This file is indexed.

/usr/lib/ats-anairiats-0.2.5/prelude/DATS/arith.dats is in ats-lang-anairiats 0.2.5-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
(***********************************************************************)
(*                                                                     *)
(*                         Applied Type System                         *)
(*                                                                     *)
(*                              Hongwei Xi                             *)
(*                                                                     *)
(***********************************************************************)

(*
** ATS - Unleashing the Power of Types!
**
** Copyright (C) 2002-2010 Hongwei Xi, Boston University
**
** All rights reserved
**
** ATS is free software;  you can  redistribute it and/or modify it under
** the terms of the GNU LESSER GENERAL PUBLIC LICENSE as published by the
** Free Software Foundation; either version 2.1, or (at your option)  any
** later version.
** 
** ATS is distributed in the hope that it will be useful, but WITHOUT ANY
** WARRANTY; without  even  the  implied  warranty  of MERCHANTABILITY or
** FITNESS FOR A PARTICULAR PURPOSE.  See the  GNU General Public License
** for more details.
** 
** You  should  have  received  a  copy of the GNU General Public License
** along  with  ATS;  see the  file COPYING.  If not, please write to the
** Free Software Foundation,  51 Franklin Street, Fifth Floor, Boston, MA
** 02110-1301, USA.
*)

(* ****** ****** *)

(* author: Hongwei Xi (hwxi AT cs DOT bu DOT edu) *)

(* ****** ****** *)

#define ATS_DYNLOADFLAG 0 // loaded by [ats_main_prelude]

(* ****** ****** *)

staload "prelude/SATS/arith.sats"

(* ****** ****** *)

implement mul_isfun (pf1, pf2) = let
  prfun isfun {m:nat;n:int} {p1,p2:int} .<m>.
    (pf1: MUL (m, n, p1), pf2: MUL (m, n, p2)): [p1==p2] void =
    case+ (pf1, pf2) of
    | (MULbas (), MULbas ()) => ()
    | (MULind pf1, MULind pf2) => isfun (pf1, pf2)
  // end of [isfun]
in
  case+ (pf1, pf2) of
  | (MULneg pf1, MULneg pf2) => isfun (pf1, pf2)
  | (_, _) =>> isfun (pf1, pf2)
end // end of [mul_isfun]

implement mul_istot {m,n} () = let
  prfun istot {m:nat;n:int} .<m>. (): [p:int] MUL (m, n, p) =
    sif m > 0 then begin
      MULind (istot {m-1,n} ())
    end else begin
      MULbas ()
    end // end of [sif]
in
  sif m >= 0 then istot {m,n} () else MULneg (istot {~m,n} ())
end // end of [mul_istot]

(* ****** ****** *)

implement
mul_nat_nat_nat (pf) = let
  prfun aux {m,n:nat} {p:int} .<m>.
    (pf: MUL (m, n, p)): [p>=0] void = begin
    case+ pf of MULbas () => () | MULind pf => aux pf
  end // end of [aux]
in
  aux pf
end // end of [mul_nat_nat_nat]

implement
mul_pos_pos_pos (pf) = let
  prfun aux {m,n:pos} {p:int} .<m>.
    (pf: MUL (m, n, p)): [p>=n] void = begin
    case+ pf of MULind pf => mul_nat_nat_nat (pf)
  end // end of [aux]
  val () = aux (pf)
  prval pf = mul_commute (pf)
  val () = aux (pf)
in
  // nothing
end // end of [mul_pos_pos_pos]

(* ****** ****** *)

implement
mul_negate (pf) = let
  prfn aux {m,n,p:int}
    (pf: MUL (m, n, p)): MUL (~m, n, ~p) =
    sif m > 0 then MULneg pf
    else sif m < 0 then begin
      let prval MULneg pf = pf in pf end
    end else begin
      let prval MULbas () = pf in pf end
    end // end of [sif]
  // end of [aux]
in
  aux (pf)
end // end of [mul_negate]

(* ****** ****** *)

prfun mul_m_n1_mnm
  {m,n:int} {p:int} .<max(2*m, 2*(~m)+1)>.
  (pf: MUL (m, n, p)): MUL (m, n+1, p+m) = begin
  case+ pf of
  | MULbas () => MULbas ()
  | MULind pf => MULind (mul_m_n1_mnm pf)
  | MULneg pf => MULneg (mul_m_n1_mnm pf)
end // end of [mul_m_n1_mnm]

prfun mul_m_neg_n_neg_mn
  {m,n:int} {p:int} .<max(2*m, 2*(~m)+1)>.
  (pf: MUL (m, n, p)): MUL (m, ~n, ~p) = begin
  case+ pf of
  | MULbas () => MULbas ()
  | MULind pf => MULind (mul_m_neg_n_neg_mn pf)
  | MULneg pf => MULneg (mul_m_neg_n_neg_mn pf)
end // end of [mul_m_neg_n_neg_mn]

(* ****** ****** *)

implement
mul_commute {m,n} (pf) = let
  prfun aux {m:nat;n:int} {p:int} .<m>.
    (pf: MUL (m, n, p)): MUL (n, m, p) = case+ pf of
    | MULbas () => pf where {
        prval pf = mul_istot {n,0} (); prval () = mul_elim pf
      } // end of [MULbas]
    | MULind pf => mul_m_n1_mnm (aux pf)
  // end of [aux]
in
  sif m >= 0 then aux pf else begin
    let prval MULneg pf = pf in mul_m_neg_n_neg_mn (aux pf) end
  end // end of [sif]
end // end of [mul_commute]

(* ****** ****** *)

implement
mul_distribute (pf1, pf2) = let
  prfun aux
    {m:int}
    {n1,n2:int}
    {p1,p2:int}
    .<max(2*m, 2*(~m)+1)>.
    (pf1: MUL (m, n1, p1), pf2: MUL (m, n2, p2)): MUL (m, n1+n2, p1+p2) =
    case+ (pf1, pf2) of
    | (MULbas (), MULbas ()) => MULbas ()
    | (MULind pf1, MULind pf2) => MULind (aux (pf1, pf2))
    | (MULneg pf1, MULneg pf2) => MULneg (aux (pf1, pf2))
  // end of [aux]
in
  aux (pf1, pf2)
end // end of [mul_distribute]

implement mul_distribute2 (pf1, pf2) =
  mul_commute (mul_distribute (mul_commute pf1, mul_commute pf2))
// end of [mul_distribute2]

(* ****** ****** *)

implement mul_associate {x,y,z}
  (pf_xy, pf_yz, pf_xy_z, pf_x_yz) = let
//
  prfn dist {x1,x2:int;y:int} {x1y,x2y:int}
    (pf1: MUL (x1, y, x1y), pf2: MUL (x2, y, x2y))
    :<prf> MUL (x1+x2, y, x1y+x2y) = let
    prval pf1_ = mul_commute pf1
    prval pf2_ = mul_commute pf2
    prval pf3_ = mul_distribute (pf1_, pf2_)
  in
    mul_commute (pf3_)
  end // end of [dist]
//
  prfun assoc {x:nat;y,z:int} {xy,yz,xy_z,x_yz:int} .<x>. (
    pf_xy: MUL (x, y, xy)
  , pf_yz: MUL (y, z, yz)
  , pf_xy_z: MUL (xy, z, xy_z)
  , pf_x_yz: MUL (x, yz, x_yz)
  ) :<prf> [xy_z==x_yz] void = begin case+ pf_xy of
  | MULbas () => let
      prval () = mul_elim (pf_xy) // xy = 0
      prval () = mul_elim (pf_xy_z) // xy_y = 0
      prval () = mul_elim (pf_x_yz) // x_yz = 0
    in
      // empty
    end // end of [MULbas]
  | MULind {x1,y,x1y} (pf_x1y) => let // x = x1 + 1; xy = x1y + 1
      prval pf_x1y_z = mul_istot {x1y,z} ()
      prval MULind (pf_x1_yz) = pf_x_yz // x_yz = x + x1_yz
      prval () = assoc (pf_x1y, pf_yz, pf_x1y_z, pf_x1_yz) // x1y_z = x1_yz
      prval pf1_xy_z = dist (pf_x1y_z, pf_yz) // xy_z = x1y_z + yz
      prval () = mul_isfun (pf_xy_z, pf1_xy_z)
    in
      // empty
    end
  end // end of [assoc]
//
in
//
  sif x >= 0 then begin
    assoc (pf_xy, pf_yz, pf_xy_z, pf_x_yz)
  end else let
    prval MULneg (pf_xy) = pf_xy
    prval pf_xy_z = mul_negate (pf_xy_z)
    prval MULneg (pf_x_yz) = pf_x_yz
  in
    assoc (pf_xy, pf_yz, pf_xy_z, pf_x_yz)
  end // end of [sif]
//
end // end of [mul_associate]

(* ****** ****** *)

(*
** the power-of-2 function
*)

implement EXP2_istot {n} () = istot {n} () where {
  prfun istot {n:nat} .<n>. (): [p:nat] EXP2 (n, p) =
    sif n > 0 then EXP2ind (istot {n-1} ()) else EXP2bas ()
} // end of [pow2_istot]

implement EXP2_isfun
  (pf1, pf2) = isfun (pf1, pf2) where {
  prfun isfun {n:nat} {p1,p2:int} .<n>.
    (pf1: EXP2 (n, p1), pf2: EXP2 (n, p2)): [p1==p2] void =
    case+ pf1 of
    | EXP2ind pf1 => let
        prval EXP2ind pf2 = pf2 in isfun (pf1, pf2)
      end // end of [EXP2ind]
    | EXP2bas () => let
        prval EXP2bas () = pf2 in (* nothing *)
      end // end of [EXP2bas]
  // end of [isfun]
} // end of [EXP2_isfun]

implement EXP2_ispos
  (pf) = ispos (pf) where {
  prfun ispos
    {n:nat} {p:int} .<n>.
    (pf: EXP2 (n, p)): [p >= 1] void =
    case+ pf of
    | EXP2ind (pf) => ispos (pf)
    | EXP2bas () => ()
  // end of [ispos]
} // end of [EXP2_ispos]

implement EXP2_monotone
  (pf1, pf2) = lemma (pf1, pf2) where {
  prfun lemma {n1,n2:nat | n1 <= n2} {p1,p2:int} .<n2>.
    (pf1: EXP2 (n1, p1), pf2: EXP2 (n2, p2)): [p1 <= p2] void =
    case+ pf2 of
    | EXP2ind (pf2) => begin case+ pf1 of
      | EXP2ind (pf1) => lemma (pf1, pf2) | EXP2bas () => lemma (pf1, pf2)
      end // end of [EXP2ind]
    | EXP2bas () => let prval EXP2bas () = pf1 in () end
  // end of [lemma]
} // end of [pow2_monotone_lemma]

implement EXP2_mul (pf1, pf2, pf3) = let
  prfun lemma {n1,n2:nat} {p1,p2:nat} {p:int} .<n2>. (
      pf1: EXP2 (n1, p1), pf2: EXP2 (n2, p2), pf3: MUL (p1, p2, p)
    ) : [p>=0] EXP2 (n1+n2, p) = case+ pf2 of
    | EXP2ind {n21} {p21} (pf21) => let // n2 = n21+1; p2 = p21 + p21
        prval pf31 = mul_istot {p1,p21} ()
        prval pf32 = mul_distribute (pf31, pf31)
        prval () = mul_isfun (pf3, pf32)
        prval pf1_res = lemma (pf1, pf21, pf31)
      in
        EXP2ind pf1_res
      end // end of [EXP2ind]
    | EXP2bas () => let prval () = mul_elim (pf3) in pf1 end
  // end of [lemma]
in
  lemma (pf1, pf2, pf3)
end // end of [EXP2_mul]

(* ****** ****** *)

(* end of [arith.dats] *)