/usr/include/boinc/lib/coproc.h is in boinc-dev 7.0.24+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 | // This file is part of BOINC.
// http://boinc.berkeley.edu
// Copyright (C) 2008 University of California
//
// BOINC is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License
// as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// BOINC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
// See the GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with BOINC. If not, see <http://www.gnu.org/licenses/>.
// Structures representing coprocessors (e.g. GPUs);
// used in both client and server.
//
// Notes:
//
// 1) The use of "CUDA" is misleading; it really means "NVIDIA GPU".
// 2) The design treats each resource type as a pool of identical devices;
// for example, there is a single "CUDA long-term debt" per project,
// and a scheduler request contains a request (#instances, instance-seconds)
// for CUDA jobs.
// In reality, the instances of a resource type can have different properties:
// In the case of CUDA, "compute capability", driver version, RAM, speed, etc.
// How to resolve this discrepancy?
//
// Prior to 21 Apr 09 we identified the fastest instance
// and pretended that the others were identical to it.
// This approach has a serious flaw:
// suppose that the fastest instance has characteristics
// (version, RAM etc.) that satisfy the project's requirements,
// but other instances to not.
// Then BOINC executes jobs on GPUs that can't handle them,
// the jobs fail, the host is punished, etc.
//
// We could treat each GPU has a separate resource,
// with its own set of debts, backoffs, etc.
// However, this would imply tying jobs to instances,
// which is undesirable from a scheduling viewpoint.
// It would also be a big code change in both client and server.
//
// Instead, (as of 21 Apr 09) our approach is to identify a
// "most capable" instance, which in the case of CUDA is based on
// a) compute capability
// b) driver version
// c) RAM size
// d) est. FLOPS
// (in decreasing priority).
// We ignore and don't use any instances that are less capable
// on any of these axes.
//
// This design avoids running coprocessor apps on instances
// that are incapable of handling them, and it involves no server changes.
// Its drawback is that, on systems with multiple and differing GPUs,
// it may not use some GPUs that actually could be used.
#ifndef _COPROC_
#define _COPROC_
#include <vector>
#include <string>
#include <cstring>
#ifdef _USING_FCGI_
#include "boinc_fcgi.h"
#endif
#include "miofile.h"
#include "error_numbers.h"
#include "parse.h"
#include "cal_boinc.h"
#include "cl_boinc.h"
#define DEFER_ON_GPU_AVAIL_RAM 0
#define MAX_COPROC_INSTANCES 64
#define MAX_RSC 8
// max # of processing resources types
#define MAX_OPENCL_PLATFORMS 16
#define GPU_TYPE_NVIDIA "NVIDIA"
#define GPU_TYPE_ATI "ATI"
enum COPROC_USAGE {
COPROC_IGNORED,
COPROC_UNUSED,
COPROC_USED
};
// represents a requirement for a coproc.
// This is a parsed version of the <coproc> elements in an <app_version>
// (used in client only)
//
struct COPROC_REQ {
char type[256]; // must be unique
double count;
int parse(XML_PARSER&);
};
// there's some duplication between the values in
// the OPENCL_DEVICE_PROP struct and the NVIDIA/ATI structs
//
struct OPENCL_DEVICE_PROP {
cl_device_id device_id;
char name[256]; // Device name
char vendor[256]; // Device vendor (NVIDIA, ATI, AMD, etc.)
cl_uint vendor_id; // OpenCL ID of device vendor
cl_bool available; // Is this device available?
cl_device_fp_config half_fp_config; // Half precision capabilities
cl_device_fp_config single_fp_config; // Single precision
cl_device_fp_config double_fp_config; // Double precision
cl_bool endian_little; // TRUE if little-endian
cl_device_exec_capabilities execution_capabilities;
char extensions[1024]; // List of device extensions
cl_ulong global_mem_size; // in bytes
cl_ulong local_mem_size;
cl_uint max_clock_frequency; // in MHz
cl_uint max_compute_units;
char opencl_platform_version[64]; // Version of OpenCL supported
// the device's platform
char opencl_device_version[64]; // OpenCL version supported by device;
// example: "OpenCL 1.1 beta"
int opencl_device_version_int; // same, encoded as e.g. 101
int get_device_version_int(); // call this to encode
char opencl_driver_version[32]; // For example: "CLH 1.0"
int device_num; // temp used in scan process
double peak_flops; // temp used in scan process
COPROC_USAGE is_used; // temp used in scan process
double opencl_available_ram; // temp used in scan process
int opencl_device_index; // temp used in scan process
#ifndef _USING_FCGI_
void write_xml(MIOFILE&);
#endif
int parse(XML_PARSER&);
void description(char* buf, const char* type);
};
// represents a set of identical coprocessors on a particular computer.
// Abstract class;
// objects will always be a derived class (COPROC_CUDA, COPROC_ATI)
// Used in both client and server.
//
struct COPROC {
char type[256]; // must be unique
int count; // how many are present
double peak_flops;
double used; // how many are in use (used by client)
bool have_cuda; // True if this GPU supports CUDA on this computer
bool have_cal; // True if this GPU supports CAL on this computer
bool have_opencl; // True if this GPU supports openCL on this computer
double available_ram;
bool specified_in_config;
// If true, this coproc was listed in cc_config.xml
// rather than being detected by the client.
// the following are used in both client and server for work-fetch info
//
double req_secs;
// how many instance-seconds of work requested
double req_instances;
// client is requesting enough jobs to use this many instances
double estimated_delay;
// resource will be saturated for this long
// temps used in client (enforce_schedule())
// to keep track of what fraction of each instance is in use
// during instance assignment
//
double usage[MAX_COPROC_INSTANCES];
double pending_usage[MAX_COPROC_INSTANCES];
// the device number of each instance
// These are not sequential if we omit instances (see above)
//
int device_nums[MAX_COPROC_INSTANCES];
int device_num; // temp used in scan process
cl_device_id opencl_device_ids[MAX_COPROC_INSTANCES];
int opencl_device_count;
int opencl_device_indexes[MAX_COPROC_INSTANCES];
bool running_graphics_app[MAX_COPROC_INSTANCES];
// is this GPU running a graphics app (NVIDIA only)
#if DEFER_ON_GPU_AVAIL_RAM
double available_ram_temp[MAX_COPROC_INSTANCES];
// used during job scheduling
#endif
double last_print_time;
OPENCL_DEVICE_PROP opencl_prop;
#ifndef _USING_FCGI_
void write_xml(MIOFILE&);
void write_request(MIOFILE&);
#endif
int parse(XML_PARSER&);
inline void clear() {
// can't just memcpy() - trashes vtable
type[0] = 0;
count = 0;
peak_flops = 0;
used = 0;
have_cuda = false;
have_cal = false;
have_opencl = false;
specified_in_config = false;
available_ram = -1;
req_secs = 0;
req_instances = 0;
opencl_device_count = 0;
estimated_delay = 0;
available_ram = 0;
for (int i=0; i<MAX_COPROC_INSTANCES; i++) {
device_nums[i] = 0;
opencl_device_ids[i] = 0;
running_graphics_app[i] = true;
}
memset(&opencl_prop, 0, sizeof(opencl_prop));
}
inline void clear_usage() {
for (int i=0; i<count; i++) {
usage[i] = 0;
pending_usage[i] = 0;
}
}
COPROC(const char* t){
clear();
strcpy(type, t);
}
COPROC() {
clear();
}
bool device_num_exists(int n) {
for (int i=0; i<count; i++) {
if (device_nums[i] == n) return true;
}
return false;
}
void merge_opencl(
std::vector<OPENCL_DEVICE_PROP> &opencls,
std::vector<int>& ignore_dev
);
void find_best_opencls(
bool use_all,
std::vector<OPENCL_DEVICE_PROP> &opencls,
std::vector<int>& ignore_dev
);
};
// based on cudaDeviceProp from /usr/local/cuda/include/driver_types.h
// doesn't have to match exactly since we get the attributes one at a time.
//
struct CUDA_DEVICE_PROP {
char name[256];
int deviceHandle;
unsigned int totalGlobalMem;
// not used on the server; dtotalGlobalMem is used instead
// (since some boards have >= 4GB)
int sharedMemPerBlock;
int regsPerBlock;
int warpSize;
int memPitch;
int maxThreadsPerBlock;
int maxThreadsDim[3];
int maxGridSize[3];
int clockRate;
int totalConstMem;
int major; // compute capability
int minor;
int textureAlignment;
int deviceOverlap;
int multiProcessorCount;
double dtotalGlobalMem; // not defined in client
};
struct COPROC_NVIDIA : public COPROC {
int cuda_version; // CUDA runtime version
int display_driver_version;
CUDA_DEVICE_PROP prop;
COPROC_USAGE is_used; // temp used in scan process
#ifndef _USING_FCGI_
void write_xml(MIOFILE&, bool include_request);
#endif
COPROC_NVIDIA(): COPROC(GPU_TYPE_NVIDIA){}
void get(
bool use_all,
std::vector<std::string>&,
std::vector<int>& ignore_devs
);
void description(char*);
void clear();
int parse(XML_PARSER&);
void get_available_ram();
void set_peak_flops();
bool check_running_graphics_app();
void fake(int driver_version, double ram, double avail_ram, int count);
};
// encode a 3-part version as // 10000000*major + 10000*minor + release
// Note: ATI release #s can exceed 1000
//
inline int ati_version_int(int major, int minor, int release) {
return major*10000000 + minor*10000 + release;
}
struct COPROC_ATI : public COPROC {
char name[256];
char version[50];
int version_num;
// CAL version (not driver version) encoded as an int
bool atirt_detected;
bool amdrt_detected;
CALdeviceattribs attribs;
CALdeviceinfo info;
COPROC_USAGE is_used; // temp used in scan process
#ifndef _USING_FCGI_
void write_xml(MIOFILE&, bool include_request);
#endif
COPROC_ATI(): COPROC(GPU_TYPE_ATI){}
void get(
bool use_all,
std::vector<std::string>&,
std::vector<int>& ignore_devs
);
void description(char*);
void clear();
int parse(XML_PARSER&);
void get_available_ram();
void set_peak_flops();
void fake(double ram, double avail_ram, int);
};
struct COPROCS {
int n_rsc;
COPROC coprocs[MAX_RSC];
COPROC_NVIDIA nvidia;
COPROC_ATI ati;
void write_xml(MIOFILE& out, bool include_request);
void get(
bool use_all,
std::vector<std::string> &descs,
std::vector<std::string> &warnings,
std::vector<int>& ignore_nvidia_dev,
std::vector<int>& ignore_ati_dev
);
void get_opencl(
bool use_all,
std::vector<std::string> &warnings,
std::vector<int>& ignore_nvidia_dev,
std::vector<int>& ignore_ati_dev
);
cl_int get_opencl_info(
OPENCL_DEVICE_PROP& prop,
cl_uint device_index,
std::vector<std::string>& warnings
);
int parse(XML_PARSER&);
#ifdef __APPLE__
void get_ati_mem_size_from_opengl();
#endif
void summary_string(char* buf, int len);
// Copy a coproc set, possibly setting usage to zero.
// used in round-robin simulator and CPU scheduler,
// to avoid messing w/ master copy
//
void clone(COPROCS& c, bool copy_used) {
n_rsc = c.n_rsc;
for (int i=0; i<n_rsc; i++) {
coprocs[i] = c.coprocs[i];
if (!copy_used) {
coprocs[i].used = 0;
}
}
}
void clear() {
n_rsc = 0;
for (int i=0; i<MAX_RSC; i++) {
coprocs[i].clear();
}
nvidia.clear();
ati.clear();
COPROC c;
strcpy(c.type, "CPU");
add(c);
}
inline void clear_usage() {
for (int i=0; i<n_rsc; i++) {
coprocs[i].clear_usage();
}
}
inline bool none() {
return (n_rsc == 1);
}
inline int ndevs() {
int n=0;
for (int i=1; i<n_rsc; i++) {
n += coprocs[i].count;
}
return n;
}
inline bool have_nvidia() {
return (nvidia.count > 0);
}
inline bool have_ati() {
return (ati.count > 0);
}
int add(COPROC& c) {
if (n_rsc >= MAX_RSC) return ERR_BUFFER_OVERFLOW;
for (int i=1; i<n_rsc; i++) {
if (!strcmp(c.type, coprocs[i].type)) {
return ERR_DUP_NAME;
}
}
coprocs[n_rsc++] = c;
return 0;
}
COPROCS() {
n_rsc = 0;
nvidia.count = 0;
ati.count = 0;
COPROC c;
strcpy(c.type, "CPU");
add(c);
}
};
#endif
|