This file is indexed.

/usr/lib/ats-anairiats-0.2.5/libc/CATS/complex.cats is in ats-lang-anairiats 0.2.5-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
/************************************************************************/
/*                                                                      */
/*                         Applied Type System                          */
/*                                                                      */
/*                              Hongwei Xi                              */
/*                                                                      */
/************************************************************************/

/*
** ATS - Unleashing the Potential of Types!
**
** Copyright (C) 2002-2008 Hongwei Xi.
**
** ATS is  free software;  you can redistribute it and/or modify it under
** the  terms of the  GNU General Public License as published by the Free
** Software Foundation; either version 2.1, or (at your option) any later
** version.
** 
** ATS is distributed in the hope that it will be useful, but WITHOUT ANY
** WARRANTY; without  even  the  implied  warranty  of MERCHANTABILITY or
** FITNESS FOR A PARTICULAR PURPOSE.  See the  GNU General Public License
** for more details.
** 
** You  should  have  received  a  copy of the GNU General Public License
** along  with  ATS;  see the  file COPYING.  If not, please write to the
** Free Software Foundation,  51 Franklin Street, Fifth Floor, Boston, MA
** 02110-1301, USA.
*/

/* ****** ****** */

/* author: Hongwei Xi (hwxi AT cs DOT bu DOT edu) */

/* ****** ****** */

#ifndef ATS_LIBC_COMPLEX_CATS
#define ATS_LIBC_COMPLEX_CATS

/* ****** ****** */

#include <stdio.h>
// extern FILE *stdout ; // declared in [stdio.h]
// extern FILE *stderr ; // declared in [stdio.h]

/* ****** ****** */

#include <math.h>
#include <complex.h>

/* ****** ****** */

typedef float complex ats_fcomplex_type ;
typedef double complex ats_dcomplex_type ;
typedef long double complex ats_lcomplex_type ;

/* ****** ****** */

extern float sinf (float) ; // should be in [math.h]
extern float cosf (float) ; // should be in [math.h]

/* ****** ****** */

/*
** complex numbers of single precision
*/

/* ****** ****** */

ATSinline()
ats_fcomplex_type
atslib_ccmplx_of_int (ats_int_type i) { return i ; }

ATSinline()
ats_fcomplex_type
atslib_ccmplx_of_float (ats_float_type f) { return f ; }

ATSinline()
ats_fcomplex_type
atslib_ccmplx_make_cart
  (ats_float_type r, ats_float_type i) {
  return (r + i * I) ;
}

ATSinline()
ats_fcomplex_type
atslib_ccmplx_make_polar
  (ats_float_type r, ats_float_type t) {
  return (r * cosf(t)) + (r * sinf(t)) * I ;
}

/* ****** ****** */

ATSinline()
ats_float_type
atslib_crealf (ats_fcomplex_type c) { return crealf(c) ; }

ATSinline()
ats_float_type
atslib_cimagf (ats_fcomplex_type c) { return cimagf(c) ; }

/* ****** ****** */

ATSinline()
ats_fcomplex_type
atslib_neg_ccmplx (ats_fcomplex_type c) { return (-c) ; }

/* ****** ****** */

ATSinline()
ats_fcomplex_type
atslib_add_ccmplx_ccmplx
  (ats_fcomplex_type c1, ats_fcomplex_type c2) {
  return (c1 + c2) ;
} /* end of [atslib_add_ccmplx_ccmplx] */

ATSinline()
ats_fcomplex_type
atslib_sub_ccmplx_ccmplx
  (ats_fcomplex_type c1, ats_fcomplex_type c2) {
  return (c1 - c2) ;
} /* end of [atslib_sub_ccmplx_ccmplx] */

ATSinline()
ats_fcomplex_type
atslib_mul_ccmplx_ccmplx
  (ats_fcomplex_type c1, ats_fcomplex_type c2) {
  return (c1 * c2) ;
} /* end of [atslib_mul_ccmplx_ccmplx] */

ATSinline()
ats_fcomplex_type
atslib_div_ccmplx_ccmplx
  (ats_fcomplex_type c1, ats_fcomplex_type c2) {
  return (c1 / c2) ;
} /* end of [atslib_div_ccmplx_ccmplx] */

/* ****** ****** */

ATSinline()
ats_bool_type
atslib_eq_ccmplx_ccmplx
  (ats_fcomplex_type c1, ats_fcomplex_type c2) {
  return (c1 == c2 ? ats_true_bool : ats_false_bool) ;
} /* end of [atslib_eq_ccmplx_ccmplx] */

ATSinline()
ats_bool_type
atslib_neq_ccmplx_ccmplx
  (ats_fcomplex_type c1, ats_fcomplex_type c2) {
  return (c1 != c2 ? ats_true_bool : ats_false_bool) ;
} /* end of [atslib_neq_ccmplx_ccmplx] */

/* ****** ****** */

ATSinline()
ats_float_type
atslib_cabsf (ats_fcomplex_type c) { return cabsf(c) ; }

ATSinline()
ats_fcomplex_type
atslib_csqrtf (ats_fcomplex_type c) { return csqrtf(c) ; }

/* ****** ****** */

ATSinline()
ats_float_type
atslib_cargf (ats_fcomplex_type c) { return cargf(c) ; }

ATSinline()
ats_fcomplex_type
atslib_conjf (ats_fcomplex_type c) { return conjf(c) ; }

/* ****** ****** */

ATSinline()
ats_fcomplex_type
atslib_csinf (ats_fcomplex_type c) { return csinf(c) ; }

ATSinline()
ats_fcomplex_type
atslib_ccosf (ats_fcomplex_type c) { return ccosf(c) ; }

ATSinline()
ats_fcomplex_type
atslib_ctanf (ats_fcomplex_type c) { return ctanf(c) ; }

/* ****** ****** */

ATSinline()
ats_fcomplex_type
atslib_casinf (ats_fcomplex_type c) { return casinf(c) ; }

ATSinline()
ats_fcomplex_type
atslib_cacosf (ats_fcomplex_type c) { return cacosf(c) ; }

ATSinline()
ats_fcomplex_type
atslib_catanf (ats_fcomplex_type c) { return catanf(c) ; }

/* ****** ****** */

ATSinline()
ats_fcomplex_type
atslib_csinhf (ats_fcomplex_type c) { return csinhf(c) ; }

ATSinline()
ats_fcomplex_type
atslib_ccoshf (ats_fcomplex_type c) { return ccoshf(c) ; }

ATSinline()
ats_fcomplex_type
atslib_ctanhf (ats_fcomplex_type c) { return ctanhf(c) ; }

/* ****** ****** */

ATSinline()
ats_fcomplex_type
atslib_casinhf (ats_fcomplex_type c) { return casinhf(c) ; }

ATSinline()
ats_fcomplex_type
atslib_cacoshf (ats_fcomplex_type c) { return cacoshf(c) ; }

ATSinline()
ats_fcomplex_type
atslib_catanhf (ats_fcomplex_type c) { return catanhf(c) ; }

/* ****** ****** */

ATSinline()
ats_fcomplex_type
atslib_cexpf (ats_fcomplex_type c) { return cexpf(c) ; }

ATSinline()
ats_fcomplex_type
atslib_clogf (ats_fcomplex_type c) { return clogf(c) ; }

ATSinline()
ats_fcomplex_type
atslib_cpowf (
  ats_fcomplex_type c1
, ats_fcomplex_type c2
) {
  return cpowf(c1, c2) ;
} /* end of [atslib_cpowf] */

#define atslib_pow_ccmplx_float(c1, c2) atslib_cpowf(c1,(ats_fcomplex_type)c2)

/* ****** ****** */

ATSinline()
ats_float_type
atslib_cprojf (ats_fcomplex_type c) { return cprojf(c) ; }

/* ****** ****** */

/*
** complex numbers of double precision
*/

/* ****** ****** */

ATSinline()
ats_dcomplex_type
atslib_zcmplx_of_int (ats_int_type i) { return i ; }

ATSinline()
ats_dcomplex_type
atslib_zcmplx_of_double (ats_double_type d) { return d ; }

ATSinline()
ats_dcomplex_type
atslib_zcmplx_make_cart
  (ats_double_type r, ats_double_type i) {
  return (r + i * I) ;
}

ATSinline()
ats_dcomplex_type
atslib_zcmplx_make_polar
  (ats_double_type r, ats_double_type t) {
  return (r * cos(t)) + (r * sin(t)) * I ;
}

/* ****** ****** */

ATSinline()
ats_double_type
atslib_creal (ats_dcomplex_type z) { return creal(z) ; }

ATSinline()
ats_double_type
atslib_cimag (ats_dcomplex_type z) { return cimag(z) ; }

/* ****** ****** */

ATSinline()
ats_dcomplex_type
atslib_neg_zcmplx (ats_dcomplex_type z) { return (-z) ; }

/* ****** ****** */

ATSinline()
ats_dcomplex_type
atslib_add_zcmplx_zcmplx
  (ats_dcomplex_type z1, ats_dcomplex_type z2) {
  return (z1 + z2) ;
} /* end of [atslib_add_zcmplx_zcmplx] */

ATSinline()
ats_dcomplex_type
atslib_sub_zcmplx_zcmplx
  (ats_dcomplex_type z1, ats_dcomplex_type z2) {
  return (z1 - z2) ;
} /* end of [atslib_sub_zcmplx_zcmplx] */

ATSinline()
ats_dcomplex_type
atslib_mul_zcmplx_zcmplx
  (ats_dcomplex_type z1, ats_dcomplex_type z2) {
  return (z1 * z2) ;
} /* end of [atslib_mul_zcmplx_zcmplx] */

ATSinline()
ats_dcomplex_type
atslib_div_zcmplx_zcmplx
  (ats_dcomplex_type z1, ats_dcomplex_type z2) {
  return (z1 / z2) ;
} /* end of [atslib_div_zcmplx_zcmplx] */

/* ****** ****** */

ATSinline()
ats_bool_type
atslib_eq_zcmplx_zcmplx
  (ats_dcomplex_type c1, ats_dcomplex_type c2) {
  return (c1 == c2 ? ats_true_bool : ats_false_bool) ;
} /* end of [atslib_eq_zcmplx_zcmplx] */

ATSinline()
ats_bool_type
atslib_neq_zcmplx_zcmplx
  (ats_dcomplex_type c1, ats_dcomplex_type c2) {
  return (c1 != c2 ? ats_true_bool : ats_false_bool) ;
} /* end of [atslib_neq_zcmplx_zcmplx] */

/* ****** ****** */

ATSinline()
ats_double_type
atslib_cabs (ats_dcomplex_type z) { return cabs(z) ; }

ATSinline()
ats_dcomplex_type
atslib_csqrt (ats_dcomplex_type z) { return csqrt(z) ; }

/* ****** ****** */

ATSinline()
ats_double_type
atslib_carg (ats_dcomplex_type z) { return carg(z) ; }

ATSinline()
ats_dcomplex_type
atslib_conj (ats_dcomplex_type z) { return conj(z) ; }

/* ****** ****** */

ATSinline()
ats_dcomplex_type
atslib_csin (ats_dcomplex_type z) { return csin(z) ; }

ATSinline()
ats_dcomplex_type
atslib_ccos (ats_dcomplex_type z) { return ccos(z) ; }

ATSinline()
ats_dcomplex_type
atslib_ctan (ats_dcomplex_type z) { return ctan(z) ; }

/* ****** ****** */

ATSinline()
ats_dcomplex_type
atslib_casin (ats_dcomplex_type z) { return casin(z) ; }

ATSinline()
ats_dcomplex_type
atslib_cacos (ats_dcomplex_type z) { return cacos(z) ; }

ATSinline()
ats_dcomplex_type
atslib_catan (ats_dcomplex_type z) { return catan(z) ; }

/* ****** ****** */

ATSinline()
ats_dcomplex_type
atslib_csinh (ats_dcomplex_type z) { return csinh(z) ; }

ATSinline()
ats_dcomplex_type
atslib_ccosh (ats_dcomplex_type z) { return ccosh(z) ; }

ATSinline()
ats_dcomplex_type
atslib_ctanh (ats_dcomplex_type z) { return ctanh(z) ; }

/* ****** ****** */

ATSinline()
ats_dcomplex_type
atslib_casinh (ats_dcomplex_type z) { return casinh(z) ; }

ATSinline()
ats_dcomplex_type
atslib_cacosh (ats_dcomplex_type z) { return cacosh(z) ; }

ATSinline()
ats_dcomplex_type
atslib_catanh (ats_dcomplex_type z) { return catanh(z) ; }

/* ****** ****** */

ATSinline()
ats_dcomplex_type
atslib_cexp (ats_dcomplex_type z) { return cexp(z) ; }

ATSinline()
ats_dcomplex_type
atslib_clog (ats_dcomplex_type z) { return clog(z) ; }

ATSinline()
ats_dcomplex_type
atslib_cpow (
  ats_dcomplex_type z1
, ats_dcomplex_type z2
) {
  return cpow(z1, z2) ;
} /* end of [atslib_cpow] */

#define atslib_pow_zcmplx_double(z1, z2) atslib_cpow(z1,(ats_dcomplex_type)z2)

/* ****** ****** */

ATSinline()
ats_double_type
atslib_cproj (ats_dcomplex_type z) { return cproj(z) ; }

/* ****** ****** */

#endif /* ATS_LIBC_COMPLEX_CATS */

/* end of [complex.cats] */