This file is indexed.

/usr/include/coin/CbcModel.hpp is in coinor-libcbc-dev 2.5.0-2.3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
/* $Id: CbcModel.hpp 1409 2009-12-21 16:59:56Z forrest $ */
// Copyright (C) 2002, International Business Machines
// Corporation and others.  All Rights Reserved.
#ifndef CbcModel_H
#define CbcModel_H
#include <string>
#include <vector>
#include "CoinFinite.hpp"
#include "CoinMessageHandler.hpp"
#include "OsiSolverInterface.hpp"
#include "OsiBranchingObject.hpp"
#include "OsiCuts.hpp"
#include "CoinWarmStartBasis.hpp"
#include "CbcCompareBase.hpp"
#include "CbcMessage.hpp"
#include "CbcEventHandler.hpp"
#include "ClpDualRowPivot.hpp"

//class OsiSolverInterface;

class CbcCutGenerator;
class CbcBaseModel;
class OsiRowCut;
class OsiBabSolver;
class OsiRowCutDebugger;
class CglCutGenerator;
class CglStored;
class CbcCutModifier;
class CglTreeProbingInfo;
class CbcHeuristic;
class OsiObject;
class CbcThread;
class CbcTree;
class CbcStrategy;
class CbcFeasibilityBase;
class CbcStatistics;
class CbcEventHandler ;
class CglPreProcess;
# ifdef COIN_HAS_CLP
class ClpNodeStuff;
#endif
// #define CBC_CHECK_BASIS 1

//#############################################################################

/** Simple Branch and bound class

  The initialSolve() method solves the initial LP relaxation of the MIP
  problem. The branchAndBound() method can then be called to finish using
  a branch and cut algorithm.

  <h3>Search Tree Traversal</h3>

  Subproblems (aka nodes) requiring additional evaluation are stored using
  the CbcNode and CbcNodeInfo objects. Ancestry linkage is maintained in the
  CbcNodeInfo object. Evaluation of a subproblem within branchAndBound()
  proceeds as follows:
  <ul>
    <li> The node representing the most promising parent subproblem is popped
	 from the heap which holds the set of subproblems requiring further
	 evaluation.
    <li> Using branching instructions stored in the node, and information in
	 its ancestors, the model and solver are adjusted to create the
	 active subproblem.
    <li> If the parent subproblem will require further evaluation
	 (<i>i.e.</i>, there are branches remaining) its node is pushed back
	 on the heap. Otherwise, the node is deleted.  This may trigger
	 recursive deletion of ancestors.
    <li> The newly created subproblem is evaluated.
    <li> If the subproblem requires further evaluation, a node is created.
	 All information needed to recreate the subproblem (branching
	 information, row and column cuts) is placed in the node and the node
	 is added to the set of subproblems awaiting further evaluation.
  </ul>
  Note that there is never a node representing the active subproblem; the model
  and solver represent the active subproblem.

  <h3>Row (Constraint) Cut Handling</h3>

  For a typical subproblem, the sequence of events is as follows:
  <ul>
    <li> The subproblem is rebuilt for further evaluation: One result of a
	 call to addCuts() is a traversal of ancestors, leaving a list of all
	 cuts used in the ancestors in #addedCuts_. This list is then scanned
	 to construct a basis that includes only tight cuts. Entries for
	 loose cuts are set to NULL.
    <li> The subproblem is evaluated: One result of a call to solveWithCuts()
         is the return of a set of newly generated cuts for the subproblem.
	 #addedCuts_ is also kept up-to-date as old cuts become loose.
    <li> The subproblem is stored for further processing: A call to
	 CbcNodeInfo::addCuts() adds the newly generated cuts to the
	 CbcNodeInfo object associated with this node.
  </ul>
  See CbcCountRowCut for details of the bookkeeping associated with cut
  management.
*/

class CbcModel  {

public:

    enum CbcIntParam {
        /** The maximum number of nodes before terminating */
        CbcMaxNumNode = 0,
        /** The maximum number of solutions before terminating */
        CbcMaxNumSol,
        /** Fathoming discipline

          Controls objective function comparisons for purposes of fathoming by bound
          or determining monotonic variables.

          If 1, action is taken only when the current objective is strictly worse
          than the target. Implementation is handled by adding a small tolerance to
          the target.
        */
        CbcFathomDiscipline,
        /** Adjusts printout
            1 does different node message with number unsatisfied on last branch
        */
        CbcPrinting,
        /** Number of branches (may be more than number of nodes as may
            include strong branching) */
        CbcNumberBranches,
        /** Just a marker, so that a static sized array can store parameters. */
        CbcLastIntParam
    };

    enum CbcDblParam {
        /** The maximum amount the value of an integer variable can vary from
            integer and still be considered feasible. */
        CbcIntegerTolerance = 0,
        /** The objective is assumed to worsen by this amount for each
            integer infeasibility. */
        CbcInfeasibilityWeight,
        /** The amount by which to tighten the objective function cutoff when
            a new solution is discovered. */
        CbcCutoffIncrement,
        /** Stop when the gap between the objective value of the best known solution
          and the best bound on the objective of any solution is less than this.

          This is an absolute value. Conversion from a percentage is left to the
          client.
        */
        CbcAllowableGap,
        /** Stop when the gap between the objective value of the best known solution
          and the best bound on the objective of any solution is less than this
          fraction of of the absolute value of best known solution.

          Code stops if either this test or CbcAllowableGap test succeeds
        */
        CbcAllowableFractionGap,
        /** \brief The maximum number of seconds before terminating.
               A double should be adequate! */
        CbcMaximumSeconds,
        /// Cutoff - stored for speed
        CbcCurrentCutoff,
        /// Optimization direction - stored for speed
        CbcOptimizationDirection,
        /// Current objective value
        CbcCurrentObjectiveValue,
        /// Current minimization objective value
        CbcCurrentMinimizationObjectiveValue,
        /** \brief The time at start of model.
               So that other pieces of code can access */
        CbcStartSeconds,
        /** Stop doing heuristics when the gap between the objective value of the
            best known solution and the best bound on the objective of any solution
            is less than this.

          This is an absolute value. Conversion from a percentage is left to the
          client.
        */
        CbcHeuristicGap,
        /** Stop doing heuristics when the gap between the objective value of the
            best known solution and the best bound on the objective of any solution
            is less than this fraction of of the absolute value of best known
            solution.

          Code stops if either this test or CbcAllowableGap test succeeds
        */
        CbcHeuristicFractionGap,
        /// Smallest non-zero change on a branch
        CbcSmallestChange,
        /// Sum of non-zero changes on a branch
        CbcSumChange,
        /// Largest non-zero change on a branch
        CbcLargestChange,
        /// Small non-zero change on a branch to be used as guess
        CbcSmallChange,
        /** Just a marker, so that a static sized array can store parameters. */
        CbcLastDblParam
    };

    //---------------------------------------------------------------------------

public:
    ///@name Solve methods
    //@{
    /** \brief Solve the initial LP relaxation

      Invoke the solver's %initialSolve() method.
    */
    void initialSolve();

    /** \brief Invoke the branch \& cut algorithm

      The method assumes that initialSolve() has been called to solve the
      LP relaxation. It processes the root node, then proceeds to explore the
      branch & cut search tree. The search ends when the tree is exhausted or
      one of several execution limits is reached.
      If doStatistics is 1 summary statistics are printed
      if 2 then also the path to best solution (if found by branching)
      if 3 then also one line per node
    */
    void branchAndBound(int doStatistics = 0);
private:

    /** \brief Evaluate a subproblem using cutting planes and heuristics

      The method invokes a main loop which generates cuts, applies heuristics,
      and reoptimises using the solver's native %resolve() method.
      It returns true if the subproblem remains feasible at the end of the
      evaluation.
    */
    bool solveWithCuts(OsiCuts & cuts, int numberTries, CbcNode * node);
    /** Generate one round of cuts - serial mode
      returns -
      0 - normal
      1 - must keep going
      2 - set numberTries to zero
      -1 - infeasible
    */
    int serialCuts(OsiCuts & cuts, CbcNode * node, OsiCuts & slackCuts, int lastNumberCuts);
    /** Generate one round of cuts - parallel mode
        returns -
        0 - normal
        1 - must keep going
        2 - set numberTries to zero
        -1 - infeasible
    */
    int parallelCuts(CbcBaseModel * master, OsiCuts & cuts, CbcNode * node, OsiCuts & slackCuts, int lastNumberCuts);
    /** Input one node output N nodes to put on tree and optional solution update
        This should be able to operate in parallel so is given a solver and is const(ish)
        However we will need to keep an array of solver_ and bases and more
        status is 0 for normal, 1 if solution
        Calling code should always push nodes back on tree
    */
    CbcNode ** solveOneNode(int whichSolver, CbcNode * node,
                            int & numberNodesOutput, int & status) ;
    /// Update size of whichGenerator
    void resizeWhichGenerator(int numberNow, int numberAfter);
public:
#ifdef CBC_KEEP_DEPRECATED
    // See if anyone is using these any more!!
    /** \brief create a clean model from partially fixed problem

      The method creates a new model with given bounds and with no tree.
    */
    CbcModel *  cleanModel(const double * lower, const double * upper);
    /** \brief Invoke the branch \& cut algorithm on partially fixed problem

      The method presolves the given model and does branch and cut. The search
      ends when the tree is exhausted or maximum nodes is reached.

      If better solution found then it is saved.

      Returns 0 if search completed and solution, 1 if not completed and solution,
      2 if completed and no solution, 3 if not completed and no solution.

      Normally okay to do cleanModel immediately followed by subBranchandBound
      (== other form of subBranchAndBound)
      but may need to get at model for advanced features.

      Deletes model2
    */
    int subBranchAndBound(CbcModel * model2,
                          CbcModel * presolvedModel,
                          int maximumNodes);
    /** \brief Invoke the branch \& cut algorithm on partially fixed problem

      The method creates a new model with given bounds, presolves it
      then proceeds to explore the branch & cut search tree. The search
      ends when the tree is exhausted or maximum nodes is reached.

      If better solution found then it is saved.

      Returns 0 if search completed and solution, 1 if not completed and solution,
      2 if completed and no solution, 3 if not completed and no solution.

      This is just subModel immediately followed by other version of
      subBranchandBound.

    */
    int subBranchAndBound(const double * lower, const double * upper,
                          int maximumNodes);

    /** \brief Process root node and return a strengthened model

      The method assumes that initialSolve() has been called to solve the
      LP relaxation. It processes the root node and then returns a pointer
      to the strengthened model (or NULL if infeasible)
    */
    OsiSolverInterface *  strengthenedModel();
    /** preProcess problem - replacing solver
        If makeEquality true then <= cliques converted to ==.
        Presolve will be done numberPasses times.

        Returns NULL if infeasible

        If makeEquality is 1 add slacks to get cliques,
        if 2 add slacks to get sos (but only if looks plausible) and keep sos info
    */
    CglPreProcess * preProcess( int makeEquality = 0, int numberPasses = 5,
                                int tuning = 5);
    /** Does postprocessing - original solver back.
        User has to delete process */
    void postProcess(CglPreProcess * process);
#endif
    /// Adds an update information object
    void addUpdateInformation(const CbcObjectUpdateData & data);
    /** Do one node - broken out for clarity?
        also for parallel (when baseModel!=this)
        Returns 1 if solution found
        node NULL on return if no branches left
        newNode NULL if no new node created
    */
    int doOneNode(CbcModel * baseModel, CbcNode * & node, CbcNode * & newNode);

public:
    /** \brief Reoptimise an LP relaxation

      Invoke the solver's %resolve() method.
      whereFrom -
      0 - initial continuous
      1 - resolve on branch (before new cuts)
      2 - after new cuts
      3  - obsolete code or something modified problem in unexpected way
      10 - after strong branching has fixed variables at root
      11 - after strong branching has fixed variables in tree

      returns 1 feasible, 0 infeasible, -1 feasible but skip cuts
    */
    int resolve(CbcNodeInfo * parent, int whereFrom,
                double * saveSolution = NULL,
                double * saveLower = NULL,
                double * saveUpper = NULL);
    /// Make given rows (L or G) into global cuts and remove from lp
    void makeGlobalCuts(int numberRows, const int * which);
    /// Make given cut into a global cut
    void makeGlobalCut(const OsiRowCut * cut);
    /// Make given cut into a global cut
    void makeGlobalCut(const OsiRowCut & cut);
    /// Make given column cut into a global cut
    void makeGlobalCut(const OsiColCut * cut);
    /// Make given column cut into a global cut
    void makeGlobalCut(const OsiColCut & cut);
    //@}

    /** \name Presolve methods */
    //@{

    /** Identify cliques and construct corresponding objects.

        Find cliques with size in the range
        [\p atLeastThisMany, \p lessThanThis] and construct corresponding
        CbcClique objects.
        If \p makeEquality is true then a new model may be returned if
        modifications had to be made, otherwise \c this is returned.
        If the problem is infeasible #numberObjects_ is set to -1.
        A client must use deleteObjects() before a second call to findCliques().
        If priorities exist, clique priority is set to the default.
    */
    CbcModel * findCliques(bool makeEquality, int atLeastThisMany,
                           int lessThanThis, int defaultValue = 1000);

    /** Do integer presolve, creating a new (presolved) model.

      Returns the new model, or NULL if feasibility is lost.
      If weak is true then just does a normal presolve

      \todo It remains to work out the cleanest way of getting a solution to
            the original problem at the end. So this is very preliminary.
     */
    CbcModel * integerPresolve(bool weak = false);

    /** Do integer presolve, modifying the current model.

        Returns true if the model remains feasible after presolve.
    */
    bool integerPresolveThisModel(OsiSolverInterface * originalSolver, bool weak = false);


    /// Put back information into the original model after integer presolve.
    void originalModel(CbcModel * presolvedModel, bool weak);

    /** \brief For variables involved in VUB constraints, see if we can tighten
           bounds by solving lp's

        Returns false if feasibility is lost.
        If CglProbing is available, it will be tried as well to see if it can
        tighten bounds.
        This routine is just a front end for tightenVubs(int,const int*,double).

        If <tt>type = -1</tt> all variables are processed (could be very slow).
        If <tt>type = 0</tt> only variables involved in VUBs are processed.
        If <tt>type = n > 0</tt>, only the n most expensive VUB variables
        are processed, where it is assumed that x is at its maximum so delta
        would have to go to 1 (if x not at bound).

        If \p allowMultipleBinary is true, then a VUB constraint is a row with
        one continuous variable and any number of binary variables.

        If <tt>useCutoff < 1.0e30</tt>, the original objective is installed as a
        constraint with \p useCutoff as a bound.
    */
    bool tightenVubs(int type, bool allowMultipleBinary = false,
                     double useCutoff = 1.0e50);

    /** \brief For variables involved in VUB constraints, see if we can tighten
           bounds by solving lp's

      This version is just handed a list of variables to be processed.
    */
    bool tightenVubs(int numberVubs, const int * which,
                     double useCutoff = 1.0e50);
    /**
      Analyze problem to find a minimum change in the objective function.
    */
    void analyzeObjective();

    /**
      Add additional integers.
    */
    void AddIntegers();

    /**
      Save copy of the model.
    */
    void saveModel(OsiSolverInterface * saveSolver, double * checkCutoffForRestart, bool * feasible);

    //@}

    /** \name Object manipulation routines

      See OsiObject for an explanation of `object' in the context of CbcModel.
    */
    //@{

    /// Get the number of objects
    inline int numberObjects() const {
        return numberObjects_;
    }
    /// Set the number of objects
    inline void setNumberObjects(int number) {
        numberObjects_ = number;
    }

    /// Get the array of objects
    inline OsiObject ** objects() const {
        return object_;
    }

    /// Get the specified object
    const inline OsiObject * object(int which) const {
        return object_[which];
    }
    /// Get the specified object
    inline OsiObject * modifiableObject(int which) const {
        return object_[which];
    }

    void setOptionalInteger(int index);

    /// Delete all object information (and just back to integers if true)
    void deleteObjects(bool findIntegers = true);

    /** Add in object information.

      Objects are cloned; the owner can delete the originals.
    */
    void addObjects(int numberObjects, OsiObject ** objects);

    /** Add in object information.

      Objects are cloned; the owner can delete the originals.
    */
    void addObjects(int numberObjects, CbcObject ** objects);

    /// Ensure attached objects point to this model.
    void synchronizeModel() ;

    /** \brief Identify integer variables and create corresponding objects.

      Record integer variables and create an CbcSimpleInteger object for each
      one.
      If \p startAgain is true, a new scan is forced, overwriting any existing
      integer variable information.
      If type > 0 then 1==PseudoCost, 2 new ones low priority
    */

    void findIntegers(bool startAgain, int type = 0);

    //@}

    //---------------------------------------------------------------------------

    /**@name Parameter set/get methods

       The set methods return true if the parameter was set to the given value,
       false if the value of the parameter is out of range.

       The get methods return the value of the parameter.

    */
    //@{
    /// Set an integer parameter
    inline bool setIntParam(CbcIntParam key, int value) {
        intParam_[key] = value;
        return true;
    }
    /// Set a double parameter
    inline bool setDblParam(CbcDblParam key, double value) {
        dblParam_[key] = value;
        return true;
    }
    /// Get an integer parameter
    inline int getIntParam(CbcIntParam key) const {
        return intParam_[key];
    }
    /// Get a double parameter
    inline double getDblParam(CbcDblParam key) const {
        return dblParam_[key];
    }
    /*! \brief Set cutoff bound on the objective function.

      When using strict comparison, the bound is adjusted by a tolerance to
      avoid accidentally cutting off the optimal solution.
    */
    void setCutoff(double value) ;

    /// Get the cutoff bound on the objective function - always as minimize
    inline double getCutoff() const { //double value ;
        //solver_->getDblParam(OsiDualObjectiveLimit,value) ;
        //assert( dblParam_[CbcCurrentCutoff]== value * solver_->getObjSense());
        return dblParam_[CbcCurrentCutoff];
    }

    /// Set the \link CbcModel::CbcMaxNumNode maximum node limit \endlink
    inline bool setMaximumNodes( int value) {
        return setIntParam(CbcMaxNumNode, value);
    }

    /// Get the \link CbcModel::CbcMaxNumNode maximum node limit \endlink
    inline int getMaximumNodes() const {
        return getIntParam(CbcMaxNumNode);
    }

    /** Set the
        \link CbcModel::CbcMaxNumSol maximum number of solutions \endlink
        desired.
    */
    inline bool setMaximumSolutions( int value) {
        return setIntParam(CbcMaxNumSol, value);
    }
    /** Get the
        \link CbcModel::CbcMaxNumSol maximum number of solutions \endlink
        desired.
    */
    inline int getMaximumSolutions() const {
        return getIntParam(CbcMaxNumSol);
    }
    /// Set the printing mode
    inline bool setPrintingMode( int value) {
        return setIntParam(CbcPrinting, value);
    }

    /// Get the printing mode
    inline int getPrintingMode() const {
        return getIntParam(CbcPrinting);
    }

    /** Set the
        \link CbcModel::CbcMaximumSeconds maximum number of seconds \endlink
        desired.
    */
    inline bool setMaximumSeconds( double value) {
        return setDblParam(CbcMaximumSeconds, value);
    }
    /** Get the
        \link CbcModel::CbcMaximumSeconds maximum number of seconds \endlink
        desired.
    */
    inline double getMaximumSeconds() const {
        return getDblParam(CbcMaximumSeconds);
    }
    /// Current time since start of branchAndbound
    double getCurrentSeconds() const ;

    /// Return true if maximum time reached
    bool maximumSecondsReached() const ;

    /** Set the
      \link CbcModel::CbcIntegerTolerance integrality tolerance \endlink
    */
    inline bool setIntegerTolerance( double value) {
        return setDblParam(CbcIntegerTolerance, value);
    }
    /** Get the
      \link CbcModel::CbcIntegerTolerance integrality tolerance \endlink
    */
    inline double getIntegerTolerance() const {
        return getDblParam(CbcIntegerTolerance);
    }

    /** Set the
        \link CbcModel::CbcInfeasibilityWeight
          weight per integer infeasibility \endlink
    */
    inline bool setInfeasibilityWeight( double value) {
        return setDblParam(CbcInfeasibilityWeight, value);
    }
    /** Get the
        \link CbcModel::CbcInfeasibilityWeight
          weight per integer infeasibility \endlink
    */
    inline double getInfeasibilityWeight() const {
        return getDblParam(CbcInfeasibilityWeight);
    }

    /** Set the \link CbcModel::CbcAllowableGap allowable gap \endlink
        between the best known solution and the best possible solution.
    */
    inline bool setAllowableGap( double value) {
        return setDblParam(CbcAllowableGap, value);
    }
    /** Get the \link CbcModel::CbcAllowableGap allowable gap \endlink
        between the best known solution and the best possible solution.
    */
    inline double getAllowableGap() const {
        return getDblParam(CbcAllowableGap);
    }

    /** Set the \link CbcModel::CbcAllowableFractionGap fraction allowable gap \endlink
        between the best known solution and the best possible solution.
    */
    inline bool setAllowableFractionGap( double value) {
        return setDblParam(CbcAllowableFractionGap, value);
    }
    /** Get the \link CbcModel::CbcAllowableFractionGap fraction allowable gap \endlink
        between the best known solution and the best possible solution.
    */
    inline double getAllowableFractionGap() const {
        return getDblParam(CbcAllowableFractionGap);
    }
    /** Set the \link CbcModel::CbcAllowableFractionGap percentage allowable gap \endlink
        between the best known solution and the best possible solution.
    */
    inline bool setAllowablePercentageGap( double value) {
        return setDblParam(CbcAllowableFractionGap, value*0.01);
    }
    /** Get the \link CbcModel::CbcAllowableFractionGap percentage allowable gap \endlink
        between the best known solution and the best possible solution.
    */
    inline double getAllowablePercentageGap() const {
        return 100.0*getDblParam(CbcAllowableFractionGap);
    }
    /** Set the \link CbcModel::CbcHeuristicGap heuristic gap \endlink
        between the best known solution and the best possible solution.
    */
    inline bool setHeuristicGap( double value) {
        return setDblParam(CbcHeuristicGap, value);
    }
    /** Get the \link CbcModel::CbcHeuristicGap heuristic gap \endlink
        between the best known solution and the best possible solution.
    */
    inline double getHeuristicGap() const {
        return getDblParam(CbcHeuristicGap);
    }

    /** Set the \link CbcModel::CbcHeuristicFractionGap fraction heuristic gap \endlink
        between the best known solution and the best possible solution.
    */
    inline bool setHeuristicFractionGap( double value) {
        return setDblParam(CbcHeuristicFractionGap, value);
    }
    /** Get the \link CbcModel::CbcHeuristicFractionGap fraction heuristic gap \endlink
        between the best known solution and the best possible solution.
    */
    inline double getHeuristicFractionGap() const {
        return getDblParam(CbcHeuristicFractionGap);
    }
    /** Set the
        \link CbcModel::CbcCutoffIncrement  \endlink
        desired.
    */
    inline bool setCutoffIncrement( double value) {
        return setDblParam(CbcCutoffIncrement, value);
    }
    /** Get the
        \link CbcModel::CbcCutoffIncrement  \endlink
        desired.
    */
    inline double getCutoffIncrement() const {
        return getDblParam(CbcCutoffIncrement);
    }

    /** Pass in target solution and optional priorities.
        If priorities then >0 means only branch if incorrect
        while <0 means branch even if correct. +1 or -1 are
        highest priority */
    void setHotstartSolution(const double * solution, const int * priorities = NULL) ;

    /// Set the minimum drop to continue cuts
    inline void setMinimumDrop(double value) {
        minimumDrop_ = value;
    }
    /// Get the minimum drop to continue cuts
    inline double getMinimumDrop() const {
        return minimumDrop_;
    }

    /** Set the maximum number of cut passes at root node (default 20)
        Minimum drop can also be used for fine tuning */
    inline void setMaximumCutPassesAtRoot(int value) {
        maximumCutPassesAtRoot_ = value;
    }
    /** Get the maximum number of cut passes at root node */
    inline int getMaximumCutPassesAtRoot() const {
        return maximumCutPassesAtRoot_;
    }

    /** Set the maximum number of cut passes at other nodes (default 10)
        Minimum drop can also be used for fine tuning */
    inline void setMaximumCutPasses(int value) {
        maximumCutPasses_ = value;
    }
    /** Get the maximum number of cut passes at other nodes (default 10) */
    inline int getMaximumCutPasses() const {
        return maximumCutPasses_;
    }
    /** Get current cut pass number in this round of cuts.
        (1 is first pass) */
    inline int getCurrentPassNumber() const {
        return currentPassNumber_;
    }

    /** Set the maximum number of candidates to be evaluated for strong
      branching.

      A value of 0 disables strong branching.
    */
    void setNumberStrong(int number);
    /** Get the maximum number of candidates to be evaluated for strong
      branching.
    */
    inline int numberStrong() const {
        return numberStrong_;
    }
    /** Set global preferred way to branch
        -1 down, +1 up, 0 no preference */
    inline void setPreferredWay(int value) {
        preferredWay_ = value;
    }
    /** Get the preferred way to branch (default 0) */
    inline int getPreferredWay() const {
        return preferredWay_;
    }
    /// Get at which depths to do cuts
    inline int whenCuts() const {
        return whenCuts_;
    }
    /// Set at which depths to do cuts
    inline void setWhenCuts(int value) {
        whenCuts_ = value;
    }
    /** Return true if we want to do cuts
        If allowForTopOfTree zero then just does on multiples of depth
        if 1 then allows for doing at top of tree
        if 2 then says if cuts allowed anywhere apart from root
    */
    bool doCutsNow(int allowForTopOfTree) const;

    /** Set the number of branches before pseudo costs believed
        in dynamic strong branching.

      A value of 0 disables dynamic strong branching.
    */
    void setNumberBeforeTrust(int number);
    /** get the number of branches before pseudo costs believed
        in dynamic strong branching. */
    inline int numberBeforeTrust() const {
        return numberBeforeTrust_;
    }
    /** Set the number of variables for which to compute penalties
        in dynamic strong branching.

      A value of 0 disables penalties.
    */
    void setNumberPenalties(int number);
    /** get the number of variables for which to compute penalties
        in dynamic strong branching. */
    inline int numberPenalties() const {
        return numberPenalties_;
    }
    /// Number of analyze iterations to do
    inline void setNumberAnalyzeIterations(int number) {
        numberAnalyzeIterations_ = number;
    }
    inline int numberAnalyzeIterations() const {
        return numberAnalyzeIterations_;
    }
    /** Get scale factor to make penalties match strong.
        Should/will be computed */
    inline double penaltyScaleFactor() const {
        return penaltyScaleFactor_;
    }
    /** Set scale factor to make penalties match strong.
        Should/will be computed */
    void setPenaltyScaleFactor(double value);
    /** Problem type as set by user or found by analysis.  This will be extended
        0 - not known
        1 - Set partitioning <=
        2 - Set partitioning ==
        3 - Set covering
        4 - all +- 1 or all +1 and odd
    */
    void inline setProblemType(int number) {
        problemType_ = number;
    }
    inline int problemType() const {
        return problemType_;
    }
    /// Current depth
    inline int currentDepth() const {
        return currentDepth_;
    }

    /// Set how often to scan global cuts
    void setHowOftenGlobalScan(int number);
    /// Get how often to scan global cuts
    inline int howOftenGlobalScan() const {
        return howOftenGlobalScan_;
    }
    /// Original columns as created by integerPresolve or preprocessing
    inline int * originalColumns() const {
        return originalColumns_;
    }
    /// Set original columns as created by preprocessing
    void setOriginalColumns(const int * originalColumns) ;

    /** Set the print frequency.

      Controls the number of nodes evaluated between status prints.
      If <tt>number <=0</tt> the print frequency is set to 100 nodes for large
      problems, 1000 for small problems.
      Print frequency has very slight overhead if small.
    */
    inline void setPrintFrequency(int number) {
        printFrequency_ = number;
    }
    /// Get the print frequency
    inline int printFrequency() const {
        return printFrequency_;
    }
    //@}

    //---------------------------------------------------------------------------
    ///@name Methods returning info on how the solution process terminated
    //@{
    /// Are there a numerical difficulties?
    bool isAbandoned() const;
    /// Is optimality proven?
    bool isProvenOptimal() const;
    /// Is  infeasiblity proven (or none better than cutoff)?
    bool isProvenInfeasible() const;
    /// Was continuous solution unbounded
    bool isContinuousUnbounded() const;
    /// Was continuous solution unbounded
    bool isProvenDualInfeasible() const;
    /// Node limit reached?
    bool isNodeLimitReached() const;
    /// Time limit reached?
    bool isSecondsLimitReached() const;
    /// Solution limit reached?
    bool isSolutionLimitReached() const;
    /// Get how many iterations it took to solve the problem.
    inline int getIterationCount() const {
        return numberIterations_;
    }
    /// Increment how many iterations it took to solve the problem.
    inline void incrementIterationCount(int value) {
        numberIterations_ += value;
    }
    /// Get how many Nodes it took to solve the problem.
    inline int getNodeCount() const {
        return numberNodes_;
    }
    /// Increment how many nodes it took to solve the problem.
    inline void incrementNodeCount(int value) {
        numberNodes_ += value;
    }
    /** Final status of problem
        Some of these can be found out by is...... functions
        -1 before branchAndBound
        0 finished - check isProvenOptimal or isProvenInfeasible to see if solution found
        (or check value of best solution)
        1 stopped - on maxnodes, maxsols, maxtime
        2 difficulties so run was abandoned
        (5 event user programmed event occurred)
    */
    inline int status() const {
        return status_;
    }
    inline void setProblemStatus(int value) {
        status_ = value;
    }
    /** Secondary status of problem
        -1 unset (status_ will also be -1)
        0 search completed with solution
        1 linear relaxation not feasible (or worse than cutoff)
        2 stopped on gap
        3 stopped on nodes
        4 stopped on time
        5 stopped on user event
        6 stopped on solutions
        7 linear relaxation unbounded
    */
    inline int secondaryStatus() const {
        return secondaryStatus_;
    }
    inline void setSecondaryStatus(int value) {
        secondaryStatus_ = value;
    }
    /// Are there numerical difficulties (for initialSolve) ?
    bool isInitialSolveAbandoned() const ;
    /// Is optimality proven (for initialSolve) ?
    bool isInitialSolveProvenOptimal() const ;
    /// Is primal infeasiblity proven (for initialSolve) ?
    bool isInitialSolveProvenPrimalInfeasible() const ;
    /// Is dual infeasiblity proven (for initialSolve) ?
    bool isInitialSolveProvenDualInfeasible() const ;

    //@}

    //---------------------------------------------------------------------------
    /**@name Problem information methods

       These methods call the solver's query routines to return
       information about the problem referred to by the current object.
       Querying a problem that has no data associated with it result in
       zeros for the number of rows and columns, and NULL pointers from
       the methods that return vectors.

       Const pointers returned from any data-query method are valid as
       long as the data is unchanged and the solver is not called.
    */
    //@{
    /// Number of rows in continuous (root) problem.
    inline int numberRowsAtContinuous() const {
        return numberRowsAtContinuous_;
    }

    /// Get number of columns
    inline int getNumCols() const {
        return solver_->getNumCols();
    }

    /// Get number of rows
    inline int getNumRows() const {
        return solver_->getNumRows();
    }

    /// Get number of nonzero elements
    inline CoinBigIndex getNumElements() const {
        return solver_->getNumElements();
    }

    /// Number of integers in problem
    inline int numberIntegers() const {
        return numberIntegers_;
    }
    // Integer variables
    inline const int * integerVariable() const {
        return integerVariable_;
    }
    /// Whether or not integer
    inline char integerType(int i) const {
        assert (integerInfo_);
        assert (integerInfo_[i] == 0 || integerInfo_[i] == 1);
        return integerInfo_[i];
    }
    /// Whether or not integer
    inline const char * integerType() const {
        return integerInfo_;
    }

    /// Get pointer to array[getNumCols()] of column lower bounds
    inline const double * getColLower() const {
        return solver_->getColLower();
    }

    /// Get pointer to array[getNumCols()] of column upper bounds
    inline const double * getColUpper() const {
        return solver_->getColUpper();
    }

    /** Get pointer to array[getNumRows()] of row constraint senses.
        <ul>
        <li>'L': <= constraint
        <li>'E': =  constraint
        <li>'G': >= constraint
        <li>'R': ranged constraint
        <li>'N': free constraint
        </ul>
    */
    inline const char * getRowSense() const {
        return solver_->getRowSense();
    }

    /** Get pointer to array[getNumRows()] of rows right-hand sides
        <ul>
        <li> if rowsense()[i] == 'L' then rhs()[i] == rowupper()[i]
        <li> if rowsense()[i] == 'G' then rhs()[i] == rowlower()[i]
        <li> if rowsense()[i] == 'R' then rhs()[i] == rowupper()[i]
        <li> if rowsense()[i] == 'N' then rhs()[i] == 0.0
        </ul>
    */
    inline const double * getRightHandSide() const {
        return solver_->getRightHandSide();
    }

    /** Get pointer to array[getNumRows()] of row ranges.
        <ul>
        <li> if rowsense()[i] == 'R' then
        rowrange()[i] == rowupper()[i] - rowlower()[i]
        <li> if rowsense()[i] != 'R' then
        rowrange()[i] is 0.0
        </ul>
    */
    inline const double * getRowRange() const {
        return solver_->getRowRange();
    }

    /// Get pointer to array[getNumRows()] of row lower bounds
    inline const double * getRowLower() const {
        return solver_->getRowLower();
    }

    /// Get pointer to array[getNumRows()] of row upper bounds
    inline const double * getRowUpper() const {
        return solver_->getRowUpper();
    }

    /// Get pointer to array[getNumCols()] of objective function coefficients
    inline const double * getObjCoefficients() const {
        return solver_->getObjCoefficients();
    }

    /// Get objective function sense (1 for min (default), -1 for max)
    inline double getObjSense() const {
        //assert (dblParam_[CbcOptimizationDirection]== solver_->getObjSense());
        return dblParam_[CbcOptimizationDirection];
    }

    /// Return true if variable is continuous
    inline bool isContinuous(int colIndex) const {
        return solver_->isContinuous(colIndex);
    }

    /// Return true if variable is binary
    inline bool isBinary(int colIndex) const {
        return solver_->isBinary(colIndex);
    }

    /** Return true if column is integer.
        Note: This function returns true if the the column
        is binary or a general integer.
    */
    inline bool isInteger(int colIndex) const {
        return solver_->isInteger(colIndex);
    }

    /// Return true if variable is general integer
    inline bool isIntegerNonBinary(int colIndex) const {
        return solver_->isIntegerNonBinary(colIndex);
    }

    /// Return true if variable is binary and not fixed at either bound
    inline bool isFreeBinary(int colIndex) const {
        return solver_->isFreeBinary(colIndex) ;
    }

    /// Get pointer to row-wise copy of matrix
    inline const CoinPackedMatrix * getMatrixByRow() const {
        return solver_->getMatrixByRow();
    }

    /// Get pointer to column-wise copy of matrix
    inline const CoinPackedMatrix * getMatrixByCol() const {
        return solver_->getMatrixByCol();
    }

    /// Get solver's value for infinity
    inline double getInfinity() const {
        return solver_->getInfinity();
    }
    /// Get pointer to array[getNumCols()] (for speed) of column lower bounds
    inline const double * getCbcColLower() const {
        return cbcColLower_;
    }
    /// Get pointer to array[getNumCols()] (for speed) of column upper bounds
    inline const double * getCbcColUpper() const {
        return cbcColUpper_;
    }
    /// Get pointer to array[getNumRows()] (for speed) of row lower bounds
    inline const double * getCbcRowLower() const {
        return cbcRowLower_;
    }
    /// Get pointer to array[getNumRows()] (for speed) of row upper bounds
    inline const double * getCbcRowUpper() const {
        return cbcRowUpper_;
    }
    /// Get pointer to array[getNumCols()] (for speed) of primal solution vector
    inline const double * getCbcColSolution() const {
        return cbcColSolution_;
    }
    /// Get pointer to array[getNumRows()] (for speed) of dual prices
    inline const double * getCbcRowPrice() const {
        return cbcRowPrice_;
    }
    /// Get a pointer to array[getNumCols()] (for speed) of reduced costs
    inline const double * getCbcReducedCost() const {
        return cbcReducedCost_;
    }
    /// Get pointer to array[getNumRows()] (for speed) of row activity levels.
    inline const double * getCbcRowActivity() const {
        return cbcRowActivity_;
    }
    //@}


    /**@name Methods related to querying the solution */
    //@{
    /// Holds solution at continuous (after cuts if branchAndBound called)
    inline double * continuousSolution() const {
        return continuousSolution_;
    }
    /** Array marked whenever a solution is found if non-zero.
        Code marks if heuristic returns better so heuristic
        need only mark if it wants to on solutions which
        are worse than current */
    inline int * usedInSolution() const {
        return usedInSolution_;
    }
    /// Increases usedInSolution for nonzeros
    void incrementUsed(const double * solution);
    /// Record a new incumbent solution and update objectiveValue
    void setBestSolution(CBC_Message how,
                         double & objectiveValue, const double *solution,
                         int fixVariables = 0);
    /// Just update objectiveValue
    void setBestObjectiveValue( double objectiveValue);
    /// Deals with event handler and solution
    CbcEventHandler::CbcAction dealWithEventHandler(CbcEventHandler::CbcEvent event,
            double objValue,
            const double * solution);

    /** Call this to really test if a valid solution can be feasible
        Solution is number columns in size.
        If fixVariables true then bounds of continuous solver updated.
        Returns objective value (worse than cutoff if not feasible)
        Previously computed objective value is now passed in (in case user does not do solve)
    */
    double checkSolution(double cutoff, double * solution,
                         int fixVariables, double originalObjValue);
    /** Test the current solution for feasiblility.

      Scan all objects for indications of infeasibility. This is broken down
      into simple integer infeasibility (\p numberIntegerInfeasibilities)
      and all other reports of infeasibility (\p numberObjectInfeasibilities).
    */
    bool feasibleSolution(int & numberIntegerInfeasibilities,
                          int & numberObjectInfeasibilities) const;

    /** Solution to the most recent lp relaxation.

      The solver's solution to the most recent lp relaxation.
    */

    inline double * currentSolution() const {
        return currentSolution_;
    }
    /** For testing infeasibilities - will point to
        currentSolution_ or solver-->getColSolution()
    */
    inline const double * testSolution() const {
        return testSolution_;
    }
    inline void setTestSolution(const double * solution) {
        testSolution_ = solution;
    }
    /// Make sure region there and optionally copy solution
    void reserveCurrentSolution(const double * solution = NULL);

    /// Get pointer to array[getNumCols()] of primal solution vector
    inline const double * getColSolution() const {
        return solver_->getColSolution();
    }

    /// Get pointer to array[getNumRows()] of dual prices
    inline const double * getRowPrice() const {
        return solver_->getRowPrice();
    }

    /// Get a pointer to array[getNumCols()] of reduced costs
    inline const double * getReducedCost() const {
        return solver_->getReducedCost();
    }

    /// Get pointer to array[getNumRows()] of row activity levels.
    inline const double * getRowActivity() const {
        return solver_->getRowActivity();
    }

    /// Get current objective function value
    inline double getCurrentObjValue() const {
        return dblParam_[CbcCurrentObjectiveValue];
    }
    /// Get current minimization objective function value
    inline double getCurrentMinimizationObjValue() const {
        return dblParam_[CbcCurrentMinimizationObjectiveValue];
    }

    /// Get best objective function value as minimization
    inline double getMinimizationObjValue() const {
        return bestObjective_;
    }
    /// Set best objective function value as minimization
    inline void setMinimizationObjValue(double value) {
        bestObjective_ = value;
    }

    /// Get best objective function value
    inline double getObjValue() const {
        return bestObjective_ * solver_->getObjSense() ;
    }
    /** Get best possible objective function value.
        This is better of best possible left on tree
        and best solution found.
        If called from within branch and cut may be optimistic.
    */
    double getBestPossibleObjValue() const;
    /// Set best objective function value
    inline void setObjValue(double value) {
        bestObjective_ = value * solver_->getObjSense() ;
    }
    /// Get solver objective function value (as minimization)
    inline double getSolverObjValue() const {
        return solver_->getObjValue() * solver_->getObjSense() ;
    }

    /** The best solution to the integer programming problem.

      The best solution to the integer programming problem found during
      the search. If no solution is found, the method returns null.
    */

    inline double * bestSolution() const {
        return bestSolution_;
    }
    /** User callable setBestSolution.
        If check false does not check valid
        If true then sees if feasible and warns if objective value
        worse than given (so just set to COIN_DBL_MAX if you don't care).
        If check true then does not save solution if not feasible
    */
    void setBestSolution(const double * solution, int numberColumns,
                         double objectiveValue, bool check = false);

    /// Get number of solutions
    inline int getSolutionCount() const {
        return numberSolutions_;
    }

    /// Set number of solutions (so heuristics will be different)
    inline void setSolutionCount(int value) {
        numberSolutions_ = value;
    }
    /// Number of saved solutions (including best)
    int numberSavedSolutions() const;
    /// Maximum number of extra saved solutions
    inline int maximumSavedSolutions() const {
        return maximumSavedSolutions_;
    }
    /// Set maximum number of extra saved solutions
    void setMaximumSavedSolutions(int value);
    /// Return a saved solution (0==best) - NULL if off end
    const double * savedSolution(int which) const;
    /// Return a saved solution objective (0==best) - COIN_DBL_MAX if off end
    double savedSolutionObjective(int which) const;

    /** Current phase (so heuristics etc etc can find out).
        0 - initial solve
        1 - solve with cuts at root
        2 - solve with cuts
        3 - other e.g. strong branching
        4 - trying to validate a solution
        5 - at end of search
    */
    inline int phase() const {
        return phase_;
    }

    /// Get number of heuristic solutions
    inline int getNumberHeuristicSolutions() const {
        return numberHeuristicSolutions_;
    }
    /// Set number of heuristic solutions
    inline void setNumberHeuristicSolutions(int value) {
        numberHeuristicSolutions_ = value;
    }

    /// Set objective function sense (1 for min (default), -1 for max,)
    inline void setObjSense(double s) {
        dblParam_[CbcOptimizationDirection] = s;
        solver_->setObjSense(s);
    }

    /// Value of objective at continuous
    inline double getContinuousObjective() const {
        return originalContinuousObjective_;
    }
    inline void setContinuousObjective(double value) {
        originalContinuousObjective_ = value;
    }
    /// Number of infeasibilities at continuous
    inline int getContinuousInfeasibilities() const {
        return continuousInfeasibilities_;
    }
    inline void setContinuousInfeasibilities(int value) {
        continuousInfeasibilities_ = value;
    }
    /// Value of objective after root node cuts added
    inline double rootObjectiveAfterCuts() const {
        return continuousObjective_;
    }
    /// Sum of Changes to objective by first solve
    inline double sumChangeObjective() const {
        return sumChangeObjective1_;
    }
    /** Number of times global cuts violated.  When global cut pool then this
        should be kept for each cut and type of cut */
    inline int numberGlobalViolations() const {
        return numberGlobalViolations_;
    }
    inline void clearNumberGlobalViolations() {
        numberGlobalViolations_ = 0;
    }
    /// Whether to force a resolve after takeOffCuts
    inline bool resolveAfterTakeOffCuts() const {
        return resolveAfterTakeOffCuts_;
    }
    inline void setResolveAfterTakeOffCuts(bool yesNo) {
        resolveAfterTakeOffCuts_ = yesNo;
    }
    /// Maximum number of rows
    inline int maximumRows() const {
        return maximumRows_;
    }
    /// Work basis for temporary use
    inline CoinWarmStartBasis & workingBasis() {
        return workingBasis_;
    }
    /// Get number of "iterations" to stop after
    inline int getStopNumberIterations() const {
        return stopNumberIterations_;
    }
    /// Set number of "iterations" to stop after
    inline void setStopNumberIterations(int value) {
        stopNumberIterations_ = value;
    }
    //@}

    /** \name Node selection */
    //@{
    // Comparison functions (which may be overridden by inheritance)
    inline CbcCompareBase * nodeComparison() const {
        return nodeCompare_;
    }
    void setNodeComparison(CbcCompareBase * compare);
    void setNodeComparison(CbcCompareBase & compare);
    //@}

    /** \name Problem feasibility checking */
    //@{
    // Feasibility functions (which may be overridden by inheritance)
    inline CbcFeasibilityBase * problemFeasibility() const {
        return problemFeasibility_;
    }
    void setProblemFeasibility(CbcFeasibilityBase * feasibility);
    void setProblemFeasibility(CbcFeasibilityBase & feasibility);
    //@}

    /** \name Tree methods and subtree methods */
    //@{
    /// Tree method e.g. heap (which may be overridden by inheritance)
    inline CbcTree * tree() const {
        return tree_;
    }
    /// For modifying tree handling (original is cloned)
    void passInTreeHandler(CbcTree & tree);
    /** For passing in an CbcModel to do a sub Tree (with derived tree handlers).
        Passed in model must exist for duration of branch and bound
    */
    void passInSubTreeModel(CbcModel & model);
    /** For retrieving a copy of subtree model with given OsiSolver.
        If no subtree model will use self (up to user to reset cutoff etc).
        If solver NULL uses current
    */
    CbcModel * subTreeModel(OsiSolverInterface * solver = NULL) const;
    /// Returns number of times any subtree stopped on nodes, time etc
    inline int numberStoppedSubTrees() const {
        return numberStoppedSubTrees_;
    }
    /// Says a sub tree was stopped
    inline void incrementSubTreeStopped() {
        numberStoppedSubTrees_++;
    }
    /** Whether to automatically do presolve before branch and bound (subTrees).
        0 - no
        1 - ordinary presolve
        2 - integer presolve (dodgy)
    */
    inline int typePresolve() const {
        return presolve_;
    }
    inline void setTypePresolve(int value) {
        presolve_ = value;
    }

    //@}

    /** \name Branching Decisions

      See the CbcBranchDecision class for additional information.
    */
    //@{

    /// Get the current branching decision method.
    inline CbcBranchDecision * branchingMethod() const {
        return branchingMethod_;
    }
    /// Set the branching decision method.
    inline void setBranchingMethod(CbcBranchDecision * method) {
        delete branchingMethod_;
        branchingMethod_ = method->clone();
    }
    /** Set the branching method

      \overload
    */
    inline void setBranchingMethod(CbcBranchDecision & method) {
        delete branchingMethod_;
        branchingMethod_ = method.clone();
    }
    /// Get the current cut modifier method
    inline CbcCutModifier * cutModifier() const {
        return cutModifier_;
    }
    /// Set the cut modifier method
    void setCutModifier(CbcCutModifier * modifier);
    /** Set the cut modifier method

      \overload
    */
    void setCutModifier(CbcCutModifier & modifier);
    //@}

    /** \name Row (constraint) and Column (variable) cut generation */
    //@{

    /** State of search
        0 - no solution
        1 - only heuristic solutions
        2 - branched to a solution
        3 - no solution but many nodes
    */
    inline int stateOfSearch() const {
        return stateOfSearch_;
    }
    inline void setStateOfSearch(int state) {
        stateOfSearch_ = state;
    }
    /// Strategy worked out - mainly at root node for use by CbcNode
    inline int searchStrategy() const {
        return searchStrategy_;
    }
    /// Set strategy worked out - mainly at root node for use by CbcNode
    inline void setSearchStrategy(int value) {
        searchStrategy_ = value;
    }

    /// Get the number of cut generators
    inline int numberCutGenerators() const {
        return numberCutGenerators_;
    }
    /// Get the list of cut generators
    inline CbcCutGenerator ** cutGenerators() const {
        return generator_;
    }
    ///Get the specified cut generator
    inline CbcCutGenerator * cutGenerator(int i) const {
        return generator_[i];
    }
    ///Get the specified cut generator before any changes
    inline CbcCutGenerator * virginCutGenerator(int i) const {
        return virginGenerator_[i];
    }
    /** Add one generator - up to user to delete generators.
        howoften affects how generator is used. 0 or 1 means always,
        >1 means every that number of nodes.  Negative values have same
        meaning as positive but they may be switched off (-> -100) by code if
        not many cuts generated at continuous.  -99 is just done at root.
        Name is just for printout.
        If depth >0 overrides how often generator is called (if howOften==-1 or >0).
    */
    void addCutGenerator(CglCutGenerator * generator,
                         int howOften = 1, const char * name = NULL,
                         bool normal = true, bool atSolution = false,
                         bool infeasible = false, int howOftenInSub = -100,
                         int whatDepth = -1, int whatDepthInSub = -1);
//@}
    /** \name Strategy and sub models

      See the CbcStrategy class for additional information.
    */
    //@{

    /// Get the current strategy
    inline CbcStrategy * strategy() const {
        return strategy_;
    }
    /// Set the strategy. Clones
    void setStrategy(CbcStrategy & strategy);
    /// Set the strategy. assigns
    inline void setStrategy(CbcStrategy * strategy) {
        strategy_ = strategy;
    }
    /// Get the current parent model
    inline CbcModel * parentModel() const {
        return parentModel_;
    }
    /// Set the parent model
    inline void setParentModel(CbcModel & parentModel) {
        parentModel_ = &parentModel;
    }
    //@}


    /** \name Heuristics and priorities */
    //@{
    /*! \brief Add one heuristic - up to user to delete

      The name is just used for print messages.
    */
    void addHeuristic(CbcHeuristic * generator, const char *name = NULL,
                      int before = -1);
    ///Get the specified heuristic
    inline CbcHeuristic * heuristic(int i) const {
        return heuristic_[i];
    }
    /// Get the number of heuristics
    inline int numberHeuristics() const {
        return numberHeuristics_;
    }
    /// Pointer to heuristic solver which found last solution (or NULL)
    inline CbcHeuristic * lastHeuristic() const {
        return lastHeuristic_;
    }
    /// set last heuristic which found a solution
    inline void setLastHeuristic(CbcHeuristic * last) {
        lastHeuristic_ = last;
    }

    /** Pass in branching priorities.

        If ifClique then priorities are on cliques otherwise priorities are
        on integer variables.
        Other type (if exists set to default)
        1 is highest priority. (well actually -INT_MAX is but that's ugly)
        If hotstart > 0 then branches are created to force
        the variable to the value given by best solution.  This enables a
        sort of hot start.  The node choice should be greatest depth
        and hotstart should normally be switched off after a solution.

        If ifNotSimpleIntegers true then appended to normal integers

        This is now deprecated except for simple usage.  If user
        creates Cbcobjects then set priority in them

        \internal Added for Kurt Spielberg.
    */
    void passInPriorities(const int * priorities, bool ifNotSimpleIntegers);

    /// Returns priority level for an object (or 1000 if no priorities exist)
    inline int priority(int sequence) const {
        return object_[sequence]->priority();
    }

    /*! \brief Set an event handler

      A clone of the handler passed as a parameter is stored in CbcModel.
    */
    void passInEventHandler(const CbcEventHandler *eventHandler) ;

    /*! \brief Retrieve a pointer to the event handler */
    inline CbcEventHandler* getEventHandler() const {
        return (eventHandler_) ;
    }

    //@}

    /**@name Setting/Accessing application data */
    //@{
    /** Set application data.

    This is a pointer that the application can store into and
    retrieve from the solver interface.
    This field is available for the application to optionally
    define and use.
    */
    void setApplicationData (void * appData);

    /// Get application data
    void * getApplicationData() const;
    /**
        For advanced applications you may wish to modify the behavior of Cbc
        e.g. if the solver is a NLP solver then you may not have an exact
        optimum solution at each step.  Information could be built into
        OsiSolverInterface but this is an alternative so that that interface
        does not have to be changed.  If something similar is useful to
        enough solvers then it could be migrated
        You can also pass in by using solver->setAuxiliaryInfo.
        You should do that if solver is odd - if solver is normal simplex
        then use this.
        NOTE - characteristics are not cloned
    */
    void passInSolverCharacteristics(OsiBabSolver * solverCharacteristics);
    /// Get solver characteristics
    inline const OsiBabSolver * solverCharacteristics() const {
        return solverCharacteristics_;
    }
    //@}

    //---------------------------------------------------------------------------

    /**@name Message handling etc */
    //@{
    /// Pass in Message handler (not deleted at end)
    void passInMessageHandler(CoinMessageHandler * handler);
    /// Set language
    void newLanguage(CoinMessages::Language language);
    inline void setLanguage(CoinMessages::Language language) {
        newLanguage(language);
    }
    /// Return handler
    inline CoinMessageHandler * messageHandler() const {
        return handler_;
    }
    /// Return messages
    inline CoinMessages & messages() {
        return messages_;
    }
    /// Return pointer to messages
    inline CoinMessages * messagesPointer() {
        return &messages_;
    }
    /// Set log level
    void setLogLevel(int value);
    /// Get log level
    inline int logLevel() const {
        return handler_->logLevel();
    }
    /** Set flag to say if handler_ is the default handler.

      The default handler is deleted when the model is deleted. Other
      handlers (supplied by the client) will not be deleted.
    */
    inline void setDefaultHandler(bool yesNo) {
        defaultHandler_ = yesNo;
    }
    //@}
    //---------------------------------------------------------------------------
    ///@name Specialized
    //@{

    /**
        Set special options
        0 bit (1) - check if cuts valid (if on debugger list)
        1 bit (2) - use current basis to check integer solution (rather than all slack)
        2 bit (4) - don't check integer solution (by solving LP)
        3 bit (8) - fast analyze
        4 bit (16) - non-linear model - so no well defined CoinPackedMatrix
        5 bit (32) - keep names
        6 bit (64) - try for dominated columns
        7 bit (128) - SOS type 1 but all declared integer
        8 bit (256) - Set to say solution just found, unset by doing cuts
        9 bit (512) - Try reduced model after 100 nodes
        10 bit (1024) - Switch on some heuristics even if seems unlikely
        11 bit (2048) - Mark as in small branch and bound
        12 bit (4096) - Funny cuts so do slow way (in some places)
        13 bit (8192) - Funny cuts so do slow way (in other places)
        14 bit (16384) - Use Cplex! for fathoming
        15 bit (32768) - Try reduced model after 0 nodes
        16 bit (65536) - Original model had integer bounds
        17 bit (131072) - Perturbation switched off
    */
    inline void setSpecialOptions(int value) {
        specialOptions_ = value;
    }
    /// Get special options
    inline int specialOptions() const {
        return specialOptions_;
    }
    /// Says if normal solver i.e. has well defined CoinPackedMatrix
    inline bool normalSolver() const {
        return (specialOptions_&16) == 0;
    }
    /** Set more special options
        at present bottom 6 bits used for shadow price mode
        1024 for experimental hotstart
        2048,4096 breaking out of cuts
        8192 slowly increase minimum drop
        16384 gomory
    */
    inline void setMoreSpecialOptions(int value) {
        moreSpecialOptions_ = value;
    }
    /// Get more special options
    inline int moreSpecialOptions() const {
        return moreSpecialOptions_;
    }
    /// Go to dantzig pivot selection if easy problem (clp only)
#ifdef COIN_HAS_CLP
    void goToDantzig(int numberNodes, ClpDualRowPivot *& savePivotMethod);
#endif
    /// Now we may not own objects - just point to solver's objects
    inline bool ownObjects() const {
        return ownObjects_;
    }
    /// Check original model before it gets messed up
    void checkModel();
    //@}
    //---------------------------------------------------------------------------

    ///@name Constructors and destructors etc
    //@{
    /// Default Constructor
    CbcModel();

    /// Constructor from solver
    CbcModel(const OsiSolverInterface &);

    /** Assign a solver to the model (model assumes ownership)

      On return, \p solver will be NULL.
      If deleteSolver then current solver deleted (if model owned)

      \note Parameter settings in the outgoing solver are not inherited by
        the incoming solver.
    */
    void assignSolver(OsiSolverInterface *&solver, bool deleteSolver = true);

    /** \brief Set ownership of solver

      A parameter of false tells CbcModel it does not own the solver and
      should not delete it. Once you claim ownership of the solver, you're
      responsible for eventually deleting it. Note that CbcModel clones
      solvers with abandon.  Unless you have a deep understanding of the
      workings of CbcModel, the only time you want to claim ownership is when
      you're about to delete the CbcModel object but want the solver to
      continue to exist (as, for example, when branchAndBound has finished
      and you want to hang on to the answer).
    */
    inline void setModelOwnsSolver (bool ourSolver) {
        ownership_ = ourSolver ? (ownership_ | 0x80000000) : (ownership_ & (~0x80000000)) ;
    }

    /*! \brief Get ownership of solver

      A return value of true means that CbcModel owns the solver and will
      take responsibility for deleting it when that becomes necessary.
    */
    inline bool modelOwnsSolver () {
        return ((ownership_&0x80000000) != 0) ;
    }

    /** Copy constructor .
      If cloneHandler is true then message handler is cloned
    */
    CbcModel(const CbcModel & rhs, bool cloneHandler = false);

    /// Assignment operator
    CbcModel & operator=(const CbcModel& rhs);

    /// Destructor
    ~CbcModel ();

    /// Returns solver - has current state
    inline OsiSolverInterface * solver() const {
        return solver_;
    }

    /// Returns current solver - sets new one
    inline OsiSolverInterface * swapSolver(OsiSolverInterface * solver) {
        OsiSolverInterface * returnSolver = solver_;
        solver_ = solver;
        return returnSolver;
    }

    /// Returns solver with continuous state
    inline OsiSolverInterface * continuousSolver() const {
        return continuousSolver_;
    }

    /// Create solver with continuous state
    inline void createContinuousSolver() {
        continuousSolver_ = solver_->clone();
    }
    /// Clear solver with continuous state
    inline void clearContinuousSolver() {
        delete continuousSolver_;
        continuousSolver_ = NULL;
    }

    /// A copy of the solver, taken at constructor or by saveReferenceSolver
    inline OsiSolverInterface * referenceSolver() const {
        return referenceSolver_;
    }

    /// Save a copy of the current solver so can be reset to
    void saveReferenceSolver();

    /** Uses a copy of reference solver to be current solver.
        Because of possible mismatches all exotic integer information is loat
        (apart from normal information in OsiSolverInterface)
        so SOS etc and priorities will have to be redone
    */
    void resetToReferenceSolver();

    /// Clears out as much as possible (except solver)
    void gutsOfDestructor();
    /** Clears out enough to reset CbcModel as if no branch and bound done
     */
    void gutsOfDestructor2();
    /** Clears out enough to reset CbcModel cutoff etc
     */
    void resetModel();
    /** Most of copy constructor
        mode - 0 copy but don't delete before
               1 copy and delete before
           2 copy and delete before (but use virgin generators)
    */
    void gutsOfCopy(const CbcModel & rhs, int mode = 0);
    /// Move status, nodes etc etc across
    void moveInfo(const CbcModel & rhs);
    //@}

    /// To do with threads
    //@{
    /// Get pointer to masterthread
    CbcThread * masterThread() const {
        return masterThread_;
    }
    /// Get pointer to walkback
    CbcNodeInfo ** walkback() const {
        return walkback_;
    }
    /// Get number of threads
    inline int getNumberThreads() const {
        return numberThreads_;
    }
    /// Set number of threads
    inline void setNumberThreads(int value) {
        numberThreads_ = value;
    }
    /// Get thread mode
    inline int getThreadMode() const {
        return threadMode_;
    }
    /** Set thread mode
        always use numberThreads for branching
        1 set then deterministic
        2 set then use numberThreads for root cuts
        4 set then use numberThreads in root mini branch and bound
        8 set and numberThreads - do heuristics numberThreads at a time
        8 set and numberThreads==0 do all heuristics at once
        default is 0
    */
    inline void setThreadMode(int value) {
        threadMode_ = value;
    }
    /** Return
        -2 if deterministic threaded and main thread
        -1 if deterministic threaded and serial thread
        0 if serial
        1 if opportunistic threaded
    */
    inline int parallelMode() const {
        if (!numberThreads_) {
            if ((threadMode_&1) == 0)
                return 0;
            else
                return -1;
            return 0;
        } else {
            if ((threadMode_&1) == 0)
                return 1;
            else
                return -2;
        }
    }
    /// From here to end of section - code in CbcThread.cpp until class changed
    /// Returns true if locked
    bool isLocked() const;
#ifdef CBC_THREAD
    /**
       Locks a thread if parallel so that stuff like cut pool
       can be updated and/or used.
    */
    void lockThread();
    /**
       Unlocks a thread if parallel to say cut pool stuff not needed
    */
    void unlockThread();
#else
    inline void lockThread() {}
    inline void unlockThread() {}
#endif
    /** Set information in a child
        -3 pass pointer to child thread info
        -2 just stop
        -1 delete simple child stuff
        0 delete opportunistic child stuff
        1 delete deterministic child stuff
    */
    void setInfoInChild(int type, CbcThread * info);
    /** Move/copy information from one model to another
        -1 - initialization
        0 - from base model
        1 - to base model (and reset)
        2 - add in final statistics etc (and reset so can do clean destruction)
    */
    void moveToModel(CbcModel * baseModel, int mode);
    /// Split up nodes
    int splitModel(int numberModels, CbcModel ** model,
                   int numberNodes);
    /// Start threads
    void startSplitModel(int numberIterations);
    /// Merge models
    void mergeModels(int numberModel, CbcModel ** model,
                     int numberNodes);
    //@}

    /// semi-private i.e. users should not use
    //@{
    /// Get how many Nodes it took to solve the problem.
    int getNodeCount2() const {
        return numberNodes2_;
    }
    /// Set pointers for speed
    void setPointers(const OsiSolverInterface * solver);
    /** Perform reduced cost fixing

      Fixes integer variables at their current value based on reduced cost
      penalties.  Returns number fixed
    */
    int reducedCostFix() ;
    /** Makes all handlers same.  If makeDefault 1 then makes top level
        default and rest point to that.  If 2 then each is copy
    */
    void synchronizeHandlers(int makeDefault);
    /// Save a solution to saved list
    void saveExtraSolution(const double * solution, double objectiveValue);
    /// Save a solution to best and move current to saved
    void saveBestSolution(const double * solution, double objectiveValue);
    /// Delete best and saved solutions
    void deleteSolutions();
    /// Encapsulates solver resolve
    int resolve(OsiSolverInterface * solver);

    /** Encapsulates choosing a variable -
        anyAction -2, infeasible (-1 round again), 0 done
    */
    int chooseBranch(CbcNode * & newNode, int numberPassesLeft,
                     CbcNode * oldNode, OsiCuts & cuts,
                     bool & resolved, CoinWarmStartBasis *lastws,
                     const double * lowerBefore, const double * upperBefore,
                     OsiSolverBranch * & branches);
    int chooseBranch(CbcNode * newNode, int numberPassesLeft, bool & resolved);

    /** Return an empty basis object of the specified size

      A useful utility when constructing a basis for a subproblem from scratch.
      The object returned will be of the requested capacity and appropriate for
      the solver attached to the model.
    */
    CoinWarmStartBasis *getEmptyBasis(int ns = 0, int na = 0) const ;

    /** Remove inactive cuts from the model

      An OsiSolverInterface is expected to maintain a valid basis, but not a
      valid solution, when loose cuts are deleted. Restoring a valid solution
      requires calling the solver to reoptimise. If it's certain the solution
      will not be required, set allowResolve to false to suppress
      reoptimisation.
      If saveCuts then slack cuts will be saved
      On input current cuts are cuts and newCuts
      on exit current cuts will be correct.  Returns number dropped
    */
    int takeOffCuts(OsiCuts &cuts,
                    bool allowResolve, OsiCuts * saveCuts,
                    int numberNewCuts = 0, const OsiRowCut ** newCuts = NULL) ;

    /** Determine and install the active cuts that need to be added for
      the current subproblem

      The whole truth is a bit more complicated. The first action is a call to
      addCuts1(). addCuts() then sorts through the list, installs the tight
      cuts in the model, and does bookkeeping (adjusts reference counts).
      The basis returned from addCuts1() is adjusted accordingly.

      If it turns out that the node should really be fathomed by bound,
      addCuts() simply treats all the cuts as loose as it does the bookkeeping.

      canFix true if extra information being passed
    */
    int addCuts(CbcNode * node, CoinWarmStartBasis *&lastws, bool canFix);

    /** Traverse the tree from node to root and prep the model

      addCuts1() begins the job of prepping the model to match the current
      subproblem. The model is stripped of all cuts, and the search tree is
      traversed from node to root to determine the changes required. Appropriate
      bounds changes are installed, a list of cuts is collected but not
      installed, and an appropriate basis (minus the cuts, but big enough to
      accommodate them) is constructed.

      Returns true if new problem similar to old

      \todo addCuts1() is called in contexts where it's known in advance that
        all that's desired is to determine a list of cuts and do the
        bookkeeping (adjust the reference counts). The work of installing
        bounds and building a basis goes to waste.
    */
    bool addCuts1(CbcNode * node, CoinWarmStartBasis *&lastws);
    /** Returns bounds just before where - initially original bounds.
        Also sets downstream nodes (lower if force 1, upper if 2)
    */
    void previousBounds (CbcNode * node, CbcNodeInfo * where, int iColumn,
                         double & lower, double & upper, int force);
    /** Set objective value in a node.  This is separated out so that
       odd solvers can use.  It may look at extra information in
       solverCharacteriscs_ and will also use bound from parent node
    */
    void setObjectiveValue(CbcNode * thisNode, const CbcNode * parentNode) const;

    /** If numberBeforeTrust >0 then we are going to use CbcBranchDynamic.
        Scan and convert CbcSimpleInteger objects
    */
    void convertToDynamic();
    /// Set numberBeforeTrust in all objects
    void synchronizeNumberBeforeTrust(int type = 0);
    /// Zap integer information in problem (may leave object info)
    void zapIntegerInformation(bool leaveObjects = true);
    /// Use cliques for pseudocost information - return nonzero if infeasible
    int cliquePseudoCosts(int doStatistics);
    /// Fill in useful estimates
    void pseudoShadow(int type);
    /** Return pseudo costs
        If not all integers or not pseudo costs - returns all zero
        Length of arrays are numberIntegers() and entries
        correspond to integerVariable()[i]
        User must allocate arrays before call
    */
    void fillPseudoCosts(double * downCosts, double * upCosts,
                         int * priority = NULL,
                         int * numberDown = NULL, int * numberUp = NULL,
                         int * numberDownInfeasible = NULL,
                         int * numberUpInfeasible = NULL) const;
    /** Do heuristics at root.
        0 - don't delete
        1 - delete
        2 - just delete - don't even use
    */
    void doHeuristicsAtRoot(int deleteHeuristicsAfterwards = 0);
    /// Adjust heuristics based on model
    void adjustHeuristics();
    /// Get the hotstart solution
    inline const double * hotstartSolution() const {
        return hotstartSolution_;
    }
    /// Get the hotstart priorities
    inline const int * hotstartPriorities() const {
        return hotstartPriorities_;
    }

    /// Return the list of cuts initially collected for this subproblem
    inline CbcCountRowCut ** addedCuts() const {
        return addedCuts_;
    }
    /// Number of entries in the list returned by #addedCuts()
    inline int currentNumberCuts() const {
        return currentNumberCuts_;
    }
    /// Global cuts
    inline OsiCuts * globalCuts() {
        return &globalCuts_;
    }
    /// Copy and set a pointer to a row cut which will be added instead of normal branching.
    void setNextRowCut(const OsiRowCut & cut);
    /// Get a pointer to current node (be careful)
    inline CbcNode * currentNode() const {
        return currentNode_;
    }
    /// Get a pointer to probing info
    inline CglTreeProbingInfo * probingInfo() const {
        return probingInfo_;
    }
    /// Thread specific random number generator
    inline CoinThreadRandom * randomNumberGenerator() {
        return &randomNumberGenerator_;
    }
    /// Set the number of iterations done in strong branching.
    inline void setNumberStrongIterations(int number) {
        numberStrongIterations_ = number;
    }
    /// Get the number of iterations done in strong branching.
    inline int numberStrongIterations() const {
        return numberStrongIterations_;
    }
    /// Get maximum number of iterations (designed to be used in heuristics)
    inline int maximumNumberIterations() const {
        return maximumNumberIterations_;
    }
    /// Set maximum number of iterations (designed to be used in heuristics)
    inline void setMaximumNumberIterations(int value) {
        maximumNumberIterations_ = value;
    }
# ifdef COIN_HAS_CLP
    /// Set depth for fast nodes
    inline void setFastNodeDepth(int value) {
        fastNodeDepth_ = value;
    }
    /// Get depth for fast nodes
    inline int fastNodeDepth() const {
        return fastNodeDepth_;
    }
    /// Get anything with priority >= this can be treated as continuous
    inline int continuousPriority() const {
        return continuousPriority_;
    }
    /// Set anything with priority >= this can be treated as continuous
    inline void setContinuousPriority(int value) {
        continuousPriority_ = value;
    }
    inline void incrementExtra(int nodes, int iterations) {
        numberExtraNodes_ += nodes;
        numberExtraIterations_ += iterations;
    }
#endif
    /// Number of extra iterations
    inline int numberExtraIterations() const {
        return numberExtraIterations_;
    }
    /// Increment strong info
    void incrementStrongInfo(int numberTimes, int numberIterations,
                             int numberFixed, bool ifInfeasible);
    /// Return strong info
    inline const int * strongInfo() const {
        return strongInfo_;
    }

    /// Return mutable strong info
    inline int * mutableStrongInfo() {
        return strongInfo_;
    }
    /// Get stored row cuts for donor/recipient CbcModel
    CglStored * storedRowCuts() const {
        return storedRowCuts_;
    }
    /// Set stored row cuts for donor/recipient CbcModel
    void setStoredRowCuts(CglStored * cuts) {
        storedRowCuts_ = cuts;
    }
    /// Says whether all dynamic integers
    inline bool allDynamic () const {
        return ((ownership_&0x40000000) != 0) ;
    }
    /// Create C++ lines to get to current state
    void generateCpp( FILE * fp, int options);
    /// Generate an OsiBranchingInformation object
    OsiBranchingInformation usefulInformation() const;
    /** Warm start object produced by heuristic or strong branching

        If get a valid integer solution outside branch and bound then it can take
        a reasonable time to solve LP which produces clean solution.  If this object has
        any size then it will be used in solve.
    */
    inline void setBestSolutionBasis(const CoinWarmStartBasis & bestSolutionBasis) {
        bestSolutionBasis_ = bestSolutionBasis;
    }
    /// Redo walkback arrays
    void redoWalkBack();
    //@}

//---------------------------------------------------------------------------

private:
    ///@name Private member data
    //@{

    /// The solver associated with this model.
    OsiSolverInterface * solver_;

    /** Ownership of objects and other stuff

        0x80000000 model owns solver
        0x40000000 all variables CbcDynamicPseudoCost
    */
    unsigned int ownership_ ;

    /// A copy of the solver, taken at the continuous (root) node.
    OsiSolverInterface * continuousSolver_;

    /// A copy of the solver, taken at constructor or by saveReferenceSolver
    OsiSolverInterface * referenceSolver_;

    /// Message handler
    CoinMessageHandler * handler_;

    /** Flag to say if handler_ is the default handler.

      The default handler is deleted when the model is deleted. Other
      handlers (supplied by the client) will not be deleted.
    */
    bool defaultHandler_;

    /// Cbc messages
    CoinMessages messages_;

    /// Array for integer parameters
    int intParam_[CbcLastIntParam];

    /// Array for double parameters
    double dblParam_[CbcLastDblParam];

    /** Pointer to an empty warm start object

      It turns out to be useful to have this available as a base from
      which to build custom warm start objects. This is typed as CoinWarmStart
      rather than CoinWarmStartBasis to allow for the possibility that a
      client might want to apply a solver that doesn't use a basis-based warm
      start. See getEmptyBasis for an example of how this field can be used.
    */
    mutable CoinWarmStart *emptyWarmStart_ ;

    /// Best objective
    double bestObjective_;
    /// Best possible objective
    double bestPossibleObjective_;
    /// Sum of Changes to objective by first solve
    double sumChangeObjective1_;
    /// Sum of Changes to objective by subsequent solves
    double sumChangeObjective2_;

    /// Array holding the incumbent (best) solution.
    double * bestSolution_;
    /// Arrays holding other solutions.
    double ** savedSolutions_;

    /** Array holding the current solution.

      This array is used more as a temporary.
    */
    double * currentSolution_;
    /** For testing infeasibilities - will point to
        currentSolution_ or solver-->getColSolution()
    */
    mutable const double * testSolution_;
    /** Warm start object produced by heuristic or strong branching

        If get a valid integer solution outside branch and bound then it can take
        a reasonable time to solve LP which produces clean solution.  If this object has
        any size then it will be used in solve.
    */
    CoinWarmStartBasis bestSolutionBasis_ ;
    /// Global cuts
    OsiCuts globalCuts_;

    /// Minimum degradation in objective value to continue cut generation
    double minimumDrop_;
    /// Number of solutions
    int numberSolutions_;
    /// Number of saved solutions
    int numberSavedSolutions_;
    /// Maximum number of saved solutions
    int maximumSavedSolutions_;
    /** State of search
        0 - no solution
        1 - only heuristic solutions
        2 - branched to a solution
        3 - no solution but many nodes
    */
    int stateOfSearch_;
    /// At which depths to do cuts
    int whenCuts_;
    /// Hotstart solution
    double * hotstartSolution_;
    /// Hotstart priorities
    int * hotstartPriorities_;
    /// Number of heuristic solutions
    int numberHeuristicSolutions_;
    /// Cumulative number of nodes
    int numberNodes_;
    /** Cumulative number of nodes for statistics.
        Must fix to match up
    */
    int numberNodes2_;
    /// Cumulative number of iterations
    int numberIterations_;
    /// Cumulative number of solves
    int numberSolves_;
    /// Status of problem - 0 finished, 1 stopped, 2 difficulties
    int status_;
    /** Secondary status of problem
        -1 unset (status_ will also be -1)
        0 search completed with solution
        1 linear relaxation not feasible (or worse than cutoff)
        2 stopped on gap
        3 stopped on nodes
        4 stopped on time
        5 stopped on user event
        6 stopped on solutions
     */
    int secondaryStatus_;
    /// Number of integers in problem
    int numberIntegers_;
    /// Number of rows at continuous
    int numberRowsAtContinuous_;
    /// Maximum number of cuts
    int maximumNumberCuts_;
    /** Current phase (so heuristics etc etc can find out).
        0 - initial solve
        1 - solve with cuts at root
        2 - solve with cuts
        3 - other e.g. strong branching
        4 - trying to validate a solution
        5 - at end of search
    */
    int phase_;

    /// Number of entries in #addedCuts_
    int currentNumberCuts_;

    /** Current limit on search tree depth

      The allocated size of #walkback_. Increased as needed.
    */
    int maximumDepth_;
    /** Array used to assemble the path between a node and the search tree root

      The array is resized when necessary. #maximumDepth_  is the current
      allocated size.
    */
    CbcNodeInfo ** walkback_;
    CbcNodeInfo ** lastNodeInfo_;
    const OsiRowCut ** lastCut_;
    int lastDepth_;
    int lastNumberCuts2_;
    int maximumCuts_;
    int * lastNumberCuts_;

    /** The list of cuts initially collected for this subproblem

      When the subproblem at this node is rebuilt, a set of cuts is collected
      for inclusion in the constraint system. If any of these cuts are
      subsequently removed because they have become loose, the corresponding
      entry is set to NULL.
    */
    CbcCountRowCut ** addedCuts_;

    /** A pointer to a row cut which will be added instead of normal branching.
        After use it should be set to NULL.
    */
    OsiRowCut * nextRowCut_;

    /// Current node so can be used elsewhere
    CbcNode * currentNode_;

    /// Indices of integer variables
    int * integerVariable_;
    /// Whether of not integer
    char * integerInfo_;
    /// Holds solution at continuous (after cuts)
    double * continuousSolution_;
    /// Array marked whenever a solution is found if non-zero
    int * usedInSolution_;
    /**
        Special options
        0 bit (1) - check if cuts valid (if on debugger list)
        1 bit (2) - use current basis to check integer solution (rather than all slack)
        2 bit (4) - don't check integer solution (by solving LP)
        3 bit (8) - fast analyze
        4 bit (16) - non-linear model - so no well defined CoinPackedMatrix
        5 bit (32) - keep names
        6 bit (64) - try for dominated columns
        7 bit (128) - SOS type 1 but all declared integer
        8 bit (256) - Set to say solution just found, unset by doing cuts
        9 bit (512) - Try reduced model after 100 nodes
        10 bit (1024) - Switch on some heuristics even if seems unlikely
        11 bit (2048) - Mark as in small branch and bound
        12 bit (4096) - Funny cuts so do slow way (in some places)
        13 bit (8192) - Funny cuts so do slow way (in other places)
        14 bit (16384) - Use Cplex! for fathoming
        15 bit (32768) - Try reduced model after 0 nodes
        16 bit (65536) - Original model had integer bounds
        17 bit (131072) - Perturbation switched off
        18 bit (262144) - donor CbcModel
        19 bit (524288) - recipient CbcModel
    */
    int specialOptions_;
    /** More special options
        at present bottom 3 bits used for shadow price mode
    */
    int moreSpecialOptions_;
    /// User node comparison function
    CbcCompareBase * nodeCompare_;
    /// User feasibility function (see CbcFeasibleBase.hpp)
    CbcFeasibilityBase * problemFeasibility_;
    /// Tree
    CbcTree * tree_;
    /// A pointer to model to be used for subtrees
    CbcModel * subTreeModel_;
    /// Number of times any subtree stopped on nodes, time etc
    int numberStoppedSubTrees_;
    /// Variable selection function
    CbcBranchDecision * branchingMethod_;
    /// Cut modifier function
    CbcCutModifier * cutModifier_;
    /// Strategy
    CbcStrategy * strategy_;
    /// Parent model
    CbcModel * parentModel_;
    /** Whether to automatically do presolve before branch and bound.
        0 - no
        1 - ordinary presolve
        2 - integer presolve (dodgy)
    */
    /// Pointer to array[getNumCols()] (for speed) of column lower bounds
    const double * cbcColLower_;
    /// Pointer to array[getNumCols()] (for speed) of column upper bounds
    const double * cbcColUpper_;
    /// Pointer to array[getNumRows()] (for speed) of row lower bounds
    const double * cbcRowLower_;
    /// Pointer to array[getNumRows()] (for speed) of row upper bounds
    const double * cbcRowUpper_;
    /// Pointer to array[getNumCols()] (for speed) of primal solution vector
    const double * cbcColSolution_;
    /// Pointer to array[getNumRows()] (for speed) of dual prices
    const double * cbcRowPrice_;
    /// Get a pointer to array[getNumCols()] (for speed) of reduced costs
    const double * cbcReducedCost_;
    /// Pointer to array[getNumRows()] (for speed) of row activity levels.
    const double * cbcRowActivity_;
    /// Pointer to user-defined data structure
    void * appData_;
    /// Presolve for CbcTreeLocal
    int presolve_;
    /** Maximum number of candidates to consider for strong branching.
      To disable strong branching, set this to 0.
    */
    int numberStrong_;
    /** \brief The number of branches before pseudo costs believed
           in dynamic strong branching.

      A value of 0 is  off.
    */
    int numberBeforeTrust_;
    /** \brief The number of variables for which to compute penalties
           in dynamic strong branching.
    */
    int numberPenalties_;
    /// For threads - stop after this many "iterations"
    int stopNumberIterations_;
    /** Scale factor to make penalties match strong.
        Should/will be computed */
    double penaltyScaleFactor_;
    /// Number of analyze iterations to do
    int numberAnalyzeIterations_;
    /// Arrays with analysis results
    double * analyzeResults_;
    /// Number of nodes infeasible by normal branching (before cuts)
    int numberInfeasibleNodes_;
    /** Problem type as set by user or found by analysis.  This will be extended
        0 - not known
        1 - Set partitioning <=
        2 - Set partitioning ==
        3 - Set covering
    */
    int problemType_;
    /// Print frequency
    int printFrequency_;
    /// Number of cut generators
    int numberCutGenerators_;
    // Cut generators
    CbcCutGenerator ** generator_;
    // Cut generators before any changes
    CbcCutGenerator ** virginGenerator_;
    /// Number of heuristics
    int numberHeuristics_;
    /// Heuristic solvers
    CbcHeuristic ** heuristic_;
    /// Pointer to heuristic solver which found last solution (or NULL)
    CbcHeuristic * lastHeuristic_;
# ifdef COIN_HAS_CLP
    /// Depth for fast nodes
    int fastNodeDepth_;
#endif
    /*! Pointer to the event handler */
# ifdef CBC_ONLY_CLP
    ClpEventHandler *eventHandler_ ;
# else
    CbcEventHandler *eventHandler_ ;
# endif

    /// Total number of objects
    int numberObjects_;

    /** \brief Integer and Clique and ... information

      \note The code assumes that the first objects on the list will be
        SimpleInteger objects for each integer variable, followed by
        Clique objects. Portions of the code that understand Clique objects
        will fail if they do not immediately follow the SimpleIntegers.
        Large chunks of the code will fail if the first objects are not
        SimpleInteger. As of 2003.08, SimpleIntegers and Cliques are the only
        objects.
    */
    OsiObject ** object_;
    /// Now we may not own objects - just point to solver's objects
    bool ownObjects_;

    /// Original columns as created by integerPresolve or preprocessing
    int * originalColumns_;
    /// How often to scan global cuts
    int howOftenGlobalScan_;
    /** Number of times global cuts violated.  When global cut pool then this
        should be kept for each cut and type of cut */
    int numberGlobalViolations_;
    /// Number of extra iterations in fast lp
    int numberExtraIterations_;
    /// Number of extra nodes in fast lp
    int numberExtraNodes_;
    /** Value of objective at continuous
        (Well actually after initial round of cuts)
    */
    double continuousObjective_;
    /** Value of objective before root node cuts added
    */
    double originalContinuousObjective_;
    /// Number of infeasibilities at continuous
    int continuousInfeasibilities_;
    /// Maximum number of cut passes at root
    int maximumCutPassesAtRoot_;
    /// Maximum number of cut passes
    int maximumCutPasses_;
    /// Preferred way of branching
    int preferredWay_;
    /// Current cut pass number
    int currentPassNumber_;
    /// Maximum number of cuts (for whichGenerator_)
    int maximumWhich_;
    /// Maximum number of rows
    int maximumRows_;
    /// Current depth
    int currentDepth_;
    /// Thread specific random number generator
    mutable CoinThreadRandom randomNumberGenerator_;
    /// Work basis for temporary use
    CoinWarmStartBasis workingBasis_;
    /// Which cut generator generated this cut
    int * whichGenerator_;
    /// Maximum number of statistics
    int maximumStatistics_;
    /// statistics
    CbcStatistics ** statistics_;
    /// Maximum depth reached
    int maximumDepthActual_;
    /// Number of reduced cost fixings
    double numberDJFixed_;
    /// Probing info
    CglTreeProbingInfo * probingInfo_;
    /// Number of fixed by analyze at root
    int numberFixedAtRoot_;
    /// Number fixed by analyze so far
    int numberFixedNow_;
    /// Whether stopping on gap
    bool stoppedOnGap_;
    /// Whether event happened
    mutable bool eventHappened_;
    /// Number of long strong goes
    int numberLongStrong_;
    /// Number of old active cuts
    int numberOldActiveCuts_;
    /// Number of new cuts
    int numberNewCuts_;
    /// Strategy worked out - mainly at root node
    int searchStrategy_;
    /// Number of iterations in strong branching
    int numberStrongIterations_;
    /** 0 - number times strong branching done, 1 - number fixed, 2 - number infeasible
        Second group of three is a snapshot at node [6] */
    int strongInfo_[7];
    /**
        For advanced applications you may wish to modify the behavior of Cbc
        e.g. if the solver is a NLP solver then you may not have an exact
        optimum solution at each step.  This gives characteristics - just for one BAB.
        For actually saving/restoring a solution you need the actual solver one.
    */
    OsiBabSolver * solverCharacteristics_;
    /// Whether to force a resolve after takeOffCuts
    bool resolveAfterTakeOffCuts_;
    /// Maximum number of iterations (designed to be used in heuristics)
    int maximumNumberIterations_;
    /// Anything with priority >= this can be treated as continuous
    int continuousPriority_;
    /// Number of outstanding update information items
    int numberUpdateItems_;
    /// Maximum number of outstanding update information items
    int maximumNumberUpdateItems_;
    /// Update items
    CbcObjectUpdateData * updateItems_;
    /// Stored row cuts for donor/recipient CbcModel
    CglStored * storedRowCuts_;
    /**
       Parallel
       0 - off
       1 - testing
       2-99 threads
       other special meanings
    */
    int numberThreads_;
    /** thread mode
        always use numberThreads for branching
        1 set then deterministic
        2 set then use numberThreads for root cuts
        4 set then use numberThreads in root mini branch and bound
        default is 0
    */
    int threadMode_;
    /// Thread stuff for master
    CbcBaseModel * master_;
    /// Pointer to masterthread
    CbcThread * masterThread_;
//@}
};
/// So we can use osiObject or CbcObject during transition
void getIntegerInformation(const OsiObject * object, double & originalLower,
                           double & originalUpper) ;
// So we can call from other programs
// Real main program
class OsiClpSolverInterface;
int CbcMain (int argc, const char *argv[], OsiClpSolverInterface & solver, CbcModel ** babSolver);
int CbcMain (int argc, const char *argv[], CbcModel & babSolver);
// four ways of calling
int callCbc(const char * input2, OsiClpSolverInterface& solver1);
int callCbc(const char * input2);
int callCbc(const std::string input2, OsiClpSolverInterface& solver1);
int callCbc(const std::string input2) ;
// When we want to load up CbcModel with options first
void CbcMain0 (CbcModel & babSolver);
int CbcMain1 (int argc, const char *argv[], CbcModel & babSolver);
// two ways of calling
int callCbc(const char * input2, CbcModel & babSolver);
int callCbc(const std::string input2, CbcModel & babSolver);
// And when CbcMain0 already called to initialize
int callCbc1(const char * input2, CbcModel & babSolver);
int callCbc1(const std::string input2, CbcModel & babSolver);
// And when CbcMain0 already called to initialize (with call back) (see CbcMain1 for whereFrom)
int callCbc1(const char * input2, CbcModel & babSolver, int (CbcModel * currentSolver, int whereFrom));
int callCbc1(const std::string input2, CbcModel & babSolver, int (CbcModel * currentSolver, int whereFrom));
int CbcMain1 (int argc, const char *argv[], CbcModel & babSolver, int (CbcModel * currentSolver, int whereFrom));
// For uniform setting of cut and heuristic options
void setCutAndHeuristicOptions(CbcModel & model);
#endif