/usr/include/coin/ClpSimplex.hpp is in coinor-libclp-dev 1.12.0-2.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 | /* $Id: ClpSimplex.hpp 1551 2010-05-24 23:34:44Z mjs $ */
// Copyright (C) 2002, International Business Machines
// Corporation and others. All Rights Reserved.
/*
Authors
John Forrest
*/
#ifndef ClpSimplex_H
#define ClpSimplex_H
#include <iostream>
#include <cfloat>
#include "ClpModel.hpp"
#include "ClpMatrixBase.hpp"
#include "ClpSolve.hpp"
class ClpDualRowPivot;
class ClpPrimalColumnPivot;
class ClpFactorization;
class CoinIndexedVector;
class ClpNonLinearCost;
class ClpNodeStuff;
class CoinStructuredModel;
class OsiClpSolverInterface;
class CoinWarmStartBasis;
class ClpDisasterHandler;
class ClpConstraint;
/** This solves LPs using the simplex method
It inherits from ClpModel and all its arrays are created at
algorithm time. Originally I tried to work with model arrays
but for simplicity of coding I changed to single arrays with
structural variables then row variables. Some coding is still
based on old style and needs cleaning up.
For a description of algorithms:
for dual see ClpSimplexDual.hpp and at top of ClpSimplexDual.cpp
for primal see ClpSimplexPrimal.hpp and at top of ClpSimplexPrimal.cpp
There is an algorithm data member. + for primal variations
and - for dual variations
*/
class ClpSimplex : public ClpModel {
friend void ClpSimplexUnitTest(const std::string & mpsDir);
public:
/** enums for status of various sorts.
First 4 match CoinWarmStartBasis,
isFixed means fixed at lower bound and out of basis
*/
enum Status {
isFree = 0x00,
basic = 0x01,
atUpperBound = 0x02,
atLowerBound = 0x03,
superBasic = 0x04,
isFixed = 0x05
};
// For Dual
enum FakeBound {
noFake = 0x00,
lowerFake = 0x01,
upperFake = 0x02,
bothFake = 0x03
};
/**@name Constructors and destructor and copy */
//@{
/// Default constructor
ClpSimplex (bool emptyMessages = false );
/** Copy constructor. May scale depending on mode
-1 leave mode as is
0 -off, 1 equilibrium, 2 geometric, 3, auto, 4 dynamic(later)
*/
ClpSimplex(const ClpSimplex & rhs, int scalingMode = -1);
/** Copy constructor from model. May scale depending on mode
-1 leave mode as is
0 -off, 1 equilibrium, 2 geometric, 3, auto, 4 dynamic(later)
*/
ClpSimplex(const ClpModel & rhs, int scalingMode = -1);
/** Subproblem constructor. A subset of whole model is created from the
row and column lists given. The new order is given by list order and
duplicates are allowed. Name and integer information can be dropped
Can optionally modify rhs to take into account variables NOT in list
in this case duplicates are not allowed (also see getbackSolution)
*/
ClpSimplex (const ClpModel * wholeModel,
int numberRows, const int * whichRows,
int numberColumns, const int * whichColumns,
bool dropNames = true, bool dropIntegers = true,
bool fixOthers = false);
/** Subproblem constructor. A subset of whole model is created from the
row and column lists given. The new order is given by list order and
duplicates are allowed. Name and integer information can be dropped
Can optionally modify rhs to take into account variables NOT in list
in this case duplicates are not allowed (also see getbackSolution)
*/
ClpSimplex (const ClpSimplex * wholeModel,
int numberRows, const int * whichRows,
int numberColumns, const int * whichColumns,
bool dropNames = true, bool dropIntegers = true,
bool fixOthers = false);
/** This constructor modifies original ClpSimplex and stores
original stuff in created ClpSimplex. It is only to be used in
conjunction with originalModel */
ClpSimplex (ClpSimplex * wholeModel,
int numberColumns, const int * whichColumns);
/** This copies back stuff from miniModel and then deletes miniModel.
Only to be used with mini constructor */
void originalModel(ClpSimplex * miniModel);
/** Array persistence flag
If 0 then as now (delete/new)
1 then only do arrays if bigger needed
2 as 1 but give a bit extra if bigger needed
*/
void setPersistenceFlag(int value);
/// Save a copy of model with certain state - normally without cuts
void makeBaseModel();
/// Switch off base model
void deleteBaseModel();
/// See if we have base model
inline ClpSimplex * baseModel() const {
return baseModel_;
}
/** Reset to base model (just size and arrays needed)
If model NULL use internal copy
*/
void setToBaseModel(ClpSimplex * model = NULL);
/// Assignment operator. This copies the data
ClpSimplex & operator=(const ClpSimplex & rhs);
/// Destructor
~ClpSimplex ( );
// Ones below are just ClpModel with some changes
/** Loads a problem (the constraints on the
rows are given by lower and upper bounds). If a pointer is 0 then the
following values are the default:
<ul>
<li> <code>colub</code>: all columns have upper bound infinity
<li> <code>collb</code>: all columns have lower bound 0
<li> <code>rowub</code>: all rows have upper bound infinity
<li> <code>rowlb</code>: all rows have lower bound -infinity
<li> <code>obj</code>: all variables have 0 objective coefficient
</ul>
*/
void loadProblem ( const ClpMatrixBase& matrix,
const double* collb, const double* colub,
const double* obj,
const double* rowlb, const double* rowub,
const double * rowObjective = NULL);
void loadProblem ( const CoinPackedMatrix& matrix,
const double* collb, const double* colub,
const double* obj,
const double* rowlb, const double* rowub,
const double * rowObjective = NULL);
/** Just like the other loadProblem() method except that the matrix is
given in a standard column major ordered format (without gaps). */
void loadProblem ( const int numcols, const int numrows,
const CoinBigIndex* start, const int* index,
const double* value,
const double* collb, const double* colub,
const double* obj,
const double* rowlb, const double* rowub,
const double * rowObjective = NULL);
/// This one is for after presolve to save memory
void loadProblem ( const int numcols, const int numrows,
const CoinBigIndex* start, const int* index,
const double* value, const int * length,
const double* collb, const double* colub,
const double* obj,
const double* rowlb, const double* rowub,
const double * rowObjective = NULL);
/** This loads a model from a coinModel object - returns number of errors.
If keepSolution true and size is same as current then
keeps current status and solution
*/
int loadProblem ( CoinModel & modelObject, bool keepSolution = false);
/// Read an mps file from the given filename
int readMps(const char *filename,
bool keepNames = false,
bool ignoreErrors = false);
/// Read GMPL files from the given filenames
int readGMPL(const char *filename, const char * dataName,
bool keepNames = false);
/// Read file in LP format from file with name filename.
/// See class CoinLpIO for description of this format.
int readLp(const char *filename, const double epsilon = 1e-5);
/** Borrow model. This is so we dont have to copy large amounts
of data around. It assumes a derived class wants to overwrite
an empty model with a real one - while it does an algorithm.
This is same as ClpModel one, but sets scaling on etc. */
void borrowModel(ClpModel & otherModel);
void borrowModel(ClpSimplex & otherModel);
/// Pass in Event handler (cloned and deleted at end)
void passInEventHandler(const ClpEventHandler * eventHandler);
/// Puts solution back into small model
void getbackSolution(const ClpSimplex & smallModel, const int * whichRow, const int * whichColumn);
/** Load nonlinear part of problem from AMPL info
Returns 0 if linear
1 if quadratic objective
2 if quadratic constraints
3 if nonlinear objective
4 if nonlinear constraints
-1 on failure
*/
int loadNonLinear(void * info, int & numberConstraints,
ClpConstraint ** & constraints);
//@}
/**@name Functions most useful to user */
//@{
/** General solve algorithm which can do presolve.
See ClpSolve.hpp for options
*/
int initialSolve(ClpSolve & options);
/// Default initial solve
int initialSolve();
/// Dual initial solve
int initialDualSolve();
/// Primal initial solve
int initialPrimalSolve();
/// Barrier initial solve
int initialBarrierSolve();
/// Barrier initial solve, not to be followed by crossover
int initialBarrierNoCrossSolve();
/** Dual algorithm - see ClpSimplexDual.hpp for method.
ifValuesPass==2 just does values pass and then stops.
startFinishOptions - bits
1 - do not delete work areas and factorization at end
2 - use old factorization if same number of rows
4 - skip as much initialization of work areas as possible
(based on whatsChanged in clpmodel.hpp) ** work in progress
maybe other bits later
*/
int dual(int ifValuesPass = 0, int startFinishOptions = 0);
// If using Debug
int dualDebug(int ifValuesPass = 0, int startFinishOptions = 0);
/** Primal algorithm - see ClpSimplexPrimal.hpp for method.
ifValuesPass==2 just does values pass and then stops.
startFinishOptions - bits
1 - do not delete work areas and factorization at end
2 - use old factorization if same number of rows
4 - skip as much initialization of work areas as possible
(based on whatsChanged in clpmodel.hpp) ** work in progress
maybe other bits later
*/
int primal(int ifValuesPass = 0, int startFinishOptions = 0);
/** Solves nonlinear problem using SLP - may be used as crash
for other algorithms when number of iterations small.
Also exits if all problematical variables are changing
less than deltaTolerance
*/
int nonlinearSLP(int numberPasses, double deltaTolerance);
/** Solves problem with nonlinear constraints using SLP - may be used as crash
for other algorithms when number of iterations small.
Also exits if all problematical variables are changing
less than deltaTolerance
*/
int nonlinearSLP(int numberConstraints, ClpConstraint ** constraints,
int numberPasses, double deltaTolerance);
/** Solves using barrier (assumes you have good cholesky factor code).
Does crossover to simplex if asked*/
int barrier(bool crossover = true);
/** Solves non-linear using reduced gradient. Phase = 0 get feasible,
=1 use solution */
int reducedGradient(int phase = 0);
/// Solve using structure of model and maybe in parallel
int solve(CoinStructuredModel * model);
/** This loads a model from a CoinStructuredModel object - returns number of errors.
If originalOrder then keep to order stored in blocks,
otherwise first column/rows correspond to first block - etc.
If keepSolution true and size is same as current then
keeps current status and solution
*/
int loadProblem ( CoinStructuredModel & modelObject,
bool originalOrder = true, bool keepSolution = false);
/**
When scaling is on it is possible that the scaled problem
is feasible but the unscaled is not. Clp returns a secondary
status code to that effect. This option allows for a cleanup.
If you use it I would suggest 1.
This only affects actions when scaled optimal
0 - no action
1 - clean up using dual if primal infeasibility
2 - clean up using dual if dual infeasibility
3 - clean up using dual if primal or dual infeasibility
11,12,13 - as 1,2,3 but use primal
return code as dual/primal
*/
int cleanup(int cleanupScaling);
/** Dual ranging.
This computes increase/decrease in cost for each given variable and corresponding
sequence numbers which would change basis. Sequence numbers are 0..numberColumns
and numberColumns.. for artificials/slacks.
For non-basic variables the information is trivial to compute and the change in cost is just minus the
reduced cost and the sequence number will be that of the non-basic variables.
For basic variables a ratio test is between the reduced costs for non-basic variables
and the row of the tableau corresponding to the basic variable.
The increase/decrease value is always >= 0.0
Up to user to provide correct length arrays where each array is of length numberCheck.
which contains list of variables for which information is desired. All other
arrays will be filled in by function. If fifth entry in which is variable 7 then fifth entry in output arrays
will be information for variable 7.
If valueIncrease/Decrease not NULL (both must be NULL or both non NULL) then these are filled with
the value of variable if such a change in cost were made (the existing bounds are ignored)
Returns non-zero if infeasible unbounded etc
*/
int dualRanging(int numberCheck, const int * which,
double * costIncrease, int * sequenceIncrease,
double * costDecrease, int * sequenceDecrease,
double * valueIncrease = NULL, double * valueDecrease = NULL);
/** Primal ranging.
This computes increase/decrease in value for each given variable and corresponding
sequence numbers which would change basis. Sequence numbers are 0..numberColumns
and numberColumns.. for artificials/slacks.
This should only be used for non-basic variabls as otherwise information is pretty useless
For basic variables the sequence number will be that of the basic variables.
Up to user to provide correct length arrays where each array is of length numberCheck.
which contains list of variables for which information is desired. All other
arrays will be filled in by function. If fifth entry in which is variable 7 then fifth entry in output arrays
will be information for variable 7.
Returns non-zero if infeasible unbounded etc
*/
int primalRanging(int numberCheck, const int * which,
double * valueIncrease, int * sequenceIncrease,
double * valueDecrease, int * sequenceDecrease);
/** Write the basis in MPS format to the specified file.
If writeValues true writes values of structurals
(and adds VALUES to end of NAME card)
Row and column names may be null.
formatType is
<ul>
<li> 0 - normal
<li> 1 - extra accuracy
<li> 2 - IEEE hex (later)
</ul>
Returns non-zero on I/O error
*/
int writeBasis(const char *filename,
bool writeValues = false,
int formatType = 0) const;
/** Read a basis from the given filename,
returns -1 on file error, 0 if no values, 1 if values */
int readBasis(const char *filename);
/// Returns a basis (to be deleted by user)
CoinWarmStartBasis * getBasis() const;
/// Passes in factorization
void setFactorization( ClpFactorization & factorization);
// Swaps factorization
ClpFactorization * swapFactorization( ClpFactorization * factorization);
/// Copies in factorization to existing one
void copyFactorization( ClpFactorization & factorization);
/** Tightens primal bounds to make dual faster. Unless
fixed or doTight>10, bounds are slightly looser than they could be.
This is to make dual go faster and is probably not needed
with a presolve. Returns non-zero if problem infeasible.
Fudge for branch and bound - put bounds on columns of factor *
largest value (at continuous) - should improve stability
in branch and bound on infeasible branches (0.0 is off)
*/
int tightenPrimalBounds(double factor = 0.0, int doTight = 0, bool tightIntegers = false);
/** Crash - at present just aimed at dual, returns
-2 if dual preferred and crash basis created
-1 if dual preferred and all slack basis preferred
0 if basis going in was not all slack
1 if primal preferred and all slack basis preferred
2 if primal preferred and crash basis created.
if gap between bounds <="gap" variables can be flipped
( If pivot -1 then can be made super basic!)
If "pivot" is
-1 No pivoting - always primal
0 No pivoting (so will just be choice of algorithm)
1 Simple pivoting e.g. gub
2 Mini iterations
*/
int crash(double gap, int pivot);
/// Sets row pivot choice algorithm in dual
void setDualRowPivotAlgorithm(ClpDualRowPivot & choice);
/// Sets column pivot choice algorithm in primal
void setPrimalColumnPivotAlgorithm(ClpPrimalColumnPivot & choice);
/** For strong branching. On input lower and upper are new bounds
while on output they are change in objective function values
(>1.0e50 infeasible).
Return code is 0 if nothing interesting, -1 if infeasible both
ways and +1 if infeasible one way (check values to see which one(s))
Solutions are filled in as well - even down, odd up - also
status and number of iterations
*/
int strongBranching(int numberVariables, const int * variables,
double * newLower, double * newUpper,
double ** outputSolution,
int * outputStatus, int * outputIterations,
bool stopOnFirstInfeasible = true,
bool alwaysFinish = false,
int startFinishOptions = 0);
/// Fathom - 1 if solution
int fathom(void * stuff);
/** Do up to N deep - returns
-1 - no solution nNodes_ valid nodes
>= if solution and that node gives solution
ClpNode array is 2**N long. Values for N and
array are in stuff (nNodes_ also in stuff) */
int fathomMany(void * stuff);
/// Double checks OK
double doubleCheck();
/// Starts Fast dual2
int startFastDual2(ClpNodeStuff * stuff);
/// Like Fast dual
int fastDual2(ClpNodeStuff * stuff);
/// Stops Fast dual2
void stopFastDual2(ClpNodeStuff * stuff);
/** Deals with crunch aspects
mode 0 - in
1 - out with solution
2 - out without solution
returns small model or NULL
*/
ClpSimplex * fastCrunch(ClpNodeStuff * stuff, int mode);
//@}
/**@name Needed for functionality of OsiSimplexInterface */
//@{
/** Pivot in a variable and out a variable. Returns 0 if okay,
1 if inaccuracy forced re-factorization, -1 if would be singular.
Also updates primal/dual infeasibilities.
Assumes sequenceIn_ and pivotRow_ set and also directionIn and Out.
*/
int pivot();
/** Pivot in a variable and choose an outgoing one. Assumes primal
feasible - will not go through a bound. Returns step length in theta
Returns ray in ray_ (or NULL if no pivot)
Return codes as before but -1 means no acceptable pivot
*/
int primalPivotResult();
/** Pivot out a variable and choose an incoing one. Assumes dual
feasible - will not go through a reduced cost.
Returns step length in theta
Returns ray in ray_ (or NULL if no pivot)
Return codes as before but -1 means no acceptable pivot
*/
int dualPivotResult();
/** Common bits of coding for dual and primal. Return 0 if okay,
1 if bad matrix, 2 if very bad factorization
startFinishOptions - bits
1 - do not delete work areas and factorization at end
2 - use old factorization if same number of rows
4 - skip as much initialization of work areas as possible
(based on whatsChanged in clpmodel.hpp) ** work in progress
maybe other bits later
*/
int startup(int ifValuesPass, int startFinishOptions = 0);
void finish(int startFinishOptions = 0);
/** Factorizes and returns true if optimal. Used by user */
bool statusOfProblem(bool initial = false);
/// If user left factorization frequency then compute
void defaultFactorizationFrequency();
//@}
/**@name most useful gets and sets */
//@{
/// If problem is primal feasible
inline bool primalFeasible() const {
return (numberPrimalInfeasibilities_ == 0);
}
/// If problem is dual feasible
inline bool dualFeasible() const {
return (numberDualInfeasibilities_ == 0);
}
/// factorization
inline ClpFactorization * factorization() const {
return factorization_;
}
/// Sparsity on or off
bool sparseFactorization() const;
void setSparseFactorization(bool value);
/// Factorization frequency
int factorizationFrequency() const;
void setFactorizationFrequency(int value);
/// Dual bound
inline double dualBound() const {
return dualBound_;
}
void setDualBound(double value);
/// Infeasibility cost
inline double infeasibilityCost() const {
return infeasibilityCost_;
}
void setInfeasibilityCost(double value);
/** Amount of print out:
0 - none
1 - just final
2 - just factorizations
3 - as 2 plus a bit more
4 - verbose
above that 8,16,32 etc just for selective debug
*/
/** Perturbation:
50 - switch on perturbation
100 - auto perturb if takes too long (1.0e-6 largest nonzero)
101 - we are perturbed
102 - don't try perturbing again
default is 100
others are for playing
*/
inline int perturbation() const {
return perturbation_;
}
void setPerturbation(int value);
/// Current (or last) algorithm
inline int algorithm() const {
return algorithm_;
}
/// Set algorithm
inline void setAlgorithm(int value) {
algorithm_ = value;
}
/// Return true if the objective limit test can be relied upon
bool isObjectiveLimitTestValid() const ;
/// Sum of dual infeasibilities
inline double sumDualInfeasibilities() const {
return sumDualInfeasibilities_;
}
inline void setSumDualInfeasibilities(double value) {
sumDualInfeasibilities_ = value;
}
/// Sum of relaxed dual infeasibilities
inline double sumOfRelaxedDualInfeasibilities() const {
return sumOfRelaxedDualInfeasibilities_;
}
inline void setSumOfRelaxedDualInfeasibilities(double value) {
sumOfRelaxedDualInfeasibilities_ = value;
}
/// Number of dual infeasibilities
inline int numberDualInfeasibilities() const {
return numberDualInfeasibilities_;
}
inline void setNumberDualInfeasibilities(int value) {
numberDualInfeasibilities_ = value;
}
/// Number of dual infeasibilities (without free)
inline int numberDualInfeasibilitiesWithoutFree() const {
return numberDualInfeasibilitiesWithoutFree_;
}
/// Sum of primal infeasibilities
inline double sumPrimalInfeasibilities() const {
return sumPrimalInfeasibilities_;
}
inline void setSumPrimalInfeasibilities(double value) {
sumPrimalInfeasibilities_ = value;
}
/// Sum of relaxed primal infeasibilities
inline double sumOfRelaxedPrimalInfeasibilities() const {
return sumOfRelaxedPrimalInfeasibilities_;
}
inline void setSumOfRelaxedPrimalInfeasibilities(double value) {
sumOfRelaxedPrimalInfeasibilities_ = value;
}
/// Number of primal infeasibilities
inline int numberPrimalInfeasibilities() const {
return numberPrimalInfeasibilities_;
}
inline void setNumberPrimalInfeasibilities(int value) {
numberPrimalInfeasibilities_ = value;
}
/** Save model to file, returns 0 if success. This is designed for
use outside algorithms so does not save iterating arrays etc.
It does not save any messaging information.
Does not save scaling values.
It does not know about all types of virtual functions.
*/
int saveModel(const char * fileName);
/** Restore model from file, returns 0 if success,
deletes current model */
int restoreModel(const char * fileName);
/** Just check solution (for external use) - sets sum of
infeasibilities etc.
If setToBounds 0 then primal column values not changed
and used to compute primal row activity values. If 1 or 2
then status used - so all nonbasic variables set to
indicated bound and if any values changed (or ==2) basic values re-computed.
*/
void checkSolution(int setToBounds = 0);
/** Just check solution (for internal use) - sets sum of
infeasibilities etc. */
void checkSolutionInternal();
/// Useful row length arrays (0,1,2,3,4,5)
inline CoinIndexedVector * rowArray(int index) const {
return rowArray_[index];
}
/// Useful column length arrays (0,1,2,3,4,5)
inline CoinIndexedVector * columnArray(int index) const {
return columnArray_[index];
}
//@}
/******************** End of most useful part **************/
/**@name Functions less likely to be useful to casual user */
//@{
/** Given an existing factorization computes and checks
primal and dual solutions. Uses input arrays for variables at
bounds. Returns feasibility states */
int getSolution ( const double * rowActivities,
const double * columnActivities);
/** Given an existing factorization computes and checks
primal and dual solutions. Uses current problem arrays for
bounds. Returns feasibility states */
int getSolution ();
/** Constructs a non linear cost from list of non-linearities (columns only)
First lower of each column is taken as real lower
Last lower is taken as real upper and cost ignored
Returns nonzero if bad data e.g. lowers not monotonic
*/
int createPiecewiseLinearCosts(const int * starts,
const double * lower, const double * gradient);
/// dual row pivot choice
inline ClpDualRowPivot * dualRowPivot() const {
return dualRowPivot_;
}
/// primal column pivot choice
inline ClpPrimalColumnPivot * primalColumnPivot() const {
return primalColumnPivot_;
}
/// Returns true if model looks OK
inline bool goodAccuracy() const {
return (largestPrimalError_ < 1.0e-7 && largestDualError_ < 1.0e-7);
}
/** Return model - updates any scalars */
void returnModel(ClpSimplex & otherModel);
/** Factorizes using current basis.
solveType - 1 iterating, 0 initial, -1 external
If 10 added then in primal values pass
Return codes are as from ClpFactorization unless initial factorization
when total number of singularities is returned.
Special case is numberRows_+1 -> all slack basis.
*/
int internalFactorize(int solveType);
/// Save data
ClpDataSave saveData() ;
/// Restore data
void restoreData(ClpDataSave saved);
/// Clean up status
void cleanStatus();
/// Factorizes using current basis. For external use
int factorize();
/** Computes duals from scratch. If givenDjs then
allows for nonzero basic djs */
void computeDuals(double * givenDjs);
/// Computes primals from scratch
void computePrimals ( const double * rowActivities,
const double * columnActivities);
/** Adds multiple of a column into an array */
void add(double * array,
int column, double multiplier) const;
/**
Unpacks one column of the matrix into indexed array
Uses sequenceIn_
Also applies scaling if needed
*/
void unpack(CoinIndexedVector * rowArray) const ;
/**
Unpacks one column of the matrix into indexed array
Slack if sequence>= numberColumns
Also applies scaling if needed
*/
void unpack(CoinIndexedVector * rowArray, int sequence) const;
/**
Unpacks one column of the matrix into indexed array
** as packed vector
Uses sequenceIn_
Also applies scaling if needed
*/
void unpackPacked(CoinIndexedVector * rowArray) ;
/**
Unpacks one column of the matrix into indexed array
** as packed vector
Slack if sequence>= numberColumns
Also applies scaling if needed
*/
void unpackPacked(CoinIndexedVector * rowArray, int sequence);
protected:
/**
This does basis housekeeping and does values for in/out variables.
Can also decide to re-factorize
*/
int housekeeping(double objectiveChange);
/** This sets largest infeasibility and most infeasible and sum
and number of infeasibilities (Primal) */
void checkPrimalSolution(const double * rowActivities = NULL,
const double * columnActivies = NULL);
/** This sets largest infeasibility and most infeasible and sum
and number of infeasibilities (Dual) */
void checkDualSolution();
/** This sets sum and number of infeasibilities (Dual and Primal) */
void checkBothSolutions();
/** If input negative scales objective so maximum <= -value
and returns scale factor used. If positive unscales and also
redoes dual stuff
*/
double scaleObjective(double value);
/// Solve using Dantzig-Wolfe decomposition and maybe in parallel
int solveDW(CoinStructuredModel * model);
/// Solve using Benders decomposition and maybe in parallel
int solveBenders(CoinStructuredModel * model);
public:
/** For advanced use. When doing iterative solves things can get
nasty so on values pass if incoming solution has largest
infeasibility < incomingInfeasibility throw out variables
from basis until largest infeasibility < allowedInfeasibility
or incoming largest infeasibility.
If allowedInfeasibility>= incomingInfeasibility this is
always possible altough you may end up with an all slack basis.
Defaults are 1.0,10.0
*/
void setValuesPassAction(double incomingInfeasibility,
double allowedInfeasibility);
//@}
/**@name most useful gets and sets */
//@{
public:
/// Initial value for alpha accuracy calculation (-1.0 off)
inline double alphaAccuracy() const {
return alphaAccuracy_;
}
inline void setAlphaAccuracy(double value) {
alphaAccuracy_ = value;
}
public:
/// Objective value
//inline double objectiveValue() const {
//return (objectiveValue_-bestPossibleImprovement_)*optimizationDirection_ - dblParam_[ClpObjOffset];
//}
/// Set disaster handler
inline void setDisasterHandler(ClpDisasterHandler * handler) {
disasterArea_ = handler;
}
/// Get disaster handler
inline ClpDisasterHandler * disasterHandler() const {
return disasterArea_;
}
/// Large bound value (for complementarity etc)
inline double largeValue() const {
return largeValue_;
}
void setLargeValue( double value) ;
/// Largest error on Ax-b
inline double largestPrimalError() const {
return largestPrimalError_;
}
/// Largest error on basic duals
inline double largestDualError() const {
return largestDualError_;
}
/// Largest error on Ax-b
inline void setLargestPrimalError(double value) {
largestPrimalError_ = value;
}
/// Largest error on basic duals
inline void setLargestDualError(double value) {
largestDualError_ = value;
}
/// Get zero tolerance
inline double zeroTolerance() const {
return zeroTolerance_;/*factorization_->zeroTolerance();*/
}
/// Set zero tolerance
inline void setZeroTolerance( double value) {
zeroTolerance_ = value;
}
/// Basic variables pivoting on which rows
inline int * pivotVariable() const {
return pivotVariable_;
}
/// If automatic scaling on
inline bool automaticScaling() const {
return automaticScale_ != 0;
}
inline void setAutomaticScaling(bool onOff) {
automaticScale_ = onOff ? 1 : 0;
}
/// Current dual tolerance
inline double currentDualTolerance() const {
return dualTolerance_;
}
inline void setCurrentDualTolerance(double value) {
dualTolerance_ = value;
}
/// Current primal tolerance
inline double currentPrimalTolerance() const {
return primalTolerance_;
}
inline void setCurrentPrimalTolerance(double value) {
primalTolerance_ = value;
}
/// How many iterative refinements to do
inline int numberRefinements() const {
return numberRefinements_;
}
void setNumberRefinements( int value) ;
/// Alpha (pivot element) for use by classes e.g. steepestedge
inline double alpha() const {
return alpha_;
}
inline void setAlpha(double value) {
alpha_ = value;
}
/// Reduced cost of last incoming for use by classes e.g. steepestedge
inline double dualIn() const {
return dualIn_;
}
/// Pivot Row for use by classes e.g. steepestedge
inline int pivotRow() const {
return pivotRow_;
}
inline void setPivotRow(int value) {
pivotRow_ = value;
}
/// value of incoming variable (in Dual)
double valueIncomingDual() const;
//@}
protected:
/**@name protected methods */
//@{
/** May change basis and then returns number changed.
Computation of solutions may be overriden by given pi and solution
*/
int gutsOfSolution ( double * givenDuals,
const double * givenPrimals,
bool valuesPass = false);
/// Does most of deletion (0 = all, 1 = most, 2 most + factorization)
void gutsOfDelete(int type);
/// Does most of copying
void gutsOfCopy(const ClpSimplex & rhs);
/** puts in format I like (rowLower,rowUpper) also see StandardMatrix
1 bit does rows (now and columns), (2 bit does column bounds), 4 bit does objective(s).
8 bit does solution scaling in
16 bit does rowArray and columnArray indexed vectors
and makes row copy if wanted, also sets columnStart_ etc
Also creates scaling arrays if needed. It does scaling if needed.
16 also moves solutions etc in to work arrays
On 16 returns false if problem "bad" i.e. matrix or bounds bad
If startFinishOptions is -1 then called by user in getSolution
so do arrays but keep pivotVariable_
*/
bool createRim(int what, bool makeRowCopy = false, int startFinishOptions = 0);
/// Does rows and columns
void createRim1(bool initial);
/// Does objective
void createRim4(bool initial);
/// Does rows and columns and objective
void createRim5(bool initial);
/** releases above arrays and does solution scaling out. May also
get rid of factorization data -
0 get rid of nothing, 1 get rid of arrays, 2 also factorization
*/
void deleteRim(int getRidOfFactorizationData = 2);
/// Sanity check on input rim data (after scaling) - returns true if okay
bool sanityCheck();
//@}
public:
/**@name public methods */
//@{
/** Return row or column sections - not as much needed as it
once was. These just map into single arrays */
inline double * solutionRegion(int section) const {
if (!section) return rowActivityWork_;
else return columnActivityWork_;
}
inline double * djRegion(int section) const {
if (!section) return rowReducedCost_;
else return reducedCostWork_;
}
inline double * lowerRegion(int section) const {
if (!section) return rowLowerWork_;
else return columnLowerWork_;
}
inline double * upperRegion(int section) const {
if (!section) return rowUpperWork_;
else return columnUpperWork_;
}
inline double * costRegion(int section) const {
if (!section) return rowObjectiveWork_;
else return objectiveWork_;
}
/// Return region as single array
inline double * solutionRegion() const {
return solution_;
}
inline double * djRegion() const {
return dj_;
}
inline double * lowerRegion() const {
return lower_;
}
inline double * upperRegion() const {
return upper_;
}
inline double * costRegion() const {
return cost_;
}
inline Status getStatus(int sequence) const {
return static_cast<Status> (status_[sequence] & 7);
}
inline void setStatus(int sequence, Status newstatus) {
unsigned char & st_byte = status_[sequence];
st_byte = static_cast<unsigned char>(st_byte & ~7);
st_byte = static_cast<unsigned char>(st_byte | newstatus);
}
/// Start or reset using maximumRows_ and Columns_ - true if change
bool startPermanentArrays();
/** Normally the first factorization does sparse coding because
the factorization could be singular. This allows initial dense
factorization when it is known to be safe
*/
void setInitialDenseFactorization(bool onOff);
bool initialDenseFactorization() const;
/** Return sequence In or Out */
inline int sequenceIn() const {
return sequenceIn_;
}
inline int sequenceOut() const {
return sequenceOut_;
}
/** Set sequenceIn or Out */
inline void setSequenceIn(int sequence) {
sequenceIn_ = sequence;
}
inline void setSequenceOut(int sequence) {
sequenceOut_ = sequence;
}
/** Return direction In or Out */
inline int directionIn() const {
return directionIn_;
}
inline int directionOut() const {
return directionOut_;
}
/** Set directionIn or Out */
inline void setDirectionIn(int direction) {
directionIn_ = direction;
}
inline void setDirectionOut(int direction) {
directionOut_ = direction;
}
/// Value of Out variable
inline double valueOut() const {
return valueOut_;
}
/// Set value of out variable
inline void setValueOut(double value) {
valueOut_ = value;
}
/// Set lower of out variable
inline void setLowerOut(double value) {
lowerOut_ = value;
}
/// Set upper of out variable
inline void setUpperOut(double value) {
upperOut_ = value;
}
/// Set theta of out variable
inline void setTheta(double value) {
theta_ = value;
}
/// Returns 1 if sequence indicates column
inline int isColumn(int sequence) const {
return sequence < numberColumns_ ? 1 : 0;
}
/// Returns sequence number within section
inline int sequenceWithin(int sequence) const {
return sequence < numberColumns_ ? sequence : sequence - numberColumns_;
}
/// Return row or column values
inline double solution(int sequence) {
return solution_[sequence];
}
/// Return address of row or column values
inline double & solutionAddress(int sequence) {
return solution_[sequence];
}
inline double reducedCost(int sequence) {
return dj_[sequence];
}
inline double & reducedCostAddress(int sequence) {
return dj_[sequence];
}
inline double lower(int sequence) {
return lower_[sequence];
}
/// Return address of row or column lower bound
inline double & lowerAddress(int sequence) {
return lower_[sequence];
}
inline double upper(int sequence) {
return upper_[sequence];
}
/// Return address of row or column upper bound
inline double & upperAddress(int sequence) {
return upper_[sequence];
}
inline double cost(int sequence) {
return cost_[sequence];
}
/// Return address of row or column cost
inline double & costAddress(int sequence) {
return cost_[sequence];
}
/// Return original lower bound
inline double originalLower(int iSequence) const {
if (iSequence < numberColumns_) return columnLower_[iSequence];
else
return rowLower_[iSequence-numberColumns_];
}
/// Return original lower bound
inline double originalUpper(int iSequence) const {
if (iSequence < numberColumns_) return columnUpper_[iSequence];
else
return rowUpper_[iSequence-numberColumns_];
}
/// Theta (pivot change)
inline double theta() const {
return theta_;
}
/** Best possible improvement using djs (primal) or
obj change by flipping bounds to make dual feasible (dual) */
inline double bestPossibleImprovement() const {
return bestPossibleImprovement_;
}
/// Return pointer to details of costs
inline ClpNonLinearCost * nonLinearCost() const {
return nonLinearCost_;
}
/** Return more special options
1 bit - if presolve says infeasible in ClpSolve return
2 bit - if presolved problem infeasible return
4 bit - keep arrays like upper_ around
8 bit - if factorization kept can still declare optimal at once
16 bit - if checking replaceColumn accuracy before updating
32 bit - say optimal if primal feasible!
64 bit - give up easily in dual (and say infeasible)
128 bit - no objective, 0-1 and in B&B
256 bit - in primal from dual or vice versa
512 bit - alternative use of solveType_
*/
inline int moreSpecialOptions() const {
return moreSpecialOptions_;
}
/** Set more special options
1 bit - if presolve says infeasible in ClpSolve return
2 bit - if presolved problem infeasible return
4 bit - keep arrays like upper_ around
8 bit - no free or superBasic variables
16 bit - if checking replaceColumn accuracy before updating
32 bit - say optimal if primal feasible!
64 bit - give up easily in dual (and say infeasible)
128 bit - no objective, 0-1 and in B&B
256 bit - in primal from dual or vice versa
512 bit - alternative use of solveType_
*/
inline void setMoreSpecialOptions(int value) {
moreSpecialOptions_ = value;
}
//@}
/**@name status methods */
//@{
inline void setFakeBound(int sequence, FakeBound fakeBound) {
unsigned char & st_byte = status_[sequence];
st_byte = static_cast<unsigned char>(st_byte & ~24);
st_byte = static_cast<unsigned char>(st_byte | (fakeBound << 3));
}
inline FakeBound getFakeBound(int sequence) const {
return static_cast<FakeBound> ((status_[sequence] >> 3) & 3);
}
inline void setRowStatus(int sequence, Status newstatus) {
unsigned char & st_byte = status_[sequence+numberColumns_];
st_byte = static_cast<unsigned char>(st_byte & ~7);
st_byte = static_cast<unsigned char>(st_byte | newstatus);
}
inline Status getRowStatus(int sequence) const {
return static_cast<Status> (status_[sequence+numberColumns_] & 7);
}
inline void setColumnStatus(int sequence, Status newstatus) {
unsigned char & st_byte = status_[sequence];
st_byte = static_cast<unsigned char>(st_byte & ~7);
st_byte = static_cast<unsigned char>(st_byte | newstatus);
}
inline Status getColumnStatus(int sequence) const {
return static_cast<Status> (status_[sequence] & 7);
}
inline void setPivoted( int sequence) {
status_[sequence] = static_cast<unsigned char>(status_[sequence] | 32);
}
inline void clearPivoted( int sequence) {
status_[sequence] = static_cast<unsigned char>(status_[sequence] & ~32);
}
inline bool pivoted(int sequence) const {
return (((status_[sequence] >> 5) & 1) != 0);
}
/// To flag a variable (not inline to allow for column generation)
void setFlagged( int sequence);
inline void clearFlagged( int sequence) {
status_[sequence] = static_cast<unsigned char>(status_[sequence] & ~64);
}
inline bool flagged(int sequence) const {
return ((status_[sequence] & 64) != 0);
}
/// To say row active in primal pivot row choice
inline void setActive( int iRow) {
status_[iRow] = static_cast<unsigned char>(status_[iRow] | 128);
}
inline void clearActive( int iRow) {
status_[iRow] = static_cast<unsigned char>(status_[iRow] & ~128);
}
inline bool active(int iRow) const {
return ((status_[iRow] & 128) != 0);
}
/** Set up status array (can be used by OsiClp).
Also can be used to set up all slack basis */
void createStatus() ;
/** Sets up all slack basis and resets solution to
as it was after initial load or readMps */
void allSlackBasis(bool resetSolution = false);
/// So we know when to be cautious
inline int lastBadIteration() const {
return lastBadIteration_;
}
/// Progress flag - at present 0 bit says artificials out
inline int progressFlag() const {
return (progressFlag_ & 3);
}
/// Force re-factorization early
inline void forceFactorization(int value) {
forceFactorization_ = value;
}
/// Raw objective value (so always minimize in primal)
inline double rawObjectiveValue() const {
return objectiveValue_;
}
/// Compute objective value from solution and put in objectiveValue_
void computeObjectiveValue(bool useWorkingSolution = false);
/// Compute minimization objective value from internal solution without perturbation
double computeInternalObjectiveValue();
/** Number of extra rows. These are ones which will be dynamically created
each iteration. This is for GUB but may have other uses.
*/
inline int numberExtraRows() const {
return numberExtraRows_;
}
/** Maximum number of basic variables - can be more than number of rows if GUB
*/
inline int maximumBasic() const {
return maximumBasic_;
}
/// Iteration when we entered dual or primal
inline int baseIteration() const {
return baseIteration_;
}
/// Create C++ lines to get to current state
void generateCpp( FILE * fp, bool defaultFactor = false);
/// Gets clean and emptyish factorization
ClpFactorization * getEmptyFactorization();
/// May delete or may make clean and emptyish factorization
void setEmptyFactorization();
/// Move status and solution across
void moveInfo(const ClpSimplex & rhs, bool justStatus = false);
//@}
///@name Basis handling
// These are only to be used using startFinishOptions (ClpSimplexDual, ClpSimplexPrimal)
// *** At present only without scaling
// *** Slacks havve -1.0 element (so == row activity) - take care
///Get a row of the tableau (slack part in slack if not NULL)
void getBInvARow(int row, double* z, double * slack = NULL);
///Get a row of the basis inverse
void getBInvRow(int row, double* z);
///Get a column of the tableau
void getBInvACol(int col, double* vec);
///Get a column of the basis inverse
void getBInvCol(int col, double* vec);
/** Get basic indices (order of indices corresponds to the
order of elements in a vector retured by getBInvACol() and
getBInvCol()).
*/
void getBasics(int* index);
//@}
//-------------------------------------------------------------------------
/**@name Changing bounds on variables and constraints */
//@{
/** Set an objective function coefficient */
void setObjectiveCoefficient( int elementIndex, double elementValue );
/** Set an objective function coefficient */
inline void setObjCoeff( int elementIndex, double elementValue ) {
setObjectiveCoefficient( elementIndex, elementValue);
}
/** Set a single column lower bound<br>
Use -DBL_MAX for -infinity. */
void setColumnLower( int elementIndex, double elementValue );
/** Set a single column upper bound<br>
Use DBL_MAX for infinity. */
void setColumnUpper( int elementIndex, double elementValue );
/** Set a single column lower and upper bound */
void setColumnBounds( int elementIndex,
double lower, double upper );
/** Set the bounds on a number of columns simultaneously<br>
The default implementation just invokes setColLower() and
setColUpper() over and over again.
@param indexFirst,indexLast pointers to the beginning and after the
end of the array of the indices of the variables whose
<em>either</em> bound changes
@param boundList the new lower/upper bound pairs for the variables
*/
void setColumnSetBounds(const int* indexFirst,
const int* indexLast,
const double* boundList);
/** Set a single column lower bound<br>
Use -DBL_MAX for -infinity. */
inline void setColLower( int elementIndex, double elementValue ) {
setColumnLower(elementIndex, elementValue);
}
/** Set a single column upper bound<br>
Use DBL_MAX for infinity. */
inline void setColUpper( int elementIndex, double elementValue ) {
setColumnUpper(elementIndex, elementValue);
}
/** Set a single column lower and upper bound */
inline void setColBounds( int elementIndex,
double newlower, double newupper ) {
setColumnBounds(elementIndex, newlower, newupper);
}
/** Set the bounds on a number of columns simultaneously<br>
@param indexFirst,indexLast pointers to the beginning and after the
end of the array of the indices of the variables whose
<em>either</em> bound changes
@param boundList the new lower/upper bound pairs for the variables
*/
inline void setColSetBounds(const int* indexFirst,
const int* indexLast,
const double* boundList) {
setColumnSetBounds(indexFirst, indexLast, boundList);
}
/** Set a single row lower bound<br>
Use -DBL_MAX for -infinity. */
void setRowLower( int elementIndex, double elementValue );
/** Set a single row upper bound<br>
Use DBL_MAX for infinity. */
void setRowUpper( int elementIndex, double elementValue ) ;
/** Set a single row lower and upper bound */
void setRowBounds( int elementIndex,
double lower, double upper ) ;
/** Set the bounds on a number of rows simultaneously<br>
@param indexFirst,indexLast pointers to the beginning and after the
end of the array of the indices of the constraints whose
<em>either</em> bound changes
@param boundList the new lower/upper bound pairs for the constraints
*/
void setRowSetBounds(const int* indexFirst,
const int* indexLast,
const double* boundList);
/// Resizes rim part of model
void resize (int newNumberRows, int newNumberColumns);
//@}
////////////////// data //////////////////
protected:
/**@name data. Many arrays have a row part and a column part.
There is a single array with both - columns then rows and
then normally two arrays pointing to rows and columns. The
single array is the owner of memory
*/
//@{
/** Best possible improvement using djs (primal) or
obj change by flipping bounds to make dual feasible (dual) */
double bestPossibleImprovement_;
/// Zero tolerance
double zeroTolerance_;
/// Sequence of worst (-1 if feasible)
int columnPrimalSequence_;
/// Sequence of worst (-1 if feasible)
int rowPrimalSequence_;
/// "Best" objective value
double bestObjectiveValue_;
/// More special options - see set for details
int moreSpecialOptions_;
/// Iteration when we entered dual or primal
int baseIteration_;
/// Primal tolerance needed to make dual feasible (<largeTolerance)
double primalToleranceToGetOptimal_;
/// Large bound value (for complementarity etc)
double largeValue_;
/// Largest error on Ax-b
double largestPrimalError_;
/// Largest error on basic duals
double largestDualError_;
/// For computing whether to re-factorize
double alphaAccuracy_;
/// Dual bound
double dualBound_;
/// Alpha (pivot element)
double alpha_;
/// Theta (pivot change)
double theta_;
/// Lower Bound on In variable
double lowerIn_;
/// Value of In variable
double valueIn_;
/// Upper Bound on In variable
double upperIn_;
/// Reduced cost of In variable
double dualIn_;
/// Lower Bound on Out variable
double lowerOut_;
/// Value of Out variable
double valueOut_;
/// Upper Bound on Out variable
double upperOut_;
/// Infeasibility (dual) or ? (primal) of Out variable
double dualOut_;
/// Current dual tolerance for algorithm
double dualTolerance_;
/// Current primal tolerance for algorithm
double primalTolerance_;
/// Sum of dual infeasibilities
double sumDualInfeasibilities_;
/// Sum of primal infeasibilities
double sumPrimalInfeasibilities_;
/// Weight assigned to being infeasible in primal
double infeasibilityCost_;
/// Sum of Dual infeasibilities using tolerance based on error in duals
double sumOfRelaxedDualInfeasibilities_;
/// Sum of Primal infeasibilities using tolerance based on error in primals
double sumOfRelaxedPrimalInfeasibilities_;
/// Acceptable pivot value just after factorization
double acceptablePivot_;
/// Working copy of lower bounds (Owner of arrays below)
double * lower_;
/// Row lower bounds - working copy
double * rowLowerWork_;
/// Column lower bounds - working copy
double * columnLowerWork_;
/// Working copy of upper bounds (Owner of arrays below)
double * upper_;
/// Row upper bounds - working copy
double * rowUpperWork_;
/// Column upper bounds - working copy
double * columnUpperWork_;
/// Working copy of objective (Owner of arrays below)
double * cost_;
/// Row objective - working copy
double * rowObjectiveWork_;
/// Column objective - working copy
double * objectiveWork_;
/// Useful row length arrays
CoinIndexedVector * rowArray_[6];
/// Useful column length arrays
CoinIndexedVector * columnArray_[6];
/// Sequence of In variable
int sequenceIn_;
/// Direction of In, 1 going up, -1 going down, 0 not a clude
int directionIn_;
/// Sequence of Out variable
int sequenceOut_;
/// Direction of Out, 1 to upper bound, -1 to lower bound, 0 - superbasic
int directionOut_;
/// Pivot Row
int pivotRow_;
/// Last good iteration (immediately after a re-factorization)
int lastGoodIteration_;
/// Working copy of reduced costs (Owner of arrays below)
double * dj_;
/// Reduced costs of slacks not same as duals (or - duals)
double * rowReducedCost_;
/// Possible scaled reduced costs
double * reducedCostWork_;
/// Working copy of primal solution (Owner of arrays below)
double * solution_;
/// Row activities - working copy
double * rowActivityWork_;
/// Column activities - working copy
double * columnActivityWork_;
/// Number of dual infeasibilities
int numberDualInfeasibilities_;
/// Number of dual infeasibilities (without free)
int numberDualInfeasibilitiesWithoutFree_;
/// Number of primal infeasibilities
int numberPrimalInfeasibilities_;
/// How many iterative refinements to do
int numberRefinements_;
/// dual row pivot choice
ClpDualRowPivot * dualRowPivot_;
/// primal column pivot choice
ClpPrimalColumnPivot * primalColumnPivot_;
/// Basic variables pivoting on which rows
int * pivotVariable_;
/// factorization
ClpFactorization * factorization_;
/// Saved version of solution
double * savedSolution_;
/// Number of times code has tentatively thought optimal
int numberTimesOptimal_;
/// Disaster handler
ClpDisasterHandler * disasterArea_;
/// If change has been made (first attempt at stopping looping)
int changeMade_;
/// Algorithm >0 == Primal, <0 == Dual
int algorithm_;
/** Now for some reliability aids
This forces re-factorization early */
int forceFactorization_;
/** Perturbation:
-50 to +50 - perturb by this power of ten (-6 sounds good)
100 - auto perturb if takes too long (1.0e-6 largest nonzero)
101 - we are perturbed
102 - don't try perturbing again
default is 100
*/
int perturbation_;
/// Saved status regions
unsigned char * saveStatus_;
/** Very wasteful way of dealing with infeasibilities in primal.
However it will allow non-linearities and use of dual
analysis. If it doesn't work it can easily be replaced.
*/
ClpNonLinearCost * nonLinearCost_;
/// So we know when to be cautious
int lastBadIteration_;
/// So we know when to open up again
int lastFlaggedIteration_;
/// Can be used for count of fake bounds (dual) or fake costs (primal)
int numberFake_;
/// Can be used for count of changed costs (dual) or changed bounds (primal)
int numberChanged_;
/// Progress flag - at present 0 bit says artificials out, 1 free in
int progressFlag_;
/// First free/super-basic variable (-1 if none)
int firstFree_;
/** Number of extra rows. These are ones which will be dynamically created
each iteration. This is for GUB but may have other uses.
*/
int numberExtraRows_;
/** Maximum number of basic variables - can be more than number of rows if GUB
*/
int maximumBasic_;
/// If may skip final factorize then allow up to this pivots (default 20)
int dontFactorizePivots_;
/** For advanced use. When doing iterative solves things can get
nasty so on values pass if incoming solution has largest
infeasibility < incomingInfeasibility throw out variables
from basis until largest infeasibility < allowedInfeasibility.
if allowedInfeasibility>= incomingInfeasibility this is
always possible altough you may end up with an all slack basis.
Defaults are 1.0,10.0
*/
double incomingInfeasibility_;
double allowedInfeasibility_;
/// Automatic scaling of objective and rhs and bounds
int automaticScale_;
/// Maximum perturbation array size (take out when code rewritten)
int maximumPerturbationSize_;
/// Perturbation array (maximumPerturbationSize_)
double * perturbationArray_;
/// A copy of model with certain state - normally without cuts
ClpSimplex * baseModel_;
/// For dealing with all issues of cycling etc
ClpSimplexProgress progress_;
public:
/// Spare int array for passing information [0]!=0 switches on
mutable int spareIntArray_[4];
/// Spare double array for passing information [0]!=0 switches on
mutable double spareDoubleArray_[4];
protected:
/// Allow OsiClp certain perks
friend class OsiClpSolverInterface;
//@}
};
//#############################################################################
/** A function that tests the methods in the ClpSimplex class. The
only reason for it not to be a member method is that this way it doesn't
have to be compiled into the library. And that's a gain, because the
library should be compiled with optimization on, but this method should be
compiled with debugging.
It also does some testing of ClpFactorization class
*/
void
ClpSimplexUnitTest(const std::string & mpsDir);
// For Devex stuff
#define DEVEX_TRY_NORM 1.0e-4
#define DEVEX_ADD_ONE 1.0
#endif
|