
Out&gt; C42*Sin(x)+C43*Cos(x);
In&gt; OdeSolve( 2*y'' + 3*y' + 5*y == 0 )
Out&gt; Exp(((-3)*x)/4)*(C78*Sin(Sqrt(31/16)*x)+C79*Cos(Sqrt(31/16)*x));
In&gt; OdeSolve( y'' - 4*y == 0 )
Out&gt; C132*Exp((-2)*x)+C136*Exp(2*x);
In&gt; OdeSolve( y'' +2*y' + y == 0 )
Out&gt; (C183+C184*x)*Exp(-x);
</pre></tr>
</table>


<p>

<h5>
See also:
</h5>
<a href="ref.html?Solve" target="Chapters">
Solve
</a>
, <a href="ref.html?RootsWithMultiples" target="Chapters">
RootsWithMultiples
</a>
.<a name="OdeTest">

</a>
<a name="odetest">

</a>
<h3>
<hr>OdeTest -- test the solution of an ODE
</h3>
<h5 align=right>Standard library</h5><h5>
Calling format:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
OdeTest(eqn,testsol)
</pre></tr>
</table>

<h5>
Parameters:
</h5>
<b><tt>eqn</tt></b> -- equation to test


<p>
<b><tt>testsol</tt></b> -- test solution


<p>

<h5>
Description:
</h5>
This function automates the verification of the solution of an ODE.
It can also be used to quickly see how a particular equation operates
on a function.


<p>

<h5>
Examples:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; OdeTest(y''+y,Sin(x)+Cos(x))
Out&gt; 0;
In&gt; OdeTest(y''+2*y,Sin(x)+Cos(x))
Out&gt; Sin(x)+Cos(x);
</pre></tr>
</table>


<p>

<h5>
See also:
</h5>
<a href="ref.html?OdeSolve" target="Chapters">
OdeSolve
</a>
.<a name="OdeOrder">

</a>
<a name="odeorder">

</a>
<h3>
<hr>OdeOrder -- return order of an ODE
</h3>
<h5 align=right>Standard library</h5><h5>
Calling format:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
OdeOrder(eqn)
</pre></tr>
</table>

<h5>
Parameters:
</h5>
<b><tt>eqn</tt></b> -- equation 


<p>

<h5>
Description:
</h5>
This function returns the order of the differential equation, which is
order of the highest derivative. If no derivatives appear, zero is returned.


<p>

<h5>
Examples:
</h5>
<table cellpadding="0" width="100%">
<tr><td width=100% bgcolor="#DDDDEE"><pre>
In&gt; OdeOrder(y'' + 2*y' == 0)
Out&gt; 2;
In&gt; OdeOrder(Sin(x)*y(5) + 2*y' == 0)
Out&gt; 5;
In&gt; OdeOrder(2*y + Sin(y) == 0)
Out&gt; 0;
</pre></tr>
</table>


<p>

<h5>
See also:
</h5>
<a href="ref.html?OdeSolve" target="Chapters">
OdeSolve
</a>
.
<script src="http://www.google-analytics.com/urchin.js" type="text/javascript">
</script>
<script type="text/javascript">
_uacct = "UA-2425144-1";
urchinTracker();
</script>
</body>

</html>