/usr/share/nickle/cairo.5c is in cairo-5c 1.4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 | /* $Id$
*
* Copyright © 2004 Keith Packard
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
* The Original Code is the cairo graphics library.
*
* The Initial Developer of the Original Code is Keith Packard
*
* Contributor(s):
* Keith Packard <keithp@keithp.com>
*/
if (!Command::valid_name ((string[]) { "Cairo" }))
Foreign::load ("libcairo-5c.so.0");
extend namespace Cairo {
public typedef void (real x, real y) move_to_func_t;
public typedef void (real x, real y) line_to_func_t;
public typedef void (real x1, real y1, real x2, real y2, real x3, real y3) curve_to_func_t;
public typedef void () close_path_func_t;
public typedef struct {
real hue, saturation, value;
} hsv_color_t;
public real width (cairo_t cr) =
Surface::width (get_target (cr));
public real height (cairo_t cr) =
Surface::height (get_target (cr));
public file open_event (cairo_t cr) =
Surface::open_event (get_target (cr));
public cairo_t new (int args...) {
int w = dim(args) > 0 ? args[0] : 0;
int h = dim(args) > 1 ? args[1] : 0;
string name = (dim (argv) > 0) ? argv[0] : "nickle";
cairo_t cr = create (Surface::create_window (name, w, h));
set_source_rgba (cr, 1, 1, 1, 1);
paint (cr);
set_source_rgba (cr, 0, 0, 0, 1);
return cr;
}
public cairo_t new_window (string name, int args...) {
int w = dim(args) > 0 ? args[0] : 0;
int h = dim(args) > 1 ? args[1] : 0;
surface_t surface = Surface::create_window (name, w, h);
cairo_t cr = create (surface);
set_source_rgba (cr, 1, 1, 1, 1);
paint (cr);
set_source_rgba (cr, 0, 0, 0, 1);
return cr;
}
public cairo_t new_image (int width, int height)
{
surface_t surface = Image::surface_create (Image::format_t.ARGB, width, height);
cairo_t cr = create (surface);
set_source_rgba (cr, 0, 0, 0, 0);
set_operator (cr, operator_t.SOURCE);
paint (cr);
set_operator (cr, operator_t.OVER);
set_source_rgba (cr, 0, 0, 0, 1);
return cr;
}
public void write_to_png (cairo_t cr, string filename)
{
surface_t surface = get_target (cr);
Surface::write_to_png (surface, filename);
}
public cairo_t new_pdf (string filename,
real width, real height)
{
surface_t surface = Pdf::surface_create (filename, width, height);
cairo_t cr = create (surface);
set_source_rgba (cr, 1, 1, 1, 1);
paint (cr);
set_source_rgba (cr, 0, 0, 0, 1);
return cr;
}
public cairo_t new_svg (string filename,
real width, real height)
{
surface_t surface = Svg::surface_create (filename, width, height);
cairo_t cr = create (surface);
return cr;
}
public cairo_t dup (cairo_t cr)
{
return create (get_target (cr));
}
real[3] to_hsv(real r, real g, real b)
{
real minimum = min (r, g, b);
real maximum = max (r, g, b);
real v = maximum;
real s = (maximum == 0) ? 0 : (maximum - minimum) / maximum;
real h = 0;
if (s != 0)
{
switch (maximum) {
case r: h = (g - b) / (maximum - minimum); break;
case g: h = 2.0 + (b - r) / (maximum - minimum); break;
case b: h = 4.0 + (r - g) / (maximum - minimum); break;
}
h = h / 6;
}
return (real[3]) { h, s, v };
}
/* convert hsv to rgb */
real[3] from_hsv(real h, real s, real v)
{
if (v == 0.0)
return (real[3]) { 0 ... };
else if (s == 0.0) {
return (real[3]) { v ... };
} else {
real h6 = (h * 6) % 6;
int i = floor (h6);
real f = h6 - i;
real p = v * (1 - s);
real q = v * (1 - (s * f));
real t = v * (1 - (s * (1 - f)));
switch(i) {
default:return (real[3]) { v, t, p };
case 1: return (real[3]) { q, v, p };
case 2: return (real[3]) { p, v, t };
case 3: return (real[3]) { p, q, v };
case 4: return (real[3]) { t, p, v };
case 5: return (real[3]) { v, p, q };
}
}
}
public rgb_color_t hsv_to_rgb (hsv_color_t hsv)
{
real[3] rgb = from_hsv (hsv.hue, hsv.saturation, hsv.value);
return (rgb_color_t) { red = rgb[0], green = rgb[1], blue = rgb[2] };
}
public hsv_color_t rgb_to_hsv (rgb_color_t rgb)
{
real[3] hsv = to_hsv (rgb.red, rgb.green, rgb.blue);
return (hsv_color_t) { hue = hsv[0], saturation = hsv[1], value = hsv[2] };
}
public void set_source_hsv (cairo_t cr, real h, real s, real v)
/*
* Set color using HSV specification
* H: hue 0 = red, 0.{3} = green, 0.{6} = blue
* S: satuation 0..1
* V: value 0..1
*/
{
set_source_rgb (cr, from_hsv (h, s, v) ...);
}
public namespace Matrix {
matrix_t multiply_scalar (matrix_t a, real scalar) =
(matrix_t) {
xx = a.xx * scalar, yx = a.yx * scalar,
xy = a.xy * scalar, yy = a.yy * scalar,
x0 = a.x0 * scalar, y0 = a.y0 * scalar };
public matrix_t identity () =
(matrix_t) {
xx = 1, yx = 0,
xy = 0, yy = 1,
x0 = 0, y0 = 0 };
public real determinant (matrix_t m) =
m.xx * m.yy - m.yx * m.xy;
/* This function isn't a correct adjoint in that the implicit 1 in the
homogeneous result should actually be ad-bc instead. But, since this
adjoint is only used in the computation of the inverse, which
divides by det (A)=ad-bc anyway, everything works out in the end. */
matrix_t adjoint (matrix_t m) =
(matrix_t) {
xx = m.yy, yx = -m.xy,
xy = -m.yx, yy = m.xx,
x0 = m.yx * m.y0 - m.yy * m.x0,
y0 = m.xy * m.x0 - m.xx * m.y0 };
/* inv (A) = 1/det (A) * adj (A) */
public matrix_t invert (matrix_t a) =
multiply_scalar (adjoint (a), 1 / determinant (a));
public matrix_t multiply (matrix_t a, matrix_t b) =
(matrix_t) {
xx = a.xx * b.xx + a.yx * b.xy,
yx = a.xx * b.yx + a.yx * b.yy,
xy = a.xy * b.xx + a.yy * b.xy,
yy = a.xy * b.yx + a.yy * b.yy,
x0 = a.x0 * b.xx + a.y0 * b.xy + b.x0,
y0 = a.x0 * b.yx + a.y0 * b.yy + b.y0 };
public matrix_t translate (matrix_t m, real tx, real ty) =
multiply ((matrix_t) {
xx = 1, yx = 0,
xy = 0, yy = 1,
x0 = tx, y0 = ty }, m);
public matrix_t scale (matrix_t m, real sx, real sy) =
multiply ((matrix_t) {
xx = sx, yx = 0,
xy = 0, yy = sy,
x0 = 0, y0 = 0 }, m);
public matrix_t rotate (matrix_t m, real a) =
multiply ((matrix_t) {
xx = (real c = cos(a)), yx = (real s = sin(a)),
xy = -s, yy = c,
x0 = 0, y0 = 0 }, m);
public point_t point (matrix_t m, point_t p) =
(point_t) {
x = m.xx * p.x + m.yx * p.y + m.x0,
y = m.xy * p.x + m.yy * p.y + m.y0
};
public point_t distance (matrix_t m, point_t p) =
(point_t) {
x = m.xx * p.x + m.yx * p.y,
y = m.xy * p.x + m.yy * p.y
};
}
}
|