/usr/lib/ats-anairiats-0.2.5/prelude/SATS/multiset.sats is in ats-lang-anairiats 0.2.5-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 | (***********************************************************************)
(* *)
(* Applied Type System *)
(* *)
(* Hongwei Xi *)
(* *)
(***********************************************************************)
(*
** ATS - Unleashing the Potential of Types!
**
** Copyright (C) 2002-2008 Hongwei Xi, Boston University
**
** All rights reserved
**
** ATS is free software; you can redistribute it and/or modify it under
** the terms of the GNU LESSER GENERAL PUBLIC LICENSE as published by the
** Free Software Foundation; either version 2.1, or (at your option) any
** later version.
**
** ATS is distributed in the hope that it will be useful, but WITHOUT ANY
** WARRANTY; without even the implied warranty of MERCHANTABILITY or
** FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
** for more details.
**
** You should have received a copy of the GNU General Public License
** along with ATS; see the file COPYING. If not, please write to the
** Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
** 02110-1301, USA.
*)
(* ****** ****** *)
(* author: Hongwei Xi (hwxi AT cs DOT bu DOT edu) *)
(* ****** ****** *)
#include "prelude/params.hats"
(* ****** ****** *)
#if VERBOSE_PRELUDE #then
#print "Loading [multiset.sats] starts!\n"
#endif // end of [VERBOSE_PRELUDE]
(* ****** ****** *)
datasort elt = // abstract // positive integer
sta lt_elt_elt_bool : (elt, elt) -> bool
sta lte_elt_elt_bool : (elt, elt) -> bool
sta gt_elt_elt_bool : (elt, elt) -> bool
sta gte_elt_elt_bool : (elt, elt) -> bool
stadef < = lt_elt_elt_bool
stadef <= = lte_elt_elt_bool
stadef > = gt_elt_elt_bool
stadef >= = gte_elt_elt_bool
(*
sta elt_first : elt // elt_first = 1
praxi elt_first_lemma {x: elt} (): [elt_first <= x] void
*)
(* ****** ****** *)
datasort eltlst =
eltlst_nil of () | eltlst_cons of (elt, eltlst)
// end of [eltlst]
(* ****** ****** *)
datasort eltmset = // abstract // natural number
sta eltmset_nil : eltmset // the empty set
sta add_elt_eltmset_eltmset : (elt, eltmset) -> eltmset
stadef + = add_elt_eltmset_eltmset
sta add_eltmset_elt_eltmset : (eltmset, elt) -> eltmset
stadef + = add_eltmset_elt_eltmset
sta add_eltmset_eltmset_eltmset : (eltmset, eltmset) -> eltmset
stadef + = add_eltmset_eltmset_eltmset
(* ****** ****** *)
dataprop ELTLSTMSET (eltlst, eltmset) =
| {x:elt} {xs:eltlst} {mst:eltmset}
ELTLSTMSETcons (eltlst_cons (x, xs), x+mst) of ELTLSTMSET (xs, mst)
| ELTLSTMSETnil (eltlst_nil, eltmset_nil)
// end of [ELTLSTMSET]
prfun ELTLSTMSET_istot {xs:eltlst} (): [xs1:eltmset] ELTLSTMSET (xs, xs1)
prfun ELTLSTMSET_isfun {xs:eltlst} {xs1,xs2:eltmset}
(pf1: ELTLSTMSET (xs, xs1), pf2: ELTLSTMSET (xs, xs2)): [xs1==xs2] void
(* ****** ****** *)
dataprop ELTMSETSZ (eltmset, int) =
| {x:elt} {xs:eltmset} {n:nat} ELTMSETSZcons (x+xs, n+1) of ELTMSETSZ (xs, n)
| ELTMSETSZnil (eltmset_nil, 0)
prfun ELTMSETSZ_istot {xs:eltmset} (): [n:nat] ELTMSETSZ (xs, n)
prfun ELTMSETSZ_isfun {xs:eltmset} {n1,n2:nat}
(pf1: ELTMSETSZ (xs, n1), pf2: ELTMSETSZ (xs, n2)): [n1==n2] void
(* ****** ****** *)
absprop ELTMSETLB (elt, eltmset)
absprop ELTMSETUB (eltmset, elt)
prfun ELTMSETLB_monotone
{l1,l2:elt | l1 <= l2} {xs:eltmset} (pf: ELTMSETLB (l2, xs)): ELTMSETLB (l1, xs)
// end of [ELTMSETLB_monotone]
prfun ELTMSETUB_monotone
{u1,u2:elt | u1 <= u2} {xs:eltmset} (pf: ELTMSETUB (xs, u1)): ELTMSETUB (xs, u2)
// end of [ELTMSETUB_monotone]
(* ****** ****** *)
#if VERBOSE_PRELUDE #then
#print "Loading [multiset.sats] finishes!\n"
#endif // end of [VERBOSE_PRELUDE]
(* end of [multiset.sats] *)
|