/usr/include/coin/CbcHeuristicGreedy.hpp is in coinor-libcbc-dev 2.5.0-2.3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 | /* $Id: CbcHeuristicGreedy.hpp 1432 2010-02-07 19:33:53Z bjarni $ */
// Copyright (C) 2005, International Business Machines
// Corporation and others. All Rights Reserved.
#ifndef CbcHeuristicGreedy_H
#define CbcHeuristicGreedy_H
#include "CbcHeuristic.hpp"
/** Greedy heuristic classes
*/
class CbcHeuristicGreedyCover : public CbcHeuristic {
public:
// Default Constructor
CbcHeuristicGreedyCover ();
/* Constructor with model - assumed before cuts
Initial version does not do Lps
*/
CbcHeuristicGreedyCover (CbcModel & model);
// Copy constructor
CbcHeuristicGreedyCover ( const CbcHeuristicGreedyCover &);
// Destructor
~CbcHeuristicGreedyCover ();
/// Clone
virtual CbcHeuristic * clone() const;
/// Assignment operator
CbcHeuristicGreedyCover & operator=(const CbcHeuristicGreedyCover& rhs);
/// Create C++ lines to get to current state
virtual void generateCpp( FILE * fp) ;
/// update model (This is needed if cliques update matrix etc)
virtual void setModel(CbcModel * model);
using CbcHeuristic::solution ;
/** returns 0 if no solution, 1 if valid solution.
Sets solution values if good, sets objective value (only if good)
We leave all variables which are at one at this node of the
tree to that value and will
initially set all others to zero. We then sort all variables in order of their cost
divided by the number of entries in rows which are not yet covered. We randomize that
value a bit so that ties will be broken in different ways on different runs of the heuristic.
We then choose the best one and set it to one and repeat the exercise.
*/
virtual int solution(double & objectiveValue,
double * newSolution);
/// Validate model i.e. sets when_ to 0 if necessary (may be NULL)
virtual void validate() ;
/// Resets stuff if model changes
virtual void resetModel(CbcModel * model);
/* Algorithm
0 - use current upper bounds
1 - use original upper bounds
If 10 added perturb ratios more
if 100 added round up all >=0.5
*/
inline int algorithm() const {
return algorithm_;
}
inline void setAlgorithm(int value) {
algorithm_ = value;
}
// Only do this many times
inline int numberTimes() const {
return numberTimes_;
}
inline void setNumberTimes(int value) {
numberTimes_ = value;
}
protected:
/// Guts of constructor from a CbcModel
void gutsOfConstructor(CbcModel * model);
// Data
// Original matrix by column
CoinPackedMatrix matrix_;
// original number of rows
int originalNumberRows_;
/* Algorithm
0 - use current upper bounds
1 - use original upper bounds
If 10 added perturb ratios more
*/
int algorithm_;
/// Do this many times
int numberTimes_;
};
class CbcHeuristicGreedyEquality : public CbcHeuristic {
public:
// Default Constructor
CbcHeuristicGreedyEquality ();
/* Constructor with model - assumed before cuts
Initial version does not do Lps
*/
CbcHeuristicGreedyEquality (CbcModel & model);
// Copy constructor
CbcHeuristicGreedyEquality ( const CbcHeuristicGreedyEquality &);
// Destructor
~CbcHeuristicGreedyEquality ();
/// Clone
virtual CbcHeuristic * clone() const;
/// Assignment operator
CbcHeuristicGreedyEquality & operator=(const CbcHeuristicGreedyEquality& rhs);
/// Create C++ lines to get to current state
virtual void generateCpp( FILE * fp) ;
/// update model (This is needed if cliques update matrix etc)
virtual void setModel(CbcModel * model);
using CbcHeuristic::solution ;
/** returns 0 if no solution, 1 if valid solution.
Sets solution values if good, sets objective value (only if good)
We leave all variables which are at one at this node of the
tree to that value and will
initially set all others to zero. We then sort all variables in order of their cost
divided by the number of entries in rows which are not yet covered. We randomize that
value a bit so that ties will be broken in different ways on different runs of the heuristic.
We then choose the best one and set it to one and repeat the exercise.
*/
virtual int solution(double & objectiveValue,
double * newSolution);
/// Validate model i.e. sets when_ to 0 if necessary (may be NULL)
virtual void validate() ;
/// Resets stuff if model changes
virtual void resetModel(CbcModel * model);
/* Algorithm
0 - use current upper bounds
1 - use original upper bounds
If 10 added perturb ratios more
if 100 added round up all >=0.5
*/
inline int algorithm() const {
return algorithm_;
}
inline void setAlgorithm(int value) {
algorithm_ = value;
}
// Fraction of rhs to cover before branch and cut
inline void setFraction(double value) {
fraction_ = value;
}
inline double fraction() const {
return fraction_;
}
// Only do this many times
inline int numberTimes() const {
return numberTimes_;
}
inline void setNumberTimes(int value) {
numberTimes_ = value;
}
protected:
/// Guts of constructor from a CbcModel
void gutsOfConstructor(CbcModel * model);
// Data
// Original matrix by column
CoinPackedMatrix matrix_;
// Fraction of rhs to cover before branch and cut
double fraction_;
// original number of rows
int originalNumberRows_;
/* Algorithm
0 - use current upper bounds
1 - use original upper bounds
If 10 added perturb ratios more
*/
int algorithm_;
/// Do this many times
int numberTimes_;
};
#endif
|