/usr/include/coin/CbcLinked.hpp is in coinor-libcbc-dev 2.5.0-2.3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 | /* $Id: CbcLinked.hpp 1200 2009-07-25 08:44:13Z forrest $ */
// Copyright (C) 2006, International Business Machines
// Corporation and others. All Rights Reserved.
#ifndef CglLinked_H
#define CglLinked_H
/* THIS CONTAINS STUFF THAT SHOULD BE IN
OsiSolverLink
OsiBranchLink
CglTemporary
*/
#include "CoinModel.hpp"
#include "OsiClpSolverInterface.hpp"
#include "OsiChooseVariable.hpp"
#include "CbcFathom.hpp"
class CbcModel;
class CoinPackedMatrix;
class OsiLinkedBound;
class OsiObject;
class CglStored;
class CglTemporary;
/**
This is to allow the user to replace initialSolve and resolve
This version changes coefficients
*/
class OsiSolverLink : public CbcOsiSolver {
public:
//---------------------------------------------------------------------------
/**@name Solve methods */
//@{
/// Solve initial LP relaxation
virtual void initialSolve();
/// Resolve an LP relaxation after problem modification
virtual void resolve();
/**
Problem specific
Returns -1 if node fathomed and no solution
0 if did nothing
1 if node fathomed and solution
allFixed is true if all LinkedBound variables are fixed
*/
virtual int fathom(bool allFixed) ;
/** Solves nonlinear problem from CoinModel using SLP - may be used as crash
for other algorithms when number of iterations small.
Also exits if all problematical variables are changing
less than deltaTolerance
Returns solution array
*/
double * nonlinearSLP(int numberPasses, double deltaTolerance);
/** Solve linearized quadratic objective branch and bound.
Return cutoff and OA cut
*/
double linearizedBAB(CglStored * cut) ;
/** Solves nonlinear problem from CoinModel using SLP - and then tries to get
heuristic solution
Returns solution array
mode -
0 just get continuous
1 round and try normal bab
2 use defaultBound_ to bound integer variables near current solution
*/
double * heuristicSolution(int numberPasses, double deltaTolerance, int mode);
/// Do OA cuts
int doAOCuts(CglTemporary * cutGen, const double * solution, const double * solution2);
//@}
/**@name Constructors and destructors */
//@{
/// Default Constructor
OsiSolverLink ();
/** This creates from a coinModel object
if errors.then number of sets is -1
This creates linked ordered sets information. It assumes -
for product terms syntax is yy*f(zz)
also just f(zz) is allowed
and even a constant
modelObject not const as may be changed as part of process.
*/
OsiSolverLink( CoinModel & modelObject);
// Other way with existing object
void load( CoinModel & modelObject, bool tightenBounds = false, int logLevel = 1);
/// Clone
virtual OsiSolverInterface * clone(bool copyData = true) const;
/// Copy constructor
OsiSolverLink (const OsiSolverLink &);
/// Assignment operator
OsiSolverLink & operator=(const OsiSolverLink& rhs);
/// Destructor
virtual ~OsiSolverLink ();
//@}
/**@name Sets and Gets */
//@{
/// Add a bound modifier
void addBoundModifier(bool upperBoundAffected, bool useUpperBound, int whichVariable, int whichVariableAffected,
double multiplier = 1.0);
/// Update coefficients - returns number updated if in updating mode
int updateCoefficients(ClpSimplex * solver, CoinPackedMatrix * matrix);
/// Analyze constraints to see which are convex (quadratic)
void analyzeObjects();
/// Add reformulated bilinear constraints
void addTighterConstraints();
/// Objective value of best solution found internally
inline double bestObjectiveValue() const {
return bestObjectiveValue_;
}
/// Set objective value of best solution found internally
inline void setBestObjectiveValue(double value) {
bestObjectiveValue_ = value;
}
/// Best solution found internally
inline const double * bestSolution() const {
return bestSolution_;
}
/// Set best solution found internally
void setBestSolution(const double * solution, int numberColumns);
/// Set special options
inline void setSpecialOptions2(int value) {
specialOptions2_ = value;
}
/// Say convex (should work it out) - if convex false then strictly concave
void sayConvex(bool convex);
/// Get special options
inline int specialOptions2() const {
return specialOptions2_;
}
/** Clean copy of matrix
So we can add rows
*/
CoinPackedMatrix * cleanMatrix() const {
return matrix_;
}
/** Row copy of matrix
Just genuine columns and rows
Linear part
*/
CoinPackedMatrix * originalRowCopy() const {
return originalRowCopy_;
}
/// Copy of quadratic model if one
ClpSimplex * quadraticModel() const {
return quadraticModel_;
}
/// Gets correct form for a quadratic row - user to delete
CoinPackedMatrix * quadraticRow(int rowNumber, double * linear) const;
/// Default meshSize
inline double defaultMeshSize() const {
return defaultMeshSize_;
}
inline void setDefaultMeshSize(double value) {
defaultMeshSize_ = value;
}
/// Default maximumbound
inline double defaultBound() const {
return defaultBound_;
}
inline void setDefaultBound(double value) {
defaultBound_ = value;
}
/// Set integer priority
inline void setIntegerPriority(int value) {
integerPriority_ = value;
}
/// Get integer priority
inline int integerPriority() const {
return integerPriority_;
}
/// Objective transfer variable if one
inline int objectiveVariable() const {
return objectiveVariable_;
}
/// Set biLinear priority
inline void setBiLinearPriority(int value) {
biLinearPriority_ = value;
}
/// Get biLinear priority
inline int biLinearPriority() const {
return biLinearPriority_;
}
/// Return CoinModel
inline const CoinModel * coinModel() const {
return &coinModel_;
}
/// Set all biLinear priorities on x-x variables
void setBiLinearPriorities(int value, double meshSize = 1.0);
/** Set options and priority on all or some biLinear variables
1 - on I-I
2 - on I-x
4 - on x-x
or combinations.
-1 means leave (for priority value and strategy value)
*/
void setBranchingStrategyOnVariables(int strategyValue, int priorityValue = -1,
int mode = 7);
/// Set all mesh sizes on x-x variables
void setMeshSizes(double value);
/** Two tier integer problem where when set of variables with priority
less than this are fixed the problem becomes an easier integer problem
*/
void setFixedPriority(int priorityValue);
//@}
//---------------------------------------------------------------------------
protected:
/**@name functions */
//@{
/// Do real work of initialize
//void initialize(ClpSimplex * & solver, OsiObject ** & object) const;
/// Do real work of delete
void gutsOfDestructor(bool justNullify = false);
/// Do real work of copy
void gutsOfCopy(const OsiSolverLink & rhs) ;
//@}
/**@name Private member data */
//@{
/** Clean copy of matrix
Marked coefficients will be multiplied by L or U
*/
CoinPackedMatrix * matrix_;
/** Row copy of matrix
Just genuine columns and rows
*/
CoinPackedMatrix * originalRowCopy_;
/// Copy of quadratic model if one
ClpSimplex * quadraticModel_;
/// Number of rows with nonLinearities
int numberNonLinearRows_;
/// Starts of lists
int * startNonLinear_;
/// Row number for a list
int * rowNonLinear_;
/** Indicator whether is convex, concave or neither
-1 concave, 0 neither, +1 convex
*/
int * convex_;
/// Indices in a list/row
int * whichNonLinear_;
/// Model in CoinModel format
CoinModel coinModel_;
/// Number of variables in tightening phase
int numberVariables_;
/// Information
OsiLinkedBound * info_;
/**
0 bit (1) - call fathom (may do mini B&B)
1 bit (2) - quadratic only in objective (add OA cuts)
2 bit (4) - convex
3 bit (8) - try adding OA cuts
4 bit (16) - add linearized constraints
*/
int specialOptions2_;
/// Objective transfer row if one
int objectiveRow_;
/// Objective transfer variable if one
int objectiveVariable_;
/// Objective value of best solution found internally
double bestObjectiveValue_;
/// Default mesh
double defaultMeshSize_;
/// Default maximum bound
double defaultBound_;
/// Best solution found internally
double * bestSolution_;
/// Priority for integers
int integerPriority_;
/// Priority for bilinear
int biLinearPriority_;
/// Number of variables which when fixed help
int numberFix_;
/// list of fixed variables
int * fixVariables_;
//@}
};
/**
List of bounds which depend on other bounds
*/
class OsiLinkedBound {
public:
//---------------------------------------------------------------------------
/**@name Action methods */
//@{
/// Update other bounds
void updateBounds(ClpSimplex * solver);
//@}
/**@name Constructors and destructors */
//@{
/// Default Constructor
OsiLinkedBound ();
/// Useful Constructor
OsiLinkedBound(OsiSolverInterface * model, int variable,
int numberAffected, const int * positionL,
const int * positionU, const double * multiplier);
/// Copy constructor
OsiLinkedBound (const OsiLinkedBound &);
/// Assignment operator
OsiLinkedBound & operator=(const OsiLinkedBound& rhs);
/// Destructor
~OsiLinkedBound ();
//@}
/**@name Sets and Gets */
//@{
/// Get variable
inline int variable() const {
return variable_;
}
/// Add a bound modifier
void addBoundModifier(bool upperBoundAffected, bool useUpperBound, int whichVariable,
double multiplier = 1.0);
//@}
private:
typedef struct {
double multiplier; // to use in computation
int affected; // variable or element affected
/*
0 - LB of variable affected
1 - UB of variable affected
2 - element in position (affected) affected
*/
unsigned char affect;
unsigned char ubUsed; // nonzero if UB of this variable is used
/*
0 - use x*multiplier
1 - use multiplier/x
2 - if UB use min of current upper and x*multiplier, if LB use max of current lower and x*multiplier
*/
unsigned char type; // type of computation
} boundElementAction;
/**@name Private member data */
//@{
/// Pointer back to model
OsiSolverInterface * model_;
/// Variable
int variable_;
/// Number of variables/elements affected
int numberAffected_;
/// Maximum number of variables/elements affected
int maximumAffected_;
/// Actions
boundElementAction * affected_;
//@}
};
#include "CbcHeuristic.hpp"
/** heuristic - just picks up any good solution
*/
class CbcHeuristicDynamic3 : public CbcHeuristic {
public:
// Default Constructor
CbcHeuristicDynamic3 ();
/* Constructor with model
*/
CbcHeuristicDynamic3 (CbcModel & model);
// Copy constructor
CbcHeuristicDynamic3 ( const CbcHeuristicDynamic3 &);
// Destructor
~CbcHeuristicDynamic3 ();
/// Clone
virtual CbcHeuristic * clone() const;
/// update model
virtual void setModel(CbcModel * model);
using CbcHeuristic::solution ;
/** returns 0 if no solution, 1 if valid solution.
Sets solution values if good, sets objective value (only if good)
We leave all variables which are at one at this node of the
tree to that value and will
initially set all others to zero. We then sort all variables in order of their cost
divided by the number of entries in rows which are not yet covered. We randomize that
value a bit so that ties will be broken in different ways on different runs of the heuristic.
We then choose the best one and set it to one and repeat the exercise.
*/
virtual int solution(double & objectiveValue,
double * newSolution);
/// Resets stuff if model changes
virtual void resetModel(CbcModel * model);
/// Returns true if can deal with "odd" problems e.g. sos type 2
virtual bool canDealWithOdd() const {
return true;
}
protected:
private:
/// Illegal Assignment operator
CbcHeuristicDynamic3 & operator=(const CbcHeuristicDynamic3& rhs);
};
#include "OsiBranchingObject.hpp"
/** Define Special Linked Ordered Sets.
*/
class CoinWarmStartBasis;
class OsiOldLink : public OsiSOS {
public:
// Default Constructor
OsiOldLink ();
/** Useful constructor - A valid solution is if all variables are zero
apart from k*numberLink to (k+1)*numberLink-1 where k is 0 through
numberInSet-1. The length of weights array is numberInSet.
For this constructor the variables in matrix are the numberInSet*numberLink
starting at first. If weights null then 0,1,2..
*/
OsiOldLink (const OsiSolverInterface * solver, int numberMembers,
int numberLinks, int first,
const double * weights, int setNumber);
/** Useful constructor - A valid solution is if all variables are zero
apart from k*numberLink to (k+1)*numberLink-1 where k is 0 through
numberInSet-1. The length of weights array is numberInSet.
For this constructor the variables are given by list - grouped.
If weights null then 0,1,2..
*/
OsiOldLink (const OsiSolverInterface * solver, int numberMembers,
int numberLinks, int typeSOS, const int * which,
const double * weights, int setNumber);
// Copy constructor
OsiOldLink ( const OsiOldLink &);
/// Clone
virtual OsiObject * clone() const;
// Assignment operator
OsiOldLink & operator=( const OsiOldLink& rhs);
// Destructor
virtual ~OsiOldLink ();
using OsiObject::infeasibility ;
/// Infeasibility - large is 0.5
virtual double infeasibility(const OsiBranchingInformation * info, int & whichWay) const;
using OsiObject::feasibleRegion ;
/** Set bounds to fix the variable at the current (integer) value.
Given an integer value, set the lower and upper bounds to fix the
variable. Returns amount it had to move variable.
*/
virtual double feasibleRegion(OsiSolverInterface * solver, const OsiBranchingInformation * info) const;
/** Creates a branching object
The preferred direction is set by \p way, 0 for down, 1 for up.
*/
virtual OsiBranchingObject * createBranch(OsiSolverInterface * solver, const OsiBranchingInformation * info, int way) const;
/// Redoes data when sequence numbers change
virtual void resetSequenceEtc(int numberColumns, const int * originalColumns);
/// Number of links for each member
inline int numberLinks() const {
return numberLinks_;
}
/** \brief Return true if object can take part in normal heuristics
*/
virtual bool canDoHeuristics() const {
return false;
}
/** \brief Return true if branch should only bound variables
*/
virtual bool boundBranch() const {
return false;
}
private:
/// data
/// Number of links
int numberLinks_;
};
/** Branching object for Linked ordered sets
*/
class OsiOldLinkBranchingObject : public OsiSOSBranchingObject {
public:
// Default Constructor
OsiOldLinkBranchingObject ();
// Useful constructor
OsiOldLinkBranchingObject (OsiSolverInterface * solver, const OsiOldLink * originalObject,
int way,
double separator);
// Copy constructor
OsiOldLinkBranchingObject ( const OsiOldLinkBranchingObject &);
// Assignment operator
OsiOldLinkBranchingObject & operator=( const OsiOldLinkBranchingObject& rhs);
/// Clone
virtual OsiBranchingObject * clone() const;
// Destructor
virtual ~OsiOldLinkBranchingObject ();
using OsiBranchingObject::branch ;
/// Does next branch and updates state
virtual double branch(OsiSolverInterface * solver);
using OsiBranchingObject::print ;
/** \brief Print something about branch - only if log level high
*/
virtual void print(const OsiSolverInterface * solver = NULL);
private:
/// data
};
/** Define data for one link
*/
class OsiOneLink {
public:
// Default Constructor
OsiOneLink ();
/** Useful constructor -
*/
OsiOneLink (const OsiSolverInterface * solver, int xRow, int xColumn, int xyRow,
const char * functionString);
// Copy constructor
OsiOneLink ( const OsiOneLink &);
// Assignment operator
OsiOneLink & operator=( const OsiOneLink& rhs);
// Destructor
virtual ~OsiOneLink ();
/// data
/// Row which defines x (if -1 then no x)
int xRow_;
/// Column which defines x
int xColumn_;
/// Output row
int xyRow;
/// Function
std::string function_;
};
/** Define Special Linked Ordered Sets. New style
members and weights may be stored in SOS object
This is for y and x*f(y) and z*g(y) etc
*/
class OsiLink : public OsiSOS {
public:
// Default Constructor
OsiLink ();
/** Useful constructor -
*/
OsiLink (const OsiSolverInterface * solver, int yRow,
int yColumn, double meshSize);
// Copy constructor
OsiLink ( const OsiLink &);
/// Clone
virtual OsiObject * clone() const;
// Assignment operator
OsiLink & operator=( const OsiLink& rhs);
// Destructor
virtual ~OsiLink ();
using OsiObject::infeasibility ;
/// Infeasibility - large is 0.5
virtual double infeasibility(const OsiBranchingInformation * info, int & whichWay) const;
using OsiObject::feasibleRegion ;
/** Set bounds to fix the variable at the current (integer) value.
Given an integer value, set the lower and upper bounds to fix the
variable. Returns amount it had to move variable.
*/
virtual double feasibleRegion(OsiSolverInterface * solver, const OsiBranchingInformation * info) const;
/** Creates a branching object
The preferred direction is set by \p way, 0 for down, 1 for up.
*/
virtual OsiBranchingObject * createBranch(OsiSolverInterface * solver, const OsiBranchingInformation * info, int way) const;
/// Redoes data when sequence numbers change
virtual void resetSequenceEtc(int numberColumns, const int * originalColumns);
/// Number of links for each member
inline int numberLinks() const {
return numberLinks_;
}
/** \brief Return true if object can take part in normal heuristics
*/
virtual bool canDoHeuristics() const {
return false;
}
/** \brief Return true if branch should only bound variables
*/
virtual bool boundBranch() const {
return false;
}
private:
/// data
/// Current increment for y points
double meshSize_;
/// Links
OsiOneLink * data_;
/// Number of links
int numberLinks_;
/// Row which defines y
int yRow_;
/// Column which defines y
int yColumn_;
};
/** Branching object for Linked ordered sets
*/
class OsiLinkBranchingObject : public OsiTwoWayBranchingObject {
public:
// Default Constructor
OsiLinkBranchingObject ();
// Useful constructor
OsiLinkBranchingObject (OsiSolverInterface * solver, const OsiLink * originalObject,
int way,
double separator);
// Copy constructor
OsiLinkBranchingObject ( const OsiLinkBranchingObject &);
// Assignment operator
OsiLinkBranchingObject & operator=( const OsiLinkBranchingObject& rhs);
/// Clone
virtual OsiBranchingObject * clone() const;
// Destructor
virtual ~OsiLinkBranchingObject ();
using OsiBranchingObject::branch ;
/// Does next branch and updates state
virtual double branch(OsiSolverInterface * solver);
using OsiBranchingObject::print ;
/** \brief Print something about branch - only if log level high
*/
virtual void print(const OsiSolverInterface * solver = NULL);
private:
/// data
};
/** Define BiLinear objects
This models x*y where one or both are integer
*/
class OsiBiLinear : public OsiObject2 {
public:
// Default Constructor
OsiBiLinear ();
/** Useful constructor -
This Adds in rows and variables to construct valid Linked Ordered Set
Adds extra constraints to match other x/y
So note not const solver
*/
OsiBiLinear (OsiSolverInterface * solver, int xColumn,
int yColumn, int xyRow, double coefficient,
double xMesh, double yMesh,
int numberExistingObjects = 0, const OsiObject ** objects = NULL );
/** Useful constructor -
This Adds in rows and variables to construct valid Linked Ordered Set
Adds extra constraints to match other x/y
So note not const model
*/
OsiBiLinear (CoinModel * coinModel, int xColumn,
int yColumn, int xyRow, double coefficient,
double xMesh, double yMesh,
int numberExistingObjects = 0, const OsiObject ** objects = NULL );
// Copy constructor
OsiBiLinear ( const OsiBiLinear &);
/// Clone
virtual OsiObject * clone() const;
// Assignment operator
OsiBiLinear & operator=( const OsiBiLinear& rhs);
// Destructor
virtual ~OsiBiLinear ();
using OsiObject::infeasibility ;
/// Infeasibility - large is 0.5
virtual double infeasibility(const OsiBranchingInformation * info, int & whichWay) const;
using OsiObject::feasibleRegion ;
/** Set bounds to fix the variable at the current (integer) value.
Given an integer value, set the lower and upper bounds to fix the
variable. Returns amount it had to move variable.
*/
virtual double feasibleRegion(OsiSolverInterface * solver, const OsiBranchingInformation * info) const;
/** Creates a branching object
The preferred direction is set by \p way, 0 for down, 1 for up.
*/
virtual OsiBranchingObject * createBranch(OsiSolverInterface * solver, const OsiBranchingInformation * info, int way) const;
/// Redoes data when sequence numbers change
virtual void resetSequenceEtc(int numberColumns, const int * originalColumns);
// This does NOT set mutable stuff
virtual double checkInfeasibility(const OsiBranchingInformation * info) const;
/** \brief Return true if object can take part in normal heuristics
*/
virtual bool canDoHeuristics() const {
return false;
}
/** \brief Return true if branch should only bound variables
*/
virtual bool boundBranch() const {
return (branchingStrategy_&4) != 0;
}
/// X column
inline int xColumn() const {
return xColumn_;
}
/// Y column
inline int yColumn() const {
return yColumn_;
}
/// X row
inline int xRow() const {
return xRow_;
}
/// Y row
inline int yRow() const {
return yRow_;
}
/// XY row
inline int xyRow() const {
return xyRow_;
}
/// Coefficient
inline double coefficient() const {
return coefficient_;
}
/// Set coefficient
inline void setCoefficient(double value) {
coefficient_ = value;
}
/// First lambda (of 4)
inline int firstLambda() const {
return firstLambda_;
}
/// X satisfied if less than this away from mesh
inline double xSatisfied() const {
return xSatisfied_;
}
inline void setXSatisfied(double value) {
xSatisfied_ = value;
}
/// Y satisfied if less than this away from mesh
inline double ySatisfied() const {
return ySatisfied_;
}
inline void setYSatisfied(double value) {
ySatisfied_ = value;
}
/// X other satisfied if less than this away from mesh
inline double xOtherSatisfied() const {
return xOtherSatisfied_;
}
inline void setXOtherSatisfied(double value) {
xOtherSatisfied_ = value;
}
/// Y other satisfied if less than this away from mesh
inline double yOtherSatisfied() const {
return yOtherSatisfied_;
}
inline void setYOtherSatisfied(double value) {
yOtherSatisfied_ = value;
}
/// X meshSize
inline double xMeshSize() const {
return xMeshSize_;
}
inline void setXMeshSize(double value) {
xMeshSize_ = value;
}
/// Y meshSize
inline double yMeshSize() const {
return yMeshSize_;
}
inline void setYMeshSize(double value) {
yMeshSize_ = value;
}
/// XY satisfied if two version differ by less than this
inline double xySatisfied() const {
return xySatisfied_;
}
inline void setXYSatisfied(double value) {
xySatisfied_ = value;
}
/// Set sizes and other stuff
void setMeshSizes(const OsiSolverInterface * solver, double x, double y);
/** branching strategy etc
bottom 2 bits
0 branch on either, 1 branch on x, 2 branch on y
next bit
4 set to say don't update coefficients
next bit
8 set to say don't use in feasible region
next bit
16 set to say - Always satisfied !!
*/
inline int branchingStrategy() const {
return branchingStrategy_;
}
inline void setBranchingStrategy(int value) {
branchingStrategy_ = value;
}
/** Simple quadratic bound marker.
0 no
1 L if coefficient pos, G if negative i.e. value is ub on xy
2 G if coefficient pos, L if negative i.e. value is lb on xy
3 E
If bound then real coefficient is 1.0 and coefficient_ is bound
*/
inline int boundType() const {
return boundType_;
}
inline void setBoundType(int value) {
boundType_ = value;
}
/// Does work of branching
void newBounds(OsiSolverInterface * solver, int way, short xOrY, double separator) const;
/// Updates coefficients - returns number updated
int updateCoefficients(const double * lower, const double * upper, double * objective,
CoinPackedMatrix * matrix, CoinWarmStartBasis * basis) const;
/// Returns true value of single xyRow coefficient
double xyCoefficient(const double * solution) const;
/// Get LU coefficients from matrix
void getCoefficients(const OsiSolverInterface * solver, double xB[2], double yB[2], double xybar[4]) const;
/// Compute lambdas (third entry in each .B is current value) (nonzero if bad)
double computeLambdas(const double xB[3], const double yB[3], const double xybar[4], double lambda[4]) const;
/// Adds in data for extra row with variable coefficients
void addExtraRow(int row, double multiplier);
/// Sets infeasibility and other when pseudo shadow prices
void getPseudoShadow(const OsiBranchingInformation * info);
/// Gets sum of movements to correct value
double getMovement(const OsiBranchingInformation * info);
protected:
/// Compute lambdas if coefficients not changing
void computeLambdas(const OsiSolverInterface * solver, double lambda[4]) const;
/// data
/// Coefficient
double coefficient_;
/// x mesh
double xMeshSize_;
/// y mesh
double yMeshSize_;
/// x satisfied if less than this away from mesh
double xSatisfied_;
/// y satisfied if less than this away from mesh
double ySatisfied_;
/// X other satisfied if less than this away from mesh
double xOtherSatisfied_;
/// Y other satisfied if less than this away from mesh
double yOtherSatisfied_;
/// xy satisfied if less than this away from true
double xySatisfied_;
/// value of x or y to branch about
mutable double xyBranchValue_;
/// x column
int xColumn_;
/// y column
int yColumn_;
/// First lambda (of 4)
int firstLambda_;
/** branching strategy etc
bottom 2 bits
0 branch on either, 1 branch on x, 2 branch on y
next bit
4 set to say don't update coefficients
next bit
8 set to say don't use in feasible region
next bit
16 set to say - Always satisfied !!
*/
int branchingStrategy_;
/** Simple quadratic bound marker.
0 no
1 L if coefficient pos, G if negative i.e. value is ub on xy
2 G if coefficient pos, L if negative i.e. value is lb on xy
3 E
If bound then real coefficient is 1.0 and coefficient_ is bound
*/
int boundType_;
/// x row
int xRow_;
/// y row (-1 if x*x)
int yRow_;
/// Output row
int xyRow_;
/// Convexity row
int convexity_;
/// Number of extra rows (coefficients to be modified)
int numberExtraRows_;
/// Multiplier for coefficient on row
double * multiplier_;
/// Row number
int * extraRow_;
/// Which chosen -1 none, 0 x, 1 y
mutable short chosen_;
};
/** Branching object for BiLinear objects
*/
class OsiBiLinearBranchingObject : public OsiTwoWayBranchingObject {
public:
// Default Constructor
OsiBiLinearBranchingObject ();
// Useful constructor
OsiBiLinearBranchingObject (OsiSolverInterface * solver, const OsiBiLinear * originalObject,
int way,
double separator, int chosen);
// Copy constructor
OsiBiLinearBranchingObject ( const OsiBiLinearBranchingObject &);
// Assignment operator
OsiBiLinearBranchingObject & operator=( const OsiBiLinearBranchingObject& rhs);
/// Clone
virtual OsiBranchingObject * clone() const;
// Destructor
virtual ~OsiBiLinearBranchingObject ();
using OsiBranchingObject::branch ;
/// Does next branch and updates state
virtual double branch(OsiSolverInterface * solver);
using OsiBranchingObject::print ;
/** \brief Print something about branch - only if log level high
*/
virtual void print(const OsiSolverInterface * solver = NULL);
/** \brief Return true if branch should only bound variables
*/
virtual bool boundBranch() const;
private:
/// data
/// 1 means branch on x, 2 branch on y
short chosen_;
};
/** Define Continuous BiLinear objects for an == bound
This models x*y = b where both are continuous
*/
class OsiBiLinearEquality : public OsiBiLinear {
public:
// Default Constructor
OsiBiLinearEquality ();
/** Useful constructor -
This Adds in rows and variables to construct Ordered Set
for x*y = b
So note not const solver
*/
OsiBiLinearEquality (OsiSolverInterface * solver, int xColumn,
int yColumn, int xyRow, double rhs,
double xMesh);
// Copy constructor
OsiBiLinearEquality ( const OsiBiLinearEquality &);
/// Clone
virtual OsiObject * clone() const;
// Assignment operator
OsiBiLinearEquality & operator=( const OsiBiLinearEquality& rhs);
// Destructor
virtual ~OsiBiLinearEquality ();
/// Possible improvement
virtual double improvement(const OsiSolverInterface * solver) const;
/** change grid
if type 0 then use solution and make finer
if 1 then back to original
returns mesh size
*/
double newGrid(OsiSolverInterface * solver, int type) const;
/// Number of points
inline int numberPoints() const {
return numberPoints_;
}
inline void setNumberPoints(int value) {
numberPoints_ = value;
}
private:
/// Number of points
int numberPoints_;
};
/// Define a single integer class - but one where you keep branching until fixed even if satisfied
class OsiSimpleFixedInteger : public OsiSimpleInteger {
public:
/// Default Constructor
OsiSimpleFixedInteger ();
/// Useful constructor - passed solver index
OsiSimpleFixedInteger (const OsiSolverInterface * solver, int iColumn);
/// Useful constructor - passed solver index and original bounds
OsiSimpleFixedInteger (int iColumn, double lower, double upper);
/// Useful constructor - passed simple integer
OsiSimpleFixedInteger (const OsiSimpleInteger &);
/// Copy constructor
OsiSimpleFixedInteger ( const OsiSimpleFixedInteger &);
/// Clone
virtual OsiObject * clone() const;
/// Assignment operator
OsiSimpleFixedInteger & operator=( const OsiSimpleFixedInteger& rhs);
/// Destructor
virtual ~OsiSimpleFixedInteger ();
using OsiObject::infeasibility ;
/// Infeasibility - large is 0.5
virtual double infeasibility(const OsiBranchingInformation * info, int & whichWay) const;
/** Creates a branching object
The preferred direction is set by \p way, 0 for down, 1 for up.
*/
virtual OsiBranchingObject * createBranch(OsiSolverInterface * solver, const OsiBranchingInformation * info, int way) const;
protected:
/// data
};
/** Define a single variable class which is involved with OsiBiLinear objects.
This is used so can make better decision on where to branch as it can look at
all objects.
This version sees if it can re-use code from OsiSimpleInteger
even if not an integer variable. If not then need to duplicate code.
*/
class OsiUsesBiLinear : public OsiSimpleInteger {
public:
/// Default Constructor
OsiUsesBiLinear ();
/// Useful constructor - passed solver index
OsiUsesBiLinear (const OsiSolverInterface * solver, int iColumn, int type);
/// Useful constructor - passed solver index and original bounds
OsiUsesBiLinear (int iColumn, double lower, double upper, int type);
/// Useful constructor - passed simple integer
OsiUsesBiLinear (const OsiSimpleInteger & rhs, int type);
/// Copy constructor
OsiUsesBiLinear ( const OsiUsesBiLinear & rhs);
/// Clone
virtual OsiObject * clone() const;
/// Assignment operator
OsiUsesBiLinear & operator=( const OsiUsesBiLinear& rhs);
/// Destructor
virtual ~OsiUsesBiLinear ();
using OsiObject::infeasibility ;
/// Infeasibility - large is 0.5
virtual double infeasibility(const OsiBranchingInformation * info, int & whichWay) const;
/** Creates a branching object
The preferred direction is set by \p way, 0 for down, 1 for up.
*/
virtual OsiBranchingObject * createBranch(OsiSolverInterface * solver, const OsiBranchingInformation * info, int way) const;
using OsiObject::feasibleRegion ;
/** Set bounds to fix the variable at the current value.
Given an current value, set the lower and upper bounds to fix the
variable. Returns amount it had to move variable.
*/
virtual double feasibleRegion(OsiSolverInterface * solver, const OsiBranchingInformation * info) const;
/// Add all bi-linear objects
void addBiLinearObjects(OsiSolverLink * solver);
protected:
/// data
/// Number of bilinear objects (maybe could be more general)
int numberBiLinear_;
/// Type of variable - 0 continuous, 1 integer
int type_;
/// Objects
OsiObject ** objects_;
};
/** This class chooses a variable to branch on
This is just as OsiChooseStrong but it fakes it so only
first so many are looked at in this phase
*/
class OsiChooseStrongSubset : public OsiChooseStrong {
public:
/// Default Constructor
OsiChooseStrongSubset ();
/// Constructor from solver (so we can set up arrays etc)
OsiChooseStrongSubset (const OsiSolverInterface * solver);
/// Copy constructor
OsiChooseStrongSubset (const OsiChooseStrongSubset &);
/// Assignment operator
OsiChooseStrongSubset & operator= (const OsiChooseStrongSubset& rhs);
/// Clone
virtual OsiChooseVariable * clone() const;
/// Destructor
virtual ~OsiChooseStrongSubset ();
/** Sets up strong list and clears all if initialize is true.
Returns number of infeasibilities.
If returns -1 then has worked out node is infeasible!
*/
virtual int setupList ( OsiBranchingInformation *info, bool initialize);
/** Choose a variable
Returns -
-1 Node is infeasible
0 Normal termination - we have a candidate
1 All looks satisfied - no candidate
2 We can change the bound on a variable - but we also have a strong branching candidate
3 We can change the bound on a variable - but we have a non-strong branching candidate
4 We can change the bound on a variable - no other candidates
We can pick up branch from bestObjectIndex() and bestWhichWay()
We can pick up a forced branch (can change bound) from firstForcedObjectIndex() and firstForcedWhichWay()
If we have a solution then we can pick up from goodObjectiveValue() and goodSolution()
If fixVariables is true then 2,3,4 are all really same as problem changed
*/
virtual int chooseVariable( OsiSolverInterface * solver, OsiBranchingInformation *info, bool fixVariables);
/// Number of objects to use
inline int numberObjectsToUse() const {
return numberObjectsToUse_;
}
/// Set number of objects to use
inline void setNumberObjectsToUse(int value) {
numberObjectsToUse_ = value;
}
protected:
// Data
/// Number of objects to be used (and set in solver)
int numberObjectsToUse_;
};
#include <string>
#include "CglStored.hpp"
class CoinWarmStartBasis;
/** Stored Temporary Cut Generator Class - destroyed after first use */
class CglTemporary : public CglStored {
public:
/**@name Generate Cuts */
//@{
/** Generate Mixed Integer Stored cuts for the model of the
solver interface, si.
Insert the generated cuts into OsiCut, cs.
This generator just looks at previously stored cuts
and inserts any that are violated by enough
*/
virtual void generateCuts( const OsiSolverInterface & si, OsiCuts & cs,
const CglTreeInfo info = CglTreeInfo()) const;
//@}
/**@name Constructors and destructors */
//@{
/// Default constructor
CglTemporary ();
/// Copy constructor
CglTemporary (const CglTemporary & rhs);
/// Clone
virtual CglCutGenerator * clone() const;
/// Assignment operator
CglTemporary &
operator=(const CglTemporary& rhs);
/// Destructor
virtual
~CglTemporary ();
//@}
private:
// Private member methods
// Private member data
};
//#############################################################################
/**
This is to allow the user to replace initialSolve and resolve
*/
class OsiSolverLinearizedQuadratic : public OsiClpSolverInterface {
public:
//---------------------------------------------------------------------------
/**@name Solve methods */
//@{
/// Solve initial LP relaxation
virtual void initialSolve();
//@}
/**@name Constructors and destructors */
//@{
/// Default Constructor
OsiSolverLinearizedQuadratic ();
/// Useful constructor (solution should be good)
OsiSolverLinearizedQuadratic( ClpSimplex * quadraticModel);
/// Clone
virtual OsiSolverInterface * clone(bool copyData = true) const;
/// Copy constructor
OsiSolverLinearizedQuadratic (const OsiSolverLinearizedQuadratic &);
/// Assignment operator
OsiSolverLinearizedQuadratic & operator=(const OsiSolverLinearizedQuadratic& rhs);
/// Destructor
virtual ~OsiSolverLinearizedQuadratic ();
//@}
/**@name Sets and Gets */
//@{
/// Objective value of best solution found internally
inline double bestObjectiveValue() const {
return bestObjectiveValue_;
}
/// Best solution found internally
const double * bestSolution() const {
return bestSolution_;
}
/// Set special options
inline void setSpecialOptions3(int value) {
specialOptions3_ = value;
}
/// Get special options
inline int specialOptions3() const {
return specialOptions3_;
}
/// Copy of quadratic model if one
ClpSimplex * quadraticModel() const {
return quadraticModel_;
}
//@}
//---------------------------------------------------------------------------
protected:
/**@name functions */
//@{
/**@name Private member data */
//@{
/// Objective value of best solution found internally
double bestObjectiveValue_;
/// Copy of quadratic model if one
ClpSimplex * quadraticModel_;
/// Best solution found internally
double * bestSolution_;
/**
0 bit (1) - don't do mini B&B
1 bit (2) - quadratic only in objective
*/
int specialOptions3_;
//@}
};
class ClpSimplex;
/** Return an approximate solution to a CoinModel.
Lots of bounds may be odd to force a solution.
mode = 0 just tries to get a continuous solution
*/
ClpSimplex * approximateSolution(CoinModel & coinModel,
int numberPasses, double deltaTolerance,
int mode = 0);
#endif
|