/usr/include/coin/dylp.h is in coinor-libdylp-dev 1.6.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 | /*
This file is a part of the Dylp LP distribution.
Copyright (C) 2005 -- 2007 Lou Hafer
School of Computing Science
Simon Fraser University
Burnaby, B.C., V5A 1S6, Canada
lou@cs.sfu.ca
This code is licensed under the terms of the Common Public License (CPL).
*/
#ifndef _DYLP_H
#define _DYLP_H
/*
@(#)dylp.h 4.6 10/15/05
svn/cvs: $Id: dylp.h 299 2009-08-28 01:35:28Z lou $
This file contains definitions related to dylp, a subroutine library which
implements a dynamic (primal-dual) linear programming algorithm based on
the algorithm described by Padberg in Linear Optimisation & Extensions,
Springer-Verlag, 1995. dylp also owes a debt to previous and contemporary
codes the author has worked with --- la05, bandbx, zoom/xmp, ylp, and glpk.
At minimum, dylp requires only a constraint system. Since it manages a
dynamically sized private copy of the constraint system while solving the
LP, there's no point in having the client attach logical variables (they'd
just get in the way, really).
dylp will accept a basis specification. This takes the form of a status
vector giving the status of all variables, and a basis vector specifying
the active constraints and their associated basic variables. From this
dylp will construct an initial active problem which consists of exactly
the given constraints and basic variables, with the logicals for the
constraints making up the nonbasic partition.
dylp returns as a solution the simplex termination code, the objective
value (or related value, appropriate for the termination code), status for
all variables, the active constraints, and the associated primal and dual
variables (put a little differently, a basis, the values of the basic
variables, and the dual variables associated with the active constraints).
The conditional compilation symbol DYLP_INTERNAL is used to delimit
definitions that should be considered internal to dylp. Don't define this
symbol in a client.
*/
#include "dylib_errs.h"
#include "dylib_io.h"
#include "dy_consys.h"
/*
A few words on notation. Traditional matrix and vector notation for LP
suffers a bit when limited to ascii text, but it's readable if you're
familiar with the original. The notation in the comments and code is
loosely based on Chvatal, "Linear Programming", W.H. Freeman, 1983, which
the author happens to like.
A matrix is represented with a capital letter, e.g., B. A vector is
represented with a small letter, e.g., x. A subscript is given in angle
brackets, e.g., x<j> for the jth coefficient of x. An individual element of
a matrix has two subscripts, e.g., a<i,j> for the element in row i, column
j. Column and row vectors are shown with one subscript, e.g., a<j> for the
jth column (or row). Whether the vector is supposed to be a column or a
row should generally be clear from context. A capital letter in the
subscript position indicates a set of elements, e.g., x<N> is the non-basic
variables.
The inverse of a matrix is denoted inv(*), e.g., the basis inverse,
inv(B). The dot product of two vectors is denoted dot(*,*), e.g.,
dot(c,x), or sometimes just written directly, e.g., cx.
The system of constraints is assumed to be Ax <= b, with m rows and n
columns. Once the logical variables (aka slacks and artificials) have been
added, it becomes Ax = b. A is the constraint matrix, x is the vector of
primal variables, and b is the right-hand-side (rhs). NOTE that the
convention for indices is NOT the usual one. Logical variables are assigned
indices 1..m and architectural variables are assigned indices m+1..m+n. It
makes for more efficient addition/deletion of variables; see dy_consys.h for a
little more explanation.
There is an objective function z = cx, where z is the objective value and c
is the vector of coefficients. dylp minimises the objective.
The matrix A is partitioned into the set of basic columns B, and the set of
non-basic columns N (sometimes A<N>). The corresponding partitions of c and
x are c<B>, x<B>, and c<N>, x<N>.
Premultiplication by the basis inverse (e.g., inv(B)a<j>) is referred to as
an `ftran'; postmultiplication (e.g., c<B>inv(B)) as a `btran'. Quantities
that have been transformed using the basis inverse are often (but not
always) renamed as 'barred' quantities.
The basic primal variables are x<B> = inv(B)b. The dual variables are y =
c<B>inv(B). The jth column of A, premultiplied by inv(B), is abar<j> =
inv(B)a<j>. The reduced costs are cbar = c<N> - c<B>inv(B)N = c<N>-yN.
The variable i is used as a row index, j as a column index. Often they will
represent the entering primal variable (j) and the leaving primal variable
(i). Be aware that comments are often written as if the leaving primal
variable x<i> occupies row i of the basis. This simplifies the writing.
But keep in mind that variable x<i> can occupy an arbitrary row k of the
basis.
*/
/*
Termination codes for dy_primal and dy_dual, the top level routines of the
dylp simplex algorithms. Also used by various internal routines. Codes
marked with (*) will never be returned to the client unless dylp has
failed.
lpINV The code is not valid (i.e., not set by an execution of
dy_primal or dy_dual).
lpOPTIMAL The problem has an optimal solution.
lpUNBOUNDED The problem is unbounded.
lpSWING(*) The problem is pseudo-unbounded: Some primal variable grew
excessively in a single pivot.
lpINFEAS The problem is infeasible.
lpACCCHK An accuracy check failed and dylp's internal recovery
algorithms could not recover the situation.
lpSTALLED The problem has been abandoned due to stalling. (We could
in fact actually be cycling, but that's too much trouble
to prove.)
lpITERLIM The problem has been abandoned because it has exceeded an
absolute iteration limit.
lpNOSPACE The problem has been abandoned because the basis package did
not have sufficient space to maintain the basis.
lpLOSTFEAS Feasibility was lost during simplex execution.
lpPUNT The lp has punted because it ran into a pivoting problem.
The next three codes indicate that we're in the middle of
attempting a forced transition for error recovery purposes.
lpFORCEDUAL(*) Force a primal to dual transition.
lpFORCEPRIMAL(*) Force a dual to primal transition.
lpFORCEFULL(*) Force all inactive constraints and variables to be loaded.
lpFATAL Fatal confusion or error of some sort; covers a multitude
of sins.
The dual simplex routine does not have a phase I routine equivalent to
dy_primal1 for the primal simplex. (In the context of dylp, it expects
to run after dy_primal has been used to find an initial optimal solution.)
When using the dual simplex method, internal codes reflect the state of
the dual problem, but dy_dual makes the usual translation back to the
primal problem, as:
Dual Primal Rationale
---- ------ ---------
lpUNBOUNDED lpINFEAS Standard duality theorem.
Note that lpSWING always refers to primal variables.
*/
typedef enum { lpFATAL = -1, lpINV = 0,
lpOPTIMAL, lpUNBOUNDED, lpSWING, lpINFEAS,
lpACCCHK,
lpSTALLED, lpITERLIM, lpNOSPACE,
lpLOSTFEAS, lpPUNT,
lpFORCEDUAL, lpFORCEPRIMAL, lpFORCEFULL } lpret_enum ;
/*
Phase codes for dylp
dyINV Invalid phase
dyINIT Initialisation and setup, including establishing the
initial set of constraints and variables and crashing the
first basis.
dyPRIMAL1 Primal simplex phase I
dyPRIMAL2 Primal simplex phase II
dyDUAL Dual simplex
dyPURGEVAR Deactivation of variables.
dyGENVAR Generation of new variables (not part of original problem).
dyADDVAR Activation of variables.
dyPURGECON Deactivation of constraints.
dyGENCON Generation of new constraints (not part of original problem).
dyADDCON Activation of constraints.
dyFORCEDUAL Force dual feasibility (error recovery)
dyFORCEPRIMAL Force primal feasibility (error recovery)
dyFORCEFULL Force activation of the full system (error recovery)
dyDONE Execution is finished, for one reason or another.
It's true that new variables will be added during dyGENCON -- at the least,
each newly generated constraint will bring with it a logical variable.
dyGENVAR differs in that it is augmenting some subset of the constraints
with new variables (classic column generation, for example).
The main loop states (dyPRIMAL1 -- dyFORCEFULL) must remain a contiguous
block. dy_dumpstats counts on dyPRIMAL1 and dyFORCEPRIMAL being first and
last, respectively, in the block.
dyDONE must remain the last code --- it's used to dimension a statistics
array that tracks the number of times the main loop states are entered.
*/
typedef enum { dyINV = 0, dyINIT,
dyPRIMAL1, dyPRIMAL2, dyDUAL,
dyPURGEVAR, dyGENVAR, dyADDVAR,
dyPURGECON, dyGENCON, dyADDCON,
dyFORCEDUAL, dyFORCEPRIMAL, dyFORCEFULL,
dyDONE } dyphase_enum ;
/*
General return and error codes.
Used by various routines in dylp.
No routine
uses all of these, but there's enough overlap to make one big enum
convenient.
dyrINV Invalid code.
dyrOK Whatever it was that was being done was done without incident.
dyrOPTIMAL The problem is optimal.
dyrUNBOUND The problem is unbounded.
dyrSWING The problem is pseudo-unbounded: Some variable grew by an
excessive amount in a single pivot.
dyrINFEAS The problem is infeasible.
dyrREQCHK Requests a refactor and accuracy check (triggered by various
checks for bogus numbers).
dyrACCCHK An accuracy check has failed.
dyrLOSTPFEAS Primal feasibility has been lost.
dyrLOSTDFEAS Dual feasibility has been lost.
dyrDEGEN Degeneracy has been discovered, or a degenerate pivot has been
taken.
dyrRESELECT Reselect an incoming variable (after an abortive pivot
attempt).
dyrMADPIV The selected pivot coefficient was (numerically) unstable.
dyrPUNT In the context of the dual simplex: the dual simplex has
decided to punt to the primal simplex phase I, for any of
several reasons. Generally this is indicative of the relative
lack of sophistication in the dual simplex.
In the context of the primal simplex: this indicates that all
candidates to enter the basis were flagged with a NOPIVOT
qualifier.
dyrPATCHED The basis package managed to factor the basis after patching
it.
dyrSINGULAR The basis package discovered the basis was singular. (Typically
as a consequence of a pivot gone bad.)
dyrNUMERIC The basis package detected unacceptable growth in the basis
coefficients.
dyrBSPACE The basis package ran out of space for the basis
representation.
dyrSTALLED The LP seems to have stalled (and could possibly be cycling,
but that's too much trouble to prove); triggered by too many
iterations with no change in the objective.
dyrITERLIM The iteration limit has been exceeded.
dyrFATAL Fatal confusion; covers a multitude of sins.
The specific values assigned to some of the codes in the enum come from
earlier use of yla05 as the basis package. It's gone, but there's no
incentive to remove the values.
*/
typedef enum { dyrFATAL = -10, dyrITERLIM, dyrSTALLED,
dyrBSPACE = -7, dyrSINGULAR = -6, dyrNUMERIC = -5,
dyrLOSTPFEAS, dyrLOSTDFEAS, dyrDEGEN, dyrMADPIV,
dyrINV = 0, dyrOK = 1, dyrPATCHED = 2,
dyrRESELECT, dyrREQCHK, dyrACCCHK, dyrPUNT,
dyrOPTIMAL, dyrUNBOUND, dyrSWING, dyrINFEAS } dyret_enum ;
/*
Requests and results for checks and recalculations
Some symbolic names for requesting and reporting on factoring, accuracy
checks and primal and dual variable calculations. These originated with la
Duenna, hence the lad prefix. Interpretation varies subtly from routine to
routine, so check the parameter notes.
ladPRIMALCHK (i) set to request primal accuracy check, Bx<B> = b - Nx<N>,
(o) set to indicate failure of check
ladDUALCHK (i) set to to request dual accuracy check, yB = c<B>
(o) set to indicate failure of check
ladPRIMFEAS (i) set to request primal feasibility check (primal variables
within bounds)
(o) set to indicate loss of primal feasibility
ladDUALFEAS (i) set to request dual feasibility check (reduced costs of
proper sign)
(o) set to indicate loss of dual feasibility
ladPFQUIET (i) set to suppress warnings about variables which are not
primal feasible
ladDFQUIET (i) set to suppress warnings about variables which are not
dual feasible
ladDUALS (i) set to request calculation of the dual variables and
gradient vector
(o) set to indicate calculation of the dual variables and
gradient vector
ladPRIMALS (i) set to request calculation of the primal variables
(o) set to indicate calculation of the primal variables
ladFACTOR (i) set to indicate the basis should be refactored
(o) set to indicate the basis has been factored
ladEXPAND (i) set to force expansion of the space allocated for the
basis representation
(o) set to indicate the space allocated for the basis was
increased
*/
#define ladPRIMFEAS 1<<0
#define ladPRIMALCHK 1<<1
#define ladPFQUIET 1<<2
#define ladDUALFEAS 1<<3
#define ladDUALCHK 1<<4
#define ladDFQUIET 1<<5
#define ladDUALS 1<<6
#define ladPRIMALS 1<<7
#define ladFACTOR 1<<8
#define ladEXPAND 1<<9
/*
Variable status codes
dylp keeps explicit status for both basic and nonbasic variables. These are
set up as flags so that it's easy to test when more than one status will do
for a particular action.
vstatBFX basic, fixed
vstatBUUB basic, above upper bound
vstatBUB basic, at upper bound
vstatB basic, strictly between bounds (a well-behaved basic variable)
vstatBLB basic, at lower bound
vstatBLLB basic, below lower bound
vstatBFR basic, free (unbounded)
vstatNBFX nonbasic, fixed
vstatNBUB nonbasic at upper bound
vstatNBLB nonbasic at lower bound
vstatNBFR nonbasic free
vstatSB superbasic, within bounds
dylp ensures that superbasic variables are, in fact, always strictly within
bounds.
Inactive NBFR variables can be created at startup if dylp is working with a
partial system and there are free variables that are not selected to be in
the initial basis. If the client is forcing a full system, these will be
active NBFR variables. Error recovery may also create active NBFR
variables. By convention, NBFR variables always have a value of zero.
Inactive SB variables should not occur. SB status occurs only as the result
of error recovery and is only valid in primal simplex.
The value of SB variables is lost when they are reported out as part of a
solution. This will only happen if dylp could not find an optimal solution.
The following qualifiers can be added to the status:
vstatNOPIVOT Prevents the variable from being considered as a candidate
for pivoting; used by the pivot rejection machinery.
vstatNOPER Prevents the variable from being perturbed during the
formation of a restricted subproblem.
vstatNOLOAD Prevents the variable from being considered for activation;
used by startup and variable activation/deactivation routines.
*/
#define vstatINV 0
#define vstatBFX 1<<0
#define vstatBUB 1<<1
#define vstatB 1<<2
#define vstatBLB 1<<3
#define vstatBFR 1<<4
#define vstatNBFX 1<<5
#define vstatNBUB 1<<6
#define vstatNBLB 1<<7
#define vstatNBFR 1<<8
#define vstatSB 1<<9
#define vstatBUUB 1<<10
#define vstatBLLB 1<<11
/*
TAKE NOTE: Do not use the msb as a qualifier! The status value, with or
without qualifiers, must be a positive value when cast to a signed integer.
*/
#define vstatNOPIVOT ((flags) 1<<(sizeof(flags)*8-2))
#define vstatNOPER ((flags) 1<<(sizeof(flags)*8-3))
#define vstatNOLOAD ((flags) 1<<(sizeof(flags)*8-4))
#define vstatBASIC \
(vstatBFX|vstatBUUB|vstatBUB|vstatB|vstatBLB|vstatBLLB|vstatBFR)
#define vstatNONBASIC (vstatNBFX|vstatNBUB|vstatNBLB)
#define vstatEXOTIC (vstatSB|vstatNBFR)
#define vstatSTATUS (vstatBASIC|vstatNONBASIC|vstatEXOTIC)
#define vstatQUALS (vstatNOPIVOT|vstatNOPER|vstatNOLOAD)
/*
This macro checks (in a simplistic way) that its parameter encodes one and
only one status. It's intended for mild error checking. See
dylp_utils:dy_chkstatus if you're really feeling paranoid.
*/
#define VALID_STATUS(zz_status_zz) \
(zz_status_zz == vstatBFX || zz_status_zz == vstatBUB || \
zz_status_zz == vstatB || zz_status_zz == vstatBLB || \
zz_status_zz == vstatBFR || \
zz_status_zz == vstatNBFX || zz_status_zz == vstatNBUB || \
zz_status_zz == vstatNBLB || zz_status_zz == vstatNBFR || \
zz_status_zz == vstatSB)
/*
Interface structures: lpprob_struct, lptols_struct, lpopts_struct
*/
/*
basis_struct
This structure is used to describe a basis to dylp, and to return the
final basis at termination. The size of the basis depends on the
number of active constraints, which will be a subset of the constraints
in the system.
The constraint system as supplied to dylp should not have logical variables
(dylp will create them automatically). This presents a problem if the final
basis contains basic logical variables. In this case, vndx is set to the
negative of the index of the constraint which spawned the logical. This
same technique can be used on input to, for example, specify the traditional
all-logical starting basis.
Field Definition
----- ----------
len The number of rows in the basis.
el.cndx Index of the constraint in this basis position.
el.vndx Index of the variable in this basis position.
*/
typedef struct { int cndx ; int vndx ; } basisel_struct ;
typedef struct
{ int len ;
basisel_struct *el ; } basis_struct ;
/*
LP problem control and status flags
lpctlNOFREE (i) Prevents dylp from freeing the problem structures,
in anticipation of a subsequent hot start. If dylp
exits with a state that is not suitable for hot
start, this flag is ignored and the problem data
structures are released.
lpctlONLYFREE (i) In conjunction with an initial phase of dyDONE,
causes dylp to do nothing except free the problem
data structure and return.
lpctlUBNDCHG (i) Indicates that the variable upper bounds (vub) have
been changed.
lpctlLBNDCHG (i) Indicates that the variable lower bounds (lub) have
been changed.
lpctlRHSCHG (i) Indicates that the right-hand side (rhs) has been
changed. Includes the rhslow vector (if it exists).
lpctlOBJCHG (i) Indicates that the objective (obj) has been changed.
lpctlACTVARSIN (i) Indicates that a valid active variable vector has
been supplied.
lpctlINITACTVAR (i) Forces dylp to perform variable activation before
beginning simplex iterations.
lpctlINITACTCON (i) Forces dylp to perform constraint activation before
beginning simplex iterations. (If variable
activation is also requested, constraint activation
occurs first.)
lpctlACTVARSOUT (i) Indicates that an active variable vector is to be
returned.
(o) Indicates that a valid active variable vector has
been returned.
lpctlDYVALID (o) Indicates that dylp exited in a state which can
be restarted with a hot start.
*/
#define lpctlNOFREE 1<<0
#define lpctlONLYFREE 1<<1
#define lpctlUBNDCHG 1<<2
#define lpctlLBNDCHG 1<<3
#define lpctlRHSCHG 1<<4
#define lpctlOBJCHG 1<<5
#define lpctlACTVARSIN 1<<6
#define lpctlINITACTVAR 1<<7
#define lpctlINITACTCON 1<<8
#define lpctlACTVARSOUT 1<<10
#define lpctlDYVALID 1<<11
/*
lpprob_struct
This structure is used to pass an LP problem into dylp and convey the
results back to the client. The allocated size indicated in colsze and
rowsze is assumed to be accurate. If basis, status, x, or y are NULL, they
will be allocated as needed. If they are non-NULL, dylp will reallocate
them if necessary (i.e., when the actual size of the lp exceeds the
allocated size of the vectors).
The status vector has the following coding:
* for nonbasic variables, the normal dylp status flags are used;
* for basic variables, the negative of the basis index is used.
There is one unavoidable problem with this scheme -- the status vector
provides the only information about the value of nonbasic variables. This
is adequate for all but superbasic variables and nonbasic free variables
which are not at zero. Both of these cases are transient anomalies, created
only when the basis package is forced to patch a singular basis, and they
should not persist in the final solution when an optimal solution is found
or when the problem is infeasible. They may, however, occur in the
solution reported for an unbounded problem if the unbounded condition is
discovered before the nonbasic free or superbasic variable is chosen for
pivoting. On input, nonbasic free variables are assumed to take the value
0, and specifying a superbasic variable is illegal.
Field Definition
----- ----------
ctlopts Control and status flags.
phase (i) If set to dyDONE, dylp will free any retained data
structures and return. Any other value is ignored.
(o) Termination phase of the dynamic simplex algorithm;
should be dyDONE unless something screws up, in which
case it'll be dyINV.
lpret Return code from the simplex routine.
obj For lpOPTIMAL, the value of the objective function.
For lpINFEAS, the total infeasibility.
For lpUNBOUNDED, the index of the unbounded variable, negated
if the variable can decrease without bound, positive if it
can increase without bound. The logical for constraint i
is represented as n+i.
Otherwise, undefined.
iters The number of simplex iterations.
consys The constraint system.
basis (i) Initial basis.
(o) Final basis.
status (i) Initial status vector.
(o) Final status vector.
x (i) No values used, but a vector can be supplied.
(o) The values of the basic variables (indexed by basis
position).
y (i) No values used, but a vector can be supplied.
(o) The values of the dual variables (indexed by basis
position).
actvars There is one entry for each variable, coded TRUE if the
variable is active, FALSE otherwise. The vector supplied on
input will be overwritten on output.
(i) Variables to be activated at startup. Used only for a
warm start. Validity is indicated by the lpctlACTVARSIN
flag. A vector can be supplied strictly for output use.
(o) The current active variables. Will be returned only if
requested by the lpctlACTVARSOUT flag. If the vector is
valid on return, lpctlACTVARSOUT will remain set,
otherwise it will be reset.
colsze Allocated column capacity (length of status vector).
rowsze Allocated row capacity (length of basis, x, and y vectors).
Note that dylp will reallocate status, basis->el, actvars, x, and y, if the
vectors supplied at startup are too small to report the solution. Don't set
colsze or rowsze to nonzero values without actually allocating space.
*/
typedef struct
{ flags ctlopts ;
dyphase_enum phase ;
lpret_enum lpret ;
double obj ;
int iters ;
consys_struct *consys ;
basis_struct *basis ;
flags *status ;
double *x ;
double *y ;
bool *actvars ;
int colsze ;
int rowsze ; } lpprob_struct ;
/*
lptols_struct
This structure contains phase and tolerance information for the lp algorithm.
The philosophy with respect to the separate zero and feasibility tolerances
for primal and dual variables is that dylp uses the zero tolerance when
calculating primal or dual variables, and the feasibility tolerance when
checking for feasibility. This allows us to keep small values for accuracy
in computation, but not be so fussy when it comes to feasibility.
Field Definition
----- ----------
inf Infinity. dylp uses IEEE FP infinity, but be careful not to
pass it to the basis package.
zero Zero tolerance for primal variables, and also the generic
zero tolerance for constraint coefficients, right-hand-side
values, etc.
pchk Primal accuracy check tolerance.
pfeas Primal feasibility check tolerance; dynamically scaled from
zero in proportion to the 1-norm of the primal basic variables.
pfeas_scale Primal feasibility check tolerance multiplier. This provides
some user-controllable decoupling of zero and pfeas.
cost Base zero tolerance for checks involving objective function
coefficients, reduced costs, and related values.
dchk Dual accuracy check tolerance. Also used by dy_duenna to
test for improvement in the objective.
dfeas Dual feasbility check tolerance; dynamically scaled from cost
in proportion to the 1-norm of the dual variables. Acts as the
zero tolerance for reduced costs.
dfeas_scale Dual feasibility check tolerance multiplier. This provides
some user-controllable decoupling of cost and dfeas.
pivot Simplex pivot selection tolerance, expressed as a multiplier
for the pivot selection tolerance used by the basis package
when factoring the basis. (I.e., the actual pivot selection
criteria will be to accept a simplex pivot a<i,j> if
|a<i,j>| > lptols.pivot*basis.pivot*MAX{i}|a<i,j>|.)
bogus Multiplier used to identify 'bogus' values, in the range
tol < |val| < bogus*tol for the appropriate tolerance.
swing Ratio used to identify excessive growth in primal variables
(pseudo-unboundedness).
toobig Absolute value of primal variables which will cause dual
multipivoting to consider primal infeasibility when selecting
a flip/pivot sequence.
purge Percentage change in objective function required before
constraint or variable purging is attempted.
purgevar Percentage of maximum reduced cost used to determine the
variable purge threshold; nonbasic architectural variables
at their optimum bound whose reduced cost exceeds
purgevar*MAX{j}cbar<j> are purged.
reframe Multiplier used to trigger a reference framework reset in
PSE pricing; reset occurs if
|gamma<j> - ||abar<j>||^2| > reframe*||abar<j>||^2.
The check is made in pseupdate.
Also used to trigger recalculation of the basis inverse row
norms used in DSE pricing; reset occurs if
|rho<i> - ||beta<i>||^2| > reframe*||beta<i>||^2.
The check is made in dseupdate.
*/
typedef struct
{ double inf ;
double zero ;
double pchk ;
double pfeas ;
double pfeas_scale ;
double cost ;
double dchk ;
double dfeas ;
double dfeas_scale ;
double pivot ;
double bogus ;
double swing ;
double toobig ;
double purge ;
double purgevar ;
double reframe ; } lptols_struct ;
#if defined(DYLP_INTERNAL) || defined(BONSAIG)
/*
A few handy macros for testing values against tolerances.
*/
#ifdef DYLP_INTERNAL
# ifdef BND_TOLER
# undef BND_TOLER
# endif
# define BND_TOLER dy_tols->pfeas
# ifdef INF_TOLER
# undef INF_TOLER
# endif
# define INF_TOLER dy_tols->inf
#endif
#define withintol(zz_val_zz,zz_tgt_zz,zz_tol_zz) \
(fabs((zz_val_zz)-(zz_tgt_zz)) <= zz_tol_zz)
#define setcleanzero(zz_val_zz,zz_tol_zz) \
if (fabs(zz_val_zz) < zz_tol_zz) zz_val_zz = 0
#define atbnd(zz_val_zz,zz_bnd_zz) \
((fabs(zz_bnd_zz) < INF_TOLER) && \
(fabs((zz_val_zz)-(zz_bnd_zz)) < BND_TOLER*(1.0+fabs(zz_bnd_zz))))
#define belowbnd(zz_val_zz,zz_bnd_zz) \
((fabs(zz_bnd_zz) < INF_TOLER) ? \
(((zz_bnd_zz)-(zz_val_zz)) > BND_TOLER*(1.0+fabs(zz_bnd_zz))) : \
(zz_val_zz < zz_bnd_zz))
#define abovebnd(zz_val_zz,zz_bnd_zz) \
((fabs(zz_bnd_zz) < INF_TOLER) ? \
(((zz_val_zz)-(zz_bnd_zz)) > BND_TOLER*(1.0+fabs(zz_bnd_zz))) : \
(zz_val_zz > zz_bnd_zz))
#define withinbnds(zz_lb_zz,zz_val_zz,zz_ub_zz) \
(!abovebnd(zz_val_zz,zz_ub_zz) && !belowbnd(zz_val_zz,zz_lb_zz))
#endif /* DYLP_INTERNAL || BONSAIG */
#ifdef DYLP_INTERNAL
/*
Finally, a macro to decide if we should snap to a value. The notion here is
that the accuracy with which one can hit a target value depends on both the
magnitude of the target and the distance travelled to get there. On a
64-bit machine, IEEE FP has about 15 decimal digits of accuracy. For
example, if we're travelling 1.0e7 and trying to hit zero, we only have 8
decimal places of accuracy remaining. If we're within 1.0e-8, might as well
snap to 0. In practice, there's already a bit of roundoff in any nontrivial
calculation, so we start with the zero tolerance and scale from there.
In some cases, we only know the target, so the best we can do is
scale to it.
The utility of this idea is highly questionable.
*/
#define snaptol1(zz_tgt_zz) (dy_tols->zero*(1.0+(zz_tgt_zz)))
#define snaptol2(zz_tgt_zz,zz_dst_zz) \
(dy_tols->zero*(1.0+maxx((zz_tgt_zz),(zz_dst_zz))))
#define snaptol3(zz_tol_zz,zz_tgt_zz,zz_dst_zz) \
((zz_tol_zz)*(1.0+maxx((zz_tgt_zz),(zz_dst_zz))))
#endif /* DYLP_INTERNAL */
/*
Enum for initial basis type.
This determines the criteria used to select the initial set of basic
variables during a cold start.
ibINV invalid
ibLOGICAL Use only logical (slack and artificial) variables
ibSLACK Use slack variables for inequalities. Prefer architectural
over artificial variables for equalities.
ibARCH Prefer architectural variables over logical variables.
*/
typedef enum { ibINV = 0, ibLOGICAL, ibSLACK, ibARCH } ibtype_enum ;
/*
Enum for calling context.
As dylp evolves, it may well prove useful to know the context of the
call. Consider this an experiment. The default context is INITIALLP.
cxINV invalid (context is unknown)
cxSINGLELP This is a one-off call to solve a single LP from scratch.
cxINITIALLP This is a call to solve a single LP from scratch, but will
likely be followed by calls to reoptimise.
cxBANDC This call is made in the context of a branch-and-cut
algorithm.
*/
typedef enum { cxINV = 0, cxSINGLELP, cxINITIALLP, cxBANDC } cxtype_enum ;
/*
lpopts_struct
This structure is used to pass option settings to dylp. Default values are
declared at the beginning of dy_setup.c.
Field Definition
----- ----------
context The context in which dylp is being called. See comments
above for cxtype_enum.
forcecold TRUE to force a cold start, FALSE otherwise. If set to TRUE,
dominates warm and hot start.
forcewarm TRUE to force a warm start, FALSE otherwise. If set to TRUE,
dominates hot start.
fullsys Forces the use of the full constraint system at all times. The
full constraint system is loaded on startup, and all constraint
and variable deactivation/activation is skipped. (But see the
finpurge option below.) (Also, this will not prevent dylp
from resorting to forced phase transitions, which typically
involve deactivation of constraints or variables. Arguably
this is a bad thing, and may change in the future.)
active Used to estimate the initial size of the dylp constraint
system relative to the original system.
vars Fraction of original variables expected to be active at
any time.
cons Fraction of original inequalities expected to be active at
any time.
initcons Specifies how inequalities will be selected to initialize the
active system. See extensive comments in dy_coldstart.c.
frac Fraction of inequalities to be used.
i1l Lower bound on angle to objective, first interval
i1lopen TRUE if the bound is open.
i1u Upper bound on angle to objective, first interval
i1uopen TRUE if the bound is open.
i2valid TRUE if the second interval is specified
i2l Lower bound on angle to objective, second interval
i2lopen TRUE if the bound is open.
i2u Upper bound on angle to objective, second interval
i2uopen TRUE if the bound is open.
coldbasis Code specifying the kind of basis built for a cold start. See
comments for ibtype_enum and comments in dy_coldstart.c
finpurge Controls whether dylp does a final deactivation of constraints
and/or variables. This will occur only an optimal solution is
found, and is not suppressed by fullsys.
cons TRUE to purge constraints
vars TRUE to purge variables
heroics Controls behaviour during forced primal <-> dual transitions
d2p TRUE to allow deactivation of basic architecturals, FALSE
to disallow. FALSE is recommended, and the default.
p2d TRUE to allow deactivation of tight constraints, FALSE
to disallow. FALSE is recommended, and the default.
flip TRUE to allow flips to regain dual feasibility, FALSE to
disallow. Tends to cycle; default is false.
coldvars If the number of active variables exceeds this value after
a cold start, dylp will attempt to purge variables prior to
the initial primal simplex run.
con Options related to constraint activation/deactivation
actlvl The constraint activation strategy
0: (strict) activate violated constraints,
lhs < rhslow or lhs > rhs
1: (tight) activate tight or violated constraints,
lhs <= rhslow or lhs >= rhs
actlim If non-zero, limits the number of constraints that can be
activated in any one call to a constraint activation
routine.
deactlvl The constraint deactivation strategy:
0: (normal) deactivate only inequalities i which are
strictly loose (i.e., slk<i> basic, not at bound).
1: (aggressive) normal plus inequalities which are tight
with y<i> = 0.
2: (fanatic) aggressive plus equalities with y<i> = 0
usedual TRUE if dual phase II is to be used to regain feasibility after
adding constraints, FALSE to force use of primal phase I.
addvar If non-zero, at most this many variables will be added in
any one pass through phase dyADDVAR.
dualadd Controls the types of activation allowed when adding variables
during dual simplex.
0: variable activation is disallowed
1: type 1 activation (variables that will be dual feasible
when activated into the nonbasic partition)
2: type 2 activation (variables which can be activated
if immediately pivoted into the basis)
3: type 3 activation (activate with bound-to-bound pivot)
See dy_dualaddvars for more extensive comments.
scan Partial pricing parameter. Controls the number of columns to
be scanned for a new candidate entering variable when the
candidate selected during PSE update is rejected.
iterlim The per phase pivot limit for the code; if set to 0, no
limit is enforced.
idlelim The number of iterations without change in the objective
function before the code declares the problem is stalled or
cycling.
dpsel Options to control dual pivoting. Selection of the leaving
variable is always handled by DSE.
strat: The strategy used to select the entering variable:
0: standard ratio test; may use anti-degen lite
1: multipivoting, selecting for maximum dual objective
improvement.
2: multipivoting, select for minimum predicted
infeasibility.
3: multipivoting, select infeasibility reduction if
possible, otherwise maximum dual objective improvement.
flex If TRUE, dylp will switch between strategies 1 and 3, using
strategy 1 unless primal magnitudes become too large.
allownopiv If TRUE, sequences of flips with no finishing pivot will be
allowed. Defaults to false, very prone to cycling.
ppsel Options to control primal pivoting. Selection of the entering
variable is always handled by PSE.
strat: The strategy used to select the leaving variable:
0: standard ratio test; may use anti-degen lite
1: multipivoting
factor The LP basis will be refactored every factor iterations, in
the absence of some compelling reason (typically error
recovery) that forces it to occur sooner.
check An accuracy check will be forced every check iterations, in
the absence of some compelling reason to do it earlier.
groom Controls the action taken by the basis grooming routine
when it makes a nontrivial status correction:
0: catatonic
1: issue a warning
2: issue an error message and force an abort
Numeric codes are related to keywords in dy_setup.c:dy_ctlopt.
degen TRUE to allow creation of restricted subproblems to deal with
degeneracy, FALSE to disallow it.
degenpivlim The number of successive degenerate pivots required before
creating a restricted subproblem.
degenlite Controls secondary antidegeneracy --- `antidegen lite'
0: (pivotabort) break ties using |abar<kj>| and abort when
delta<j> = 0
1: (pivot) break ties using |abar<kj>| but always scan the
full basis
2: (alignobj) break ties by examining the alignment of the
hyperplane which will become tight on the pivot; choose
so that movement in the direction of the objective most
nearly lies in the hyperplane
3: (alignedge) break ties by examining the alignment of the
hyperplane which will become tight on the pivot; choose
so that the direction of motion defined by the entering
variable most nearly lies in the hyperplane.
4: (perpobj) break ties by examining the alignment of the
hyperplane which will become tight on the pivot; choose
so that the normal of the hyperplane is most nearly
aligned with the normal of the objective
5: (perpedge) break ties by examining the alignment of the
hyperplane which will become tight on the pivot; choose
so that the normal of the hyperplane is most nearly
aligned with the direction of motion
Numeric codes are related to keywords in dy_setup.c:dy_ctlopt.
patch TRUE to allow the code to patch a singular basis, FALSE to
prevent patching.
copyorigsys Controls whether dylp makes a local copy of the original
system. If set to TRUE, dylp will always make a local copy.
If set to FALSE, a copy will be made only if necessary.
Scaling will trigger a local copy.
scaling Controls whether dylp attempts to scale the original constraint
system for numeric stability.
0: scaling is forbidden
1: scale the original constraint system using numeric
scaling vectors attached to the system
2: evaluate the original constraint system and scale it if
necessary
Note that even if scaling = 0, dylp may install +/-1.0 scaling
vectors in order to flip >= constraints to <= constraints. See
comments in dy_scaling.c
print Substructure for picky printing control. For all print options,
a value of 0 suppresses all information messages.
major Controls printing of major phase information.
1: a message at each phase transition.
scaling Controls print level during initial evaluation and scaling of
the original constraint system.
1: start and finish messages
2: stability measures for original and scaled matrices;
adjustments to tolerances.
setup Controls print level while creating the initial constraint
system for dylp.
1: start and finish messages.
2: summary information about activated constraints
3: messages about each constraint included in the initial
system.
4: messages about each constraint processed for the initial
system
5: messages about each variable included in the initial
system.
6: lists value and status of inactive variables with
nonzero values
crash Controls print level while crashing the basis.
1: start & finish messages
2: summary counts for logicals, architecturals, artificials
3: a dump of the completed basis
4: detailed info on the selection of each architectural
and artificial variable
pricing Controls print level for pricing of columns (rows) in primal
(dual) simplex.
1: summary messages
2: lists candidate list and primal variable selected for
entry (exit) at each pivot
3: lists each variable as it's added to the candidate list
and again when reconsidered for pivoting
pivoting Controls print level for selection of the leaving (entering)
primal variable in primal (dual) simplex and updating of
variables.
1: prints result of leaving (entering) variable selection
2: information about the selection of the leaving (entering)
variable.
3: more information about the selection of the leaving
(entering) variable.
4: prints the pivot column (row) before and after
multiplication by the basis inverse, and yet more
pivot selection information.
5: prints a line for every candidate evaluated
pivreject Controls print level for information related to the operation
of the pivot rejection mechanism.
1: Prints a message for each row/column added to the pivot
rejection list, plus other major events.
2: Prints a message for each row/column removed from the
pivot rejection list.
degen Controls print level for information related to the operation
of the antidegeneracy mechanism.
1: prints a message each time the antidegeneracy level
changes
2: prints a message when a true degenerate pivot is taken
under duress
3: prints a message when a degenerate pivot is taken
4: prints anomalies as each degenerate set is formed and
backed out
5: prints details of each degenerate set as it's formed and
backed out
phase1 Controls general print level for phase 1 of primal simplex.
1: messages about extraordinary events -- problem pivots, etc.
2: messages about 'routine' but infrequent events --
termination conditions, refactoring, unboundedness, etc.
3: messages with additional details of problems encountered
4: a one line log message is printed for each pivot
5: summary information about infeasible variables and phase
I objective coefficients; information about primal
variables updated at each pivot.
6: prints the primal variables after each pivot; prints
infeasible variables during phase I objective construction
7: prints the dual variables after each pivot; prints
infeasible variables during phase I objective modification
phase2 Controls general print level for phase 1 of primal simplex.
1: messages about extraordinary events -- problem pivots, etc.
2: messages about 'routine' but infrequent events --
termination conditions, refactoring, unboundedness, etc.
3: messages with additional details of problems encountered
4: a one line log message is printed for each pivot
5: prints the updated basic primal variables after each pivot
6: prints all basic primal variables after each pivot
7: prints the dual variables after each pivot.
dual Controls general print level for the dual simplex. As
phase2.
basis Controls print level in routines working with the basis.
1: summary warnings about problems: empty rows, singularity,
numerical instability, etc.
2: information about factoring failures and recovery actions
3: warnings about individual empty rows, details of column
replacement when patching a singular basis, pivot
tolerance adjustments; information about pivoting failures
and recovery actions
4: basis stability after factoring
5: basis stability after pivoting
conmgmt Controls print level while dylp is in the purge/generate/
activate constraint phases.
1: prints the number of constraints purged, generated,
& activated, and new size of constraint system.
2: prints a message for each constraint purged or activated.
(The cut generation routine is responsible for
handling this function when it generates cuts.)
3: additional details about refactoring and new values
of primal and dual variables.
4: prints a message about any variables affected as a side
effect of constraint changes, constraints processed
but not activated, and information about direction of
recession and relative angle of constraints when adding
constraints to an unbounded problem.
5: prints a running commentary on constraint and variable
shifts, inactive variables.
varmgmt Controls print level while dylp is in the purge/generate/
activate variable phases.
1: prints the number of variables purged, generated,
& activated, and new size of constraint system.
2: prints a message for each variable purged & activated.
(The column generation routine is responsible for
handling this function when it generates new variables).
3: prints a message about any constraints affected as a side
effect of variable changes, variables processed but not
activated, and information about direction of recession
and relative angle of dual constraints when adding
variables to an unbounded dual.
4: prints a running commentary on constraint and variable
shifts.
force Controls print level when dylp is attempting to force a
transition (primal -> dual, dual -> primal) or force the
use of the full constraint system.
1: prints a summary message giving the result of the
transition attempt
2: prints messages about actions taken for individual
constraints and variables.
3: additional information about variables and constraints
examined.
tableau Controls print level for routines that generate tableau
vectors (beta<i>, beta<j>, abar<i>, abar<j>) for use by
external clients.
1: prints summary messages about the circumstances
4: prints nonzeros in the final vector.
5: prints nonzeros in intermediate vectors and (dy_betaj,
dy_abarj only) inactive rows
6: prints nonzeros of active portion in internal reference
frame (dy_betaj only)
rays Controls print level for routines that generate primal
and dual rays for use by external clients.
1: prints summary messages about vectors found.
3: print information about columns / rows examined.
4: print information about why a column or row was rejected.
5: print nonzeros for each ray
soln Controls print level for routines that generate primal and
dual solutions for use by external clients.
1: prints summary messages about the circumstances
3: prints nonzeros in the final vector
4: prints nonzeros in intermediate vectors
*/
typedef struct
{ cxtype_enum context ;
int scan ;
int iterlim ;
int idlelim ;
struct { int strat ;
bool flex ;
bool allownopiv ; } dpsel ;
struct { int strat ; } ppsel ;
int factor ;
int check ;
int groom ;
struct { int actlvl ;
int actlim ;
int deactlvl ; } con ;
int addvar ;
int dualadd ;
int coldvars ;
bool forcecold ;
bool forcewarm ;
bool usedual ;
bool degen ;
int degenpivlim ;
int degenlite ;
bool patch ;
bool fullsys ;
bool copyorigsys ;
int scaling ;
struct { float vars ;
float cons ; } active ;
struct { double frac ;
bool i1lopen ;
double i1l ;
bool i1uopen ;
double i1u ;
bool i2valid ;
bool i2lopen ;
double i2l ;
bool i2uopen ;
double i2u ; } initcons ;
ibtype_enum coldbasis ;
struct { bool cons ;
bool vars ; } finpurge ;
struct { bool d2p ;
bool p2d ;
bool flips ; } heroics ;
struct { int major ;
int scaling ;
int setup ;
int crash ;
int pricing ;
int pivoting ;
int pivreject ;
int degen ;
int phase1 ;
int phase2 ;
int dual ;
int basis ;
int conmgmt ;
int varmgmt ;
int force ;
int tableau ;
int rays ;
int soln ; } print ; } lpopts_struct ;
/*
Statistics structure, used to collect information about aspects of dylp
operation beyond simple pivot counts. The data structure definition is
always present, but to fill it you have to define DYLP_STATISTICS.
Field Definition
----- ----------
phasecnts[dyDONE] Array with counts for number of times each phase is
executed.
ini_simplex The initial simplex phase
cons A set of arrays with data about individual constraints.
sze Allocated capacity of the arrays.
angle Angle to the objective function.
actcnt Number of times constraint is activated.
deactcnt Number of times constraint is deactivated.
init True if constraint is active in initial system.
fin True if constraint is active in final system.
vars A set of arrays with data about individual variables.
sze Allocated capacity of the arrays.
actcnt Number of times variable is activated.
deactcnt Number of times variable is deactivated.
angle
max Maximum angle to the objective function over all constraints.
min Minimum angle to the objective function over all constraints.
hist[*] Histogram of angles of constraints to the objective function.
There are DYSTATS_HISTBINS bins. Currently, 37 bins: 36 bins
spanning 5 degrees of angle, and a dedicated 90 degree bin.
factor Tracks how well we're doing with respect to refactoring the
basis.
cnt Number of time the basis has been refactored.
prevpiv Pivot count at last refactorisation.
avgpivs Average number of pivots between basis refactorisations.
maxpivs Maximum number of pivots between basis refactorisations.
pivrej Statistics about the pivot rejection list and punts.
max maximum number of entries on the pivot rejection list
mad total number of entries attributed to mad pivots
sing total number of entries attributed to singular pivots
pivtol_red total number of times the pivot tolerance was reduced
min_pivtol the minimum pivot tolerance used
puntcall total number of calls to dealWithPunt
puntret total number of dyrPUNT returns recommended
dmulti Tracks the dual multipivot algorithm. All fields except cnt are
totals; divide by cnt to get averages.
flippable Number of flippable variables in the constraint system.
cnt Total calls to dualmultiin
cands Number of candidates queued for evaluation for entry
promote Number of calls that resulted in promoting a sane pivot
over an unstable pivot.
nontrivial Number of times that the initial scan and sort left
multiple candidates for further evaluation.
evals Actual number of candidates evaluated (ftran'd column)
flips Number of bound-to-bound flips performed
pivrnk Index in the list of candidates of the candidate finally
selected for pivoting.
maxrnk Maximum index selected for pivoting.
pmulti Tracks the primal multipivot algorithm.
cnt Total calls to primalmultiin
cands Number of candidates queued for evaluation to leave
nontrivial Number of times that the candidate list was sorted
promote Number of calls that resulted in promoting a sane pivot
over an unstable pivot.
infeas Statistics on resolution of infeasibility in primal phase I.
Basically, what we're interested in tracking is the number
of infeasible variables and the number of pivots between a
change in the number of infeasible variables. We're interested
in separating the case of 1 variable from 2 or more, because
the latter requires vastly more calculation. A little care
is required because phase I can run many times.
prevpiv The pivot count (tot.iters) at the previous change.
maxcnt The maximum number of infeasible variables encountered (this
is not strictly monotonic, as dylp may enter phase I many
times due to activating violated constraints).
totpivs The total number of pivots expended in phase I.
maxpivs The maximum number of pivots with no change in the number of
feasible variables.
chgcnt1 The number of times that the number of infeasible variables
changed and reduced costs did not have to be recalculated
(specifically, exactly one variable became feasible, and it
left the basis as it did so).
chgcnt2 The number of times that the number of infeasible variables
changed in such a way as to require recalculation of the
reduced costs.
[dp]degen[*] Array of stats for each restricted subproblem nesting level,
with separate arrays for dual (ddegen) and primal (pdegen).
degen[0].cnt is used to hold the maximum nesting level.
cnt Number of times this nesting level was entered.
avgsiz The average number of variables in a restricted subproblem.
Kept by iterative update, as avg<k+1> = (avg<k>*k+size)/(k+1).
Suffers from cumulative loss of accuracy, but it'll do for
our purposes.
maxsiz The maximum number of variables in a restricted subproblem.
totpivs Total number of pivots at or above this nesting level.
avgpivs Average number of pivots at or above this nesting level.
maxpivs Maximum number of pivots for any one instance at or above
this nesting level.
tot, p1, p2, d2 Iteration and pivot counts, total and for each
individual phase. These are copied over from
dy_lp (lp_struct) at the end of the run, so that
they can be printed by dumpstats.
DYSTATS_MAXDEGEN is the maximum number of levels of nesting accommodated by
antidegeneracy statistics and debugging structures. The actual algorithm
has no inherent limitation.
DYSTATS_HISTBINS is the number of bins for constraint angles. It should be an
odd number. Each bin will span 180/(DYSTATS_HISTBINS-1) degrees, with the
final bin reserved for constraints at 90 degrees. For example, a value of 37
gives 180/(37-1) = 5 degrees per bin.
*/
#define DYSTATS_MAXDEGEN 25
#define DYSTATS_HISTBINS 37
typedef struct {
int phasecnts[dyDONE+1] ;
dyphase_enum ini_simplex ;
struct { int sze ;
double *angle ;
int *actcnt ;
int *deactcnt ;
bool *init ;
bool *fin ; } cons ;
struct { int sze ;
int *actcnt ;
int *deactcnt ; } vars ;
struct { float max ;
float min ;
int hist[DYSTATS_HISTBINS] ; } angle ;
struct { int cnt ;
int prevpiv ;
float avgpivs ;
int maxpivs ; } factor ;
struct { int max ;
int mad ;
int sing ;
int pivtol_red ;
double min_pivtol ;
int puntcall ;
int puntret ; } pivrej ;
struct { int flippable ;
int cnt ;
int cands ;
int promote ;
int nontrivial ;
int evals ;
int flips ;
int pivrnks ;
int maxrnk ; } dmulti ;
struct { int cnt ;
int cands ;
int nontrivial ;
int promote ; } pmulti ;
struct { int prevpiv ;
int maxcnt ;
int totpivs ;
int maxpivs ;
int chgcnt1 ;
int chgcnt2 ; } infeas ;
struct { int cnt ;
float avgsiz ;
int maxsiz ;
int totpivs ;
float avgpivs ;
int maxpivs ; } pdegen[DYSTATS_MAXDEGEN] ;
struct { int cnt ;
float avgsiz ;
int maxsiz ;
int totpivs ;
float avgpivs ;
int maxpivs ; } ddegen[DYSTATS_MAXDEGEN] ;
struct { int iters ;
int pivs ; } tot ;
struct { int iters ;
int pivs ; } p1 ;
struct { int iters ;
int pivs ; } p2 ;
struct { int iters ;
int pivs ; } d2 ; } lpstats_struct ;
#ifdef DYLP_INTERNAL
/*
Macros to determine whether a constraint or variable is active, and whether
it's eligible for activation. Coding is explained below for dy_origcons and
dy_origvars. The main purpose served by these macros is to make it easy to
find activiation/deactivation points in the code, should the conventions ever
change.
*/
#define ACTIVE_CON(zz_cndx_zz) (dy_origcons[(zz_cndx_zz)] > 0)
#define INACTIVE_CON(zz_cndx_zz) (dy_origcons[(zz_cndx_zz)] <= 0)
#define LOADABLE_CON(zz_cndx_zz) (dy_origcons[(zz_cndx_zz)] == 0)
#define MARK_UNLOADABLE_CON(zz_cndx_zz) (dy_origcons[(zz_cndx_zz)] = -1)
#define MARK_INACTIVE_CON(zz_cndx_zz) (dy_origcons[(zz_cndx_zz)] = 0)
#define ACTIVE_VAR(zz_vndx_zz) (dy_origvars[(zz_vndx_zz)] > 0)
#define INACTIVE_VAR(zz_vndx_zz) (dy_origvars[(zz_vndx_zz)] <= 0)
#define LOADABLE_VAR(zz_vndx_zz) \
((dy_origvars[(zz_vndx_zz)] < 0) && \
flgoff(((flags) -dy_origvars[(zz_vndx_zz)]),vstatNOLOAD|vstatNBFX))
#define MARK_INACTIVE_VAR(zz_vndx_zz,zz_val_zz) \
(dy_origvars[(zz_vndx_zz)] = (zz_val_zz))
/*
dy_logchn i/o id for the execution log file
dy_gtxecho controls echoing of generated text to stdout
*/
extern ioid dy_logchn ;
extern bool dy_gtxecho ;
/*
lp_struct
This structure is the control structure for an LP problem within dylp.
Field Definition
----- ----------
phase Current phase of the dynamic simplex algorithm.
lpret Return code from the most recent simplex execution.
z Value of the objective function (includes inactzcorr).
inactzcorr Correction to the objective function due to inactive variables
with non-zero values.
simplex Simplex algorithm status and control
active currently active or most recently completed
next currently active or to be started
init_pse TRUE if the PSE structures need to be reinitialised,
FALSE otherwise
init_dse TRUE if the DSE structures need to be reinitialised,
FALSE otherwise
These fields are used to determine when to update or
reinitialise the PSE and DSE data structures. Active and next
must be valid during the purge/gen/add variable/constraint
cycles.
A word on infeas and infeascnt: They are guaranteed accurate
only immediately after initialisation and following a primal
feasibility check.
infeas Total infeasibility = SUM{j} max(0,x<j>-ub<j>,lb<j>-x<j>)
infeascnt The number of infeasible variables; refreshed when dy_accchk
is asked to do a primal feasibility check.
ubnd Substructure for information on unbounded or pseudo-unbounded
problems.
ndx The index of the variable fingered for causing unboundedness
or pseudo-unboundedness (swing).
ratio The growth ratio.
p1obj The following fields relate to handling of the phase I
objective function.
installed TRUE if the phase I objective is currently installed
infcnt Tracks the number of variables incorporated in p1obj which
remain infeasible.
infvars_sze Allocated size of the infvars vector.
infvars Vector of indices of infeasible variables incorporated in the
phase I objective.
p1obj Pointer to the phase I objective (temporary storage while
the phase II objective is installed).
p2obj Pointer to the phase II objective (temporary storage while
the phase I objective is installed).
A word on pivot and iteration counts: Iteration counts tally
iterations of the pivoting loop, successful or not. Pivot
counts tally successful bound-to-bound or change-of-basis
pivots. Pretty much all messages will give tot.iters, so that
it's possible to track the progress of an LP. Iterf has an
entirely different function -- it's tracking the accumulation
of eta matrices in the basis representation.
sys Substructure for dynamic system modification status.
forcedfull Set to TRUE if the full system has been forced in state
dyFORCEFULL. This should happen at most once, so if we
enter dyFORCEFULL and forcedfull == TRUE, it's fatal.
cons
loadable Count of constraints which could be activated
unloadable Count of constraints which are ineligible for activation
(empty constraints and nonbinding rows)
vars
loadable Count of variables which could be activated
unloadable Count of variables which are ineligible for activation
(nonbasic fixed)
tot Total simplex iterations and pivots, all phases
iters
pivs
p1 Primal phase I iterations and pivots.
iters
pivs
p2 Primal phase II iterations and pivots.
iters
pivs
d2 Dual phase II iterations and pivots.
iters
pivs
pivok Set to TRUE in dy_{primal|dual}pivot if the current iteration
is a successful pivot. Cleared to FALSE at the head of
dy_duenna.
prev_pivok Set to pivok at head of dy_duenna. Provides status of just
completed pivot for post-Duenna decisions.
basis Various fields related to basis change, refactoring, etc.
etas The number of basis changes (hence eta matrices) since the
the basis was last factored. Used to schedule periodic
factoring of the basis. Reset to 0 each time the basis is
factored.
pivs The number of basis pivots since entry into a primal or dual
simplex phase (excludes bound-to-bound simplex `pivots').
Used when deciding whether to remove variables from the pivot
reject list, and whether to pop out of a simplex phase due to
excessive swing.
dinf Number of successive refactors with dual infeasibility.
Cleared at the start of a simplex phase.
Incremented/cleared in dy_accchk iff a dual feasibility check
is performed.
degen Activation level of antidegeneracy algorithm. Held at 0 when
the antidegeneracy algorithm is not active. Incremented each
time a restricted subproblem is formed, and decremented when
the restriction is backed out. (Values > 1 indicate that
degeneracy recurred while working on a restricted subproblem,
resulting in further restriction.)
degenpivcnt The number of successive degenerate pivots.
idlecnt The number of cycles since the objective has changed.
lastz Previous objective value for various activities; used to
detect and suppress loops.
piv Objective at last pivot (detects stalling)
cd Objective at last entry into constraint deactivation
(dyPURGECON) (detects constraint activate/deactivate loops)
vd Objective at last entry into variable deactivation
(dyPURGEVAR) (detects variable activate/deactivate loops)
fp Objective at last entry into force primal (dyFORCEPRIMAL)
(detects constraint activate/deactivate loops)
fd Objective at last entry into force dual (dyFORCEDUAL)
(detects variable activate/deactivate loops)
prim Primal variable information
norm1 1-norm of basic primal variables inv(B)b
norm2 2-norm of basic primal variables
max inf-norm (max) of basic primal variables
maxndx index of max primal variable
dual Dual variable information
norm1 1-norm of dual variables c<B>inv(B)
norm2 2-norm of dual variables
max inf-norm (max) of dual variables
maxndx index of max dual variable
*/
typedef struct
{ dyphase_enum phase ;
lpret_enum lpret ;
double z ;
double inactzcorr ;
struct { dyphase_enum active ;
dyphase_enum next ;
bool init_pse ;
bool init_dse ; } simplex ;
double infeas ;
int infeascnt ;
struct { int ndx ;
double ratio ; } ubnd ;
struct { bool installed ;
int infcnt ;
int infvars_sze ;
int *infvars ;
double *p1obj ;
double *p2obj ; } p1obj ;
struct { struct { int loadable ;
int unloadable ; } cons ;
struct { int loadable ;
int unloadable ; } vars ;
bool forcedfull ; } sys ;
struct { int iters ;
int pivs ; } tot ;
struct { int iters ;
int pivs ; } p1 ;
struct { int iters ;
int pivs ; } p2 ;
struct { int iters ;
int pivs ; } d2 ;
bool pivok ;
bool prev_pivok ;
struct { int etas ;
int pivs ;
int dinf ; } basis ;
int degen ;
int degenpivcnt ;
int idlecnt ;
struct { double piv ;
double cd ;
double vd ;
double fp ;
double fd ; } lastz ;
struct { double norm1 ;
double norm2 ;
double max ;
int maxndx ; } prim ;
struct { double norm1 ;
double norm2 ;
double max ;
int maxndx ; } dual ;
} lp_struct ;
/*
Declarations global to the dylp implementation but not visible outside of
it. With this we can avoid passing huge numbers of parameters and/or
unpacking a structure on a regular basis. Unless otherwise indicated, indices
are in the dy_sys (active system) frame of reference.
dy_retained TRUE if dylp thinks that the structures below are valid, FALSE
otherwise.
Main structures
---------------
dy_lp: The lp control structure for dylp.
dy_sys: The active constraint system; initialised in dylp:startup
dy_tols: Tolerances in effect for dylp; initialised in
dylp:dylp from orig_tols.
dy_opts: Options in effect for dylp; initialised in
dylp:dylp to point to same structure as orig_opts.
dy_stats Statistics structure for dylp; initialised in dylp:dylp to
point ot the same structure as orig_stats.
Constraint & Variable Management
--------------------------------
dy_actvars: The active variables. Indexed in dy_sys frame, contains
indices in orig_sys frame. Attached to dy_sys.
Entries for logical variables (1 <= j <= concnt) are
meaningless.
dy_actcons: The active constraints. Indexed in dy_sys frame, contains
indices in orig_sys frame. Attached to dy_sys.
dy_origvars: Status of the original architectural variables.
* A value of 0 indicates the entry hasn't been processed.
Should never happen.
* If the variable is active, the entry contains the index
of the variable in the dy_sys frame.
* If the variable is inactive, the coding is the negative of
the vstat flags, limited to the nonbasic status values
vstatNBFR, vstatNBFX, vstatNBLB, or vstatNBUB, and the
qualifier vstatNOLOAD.
Indexed in orig_sys frame. Attached to orig_sys.
dy_origcons: Status of the original constraints.
* If the constraint is active, the entry contains the index
of the constraint in the dy_sys frame.
* If the constraint is inactive, contains 0.
* If the constraint cannot be activated, contains a negative
value.
Indexed in orig_sys frame. Attached to orig_sys.
Note that there are macros defined to test whether a variable or constraint
is inactive, and whether it's eligible for activation. Use them!
Basis Management
----------------
dy_basis: The basis vector. Indexed by basis position, attached to
dy_sys.
dy_var2basis: Translates a variable index to a basis pos'n. Indexed by
column, attached to dy_sys. Entries for nonbasic variables
must be kept at 0.
dy_status: The status vector. Indexed by column, attached to dy_sys.
Primal and Dual Variables
-------------------------
dy_x: The values of all primal variables. Indexed by column,
attached to dy_sys. Values of nonbasic variables must always
be correct (to allow uniform handling of normal nonbasic
variables and superbasic variables). Values of basic
variables will retain unperturbed values while the
antidegeneracy mechanism is active -- this allows the
perturbation to be quickly backed out.
dy_xbasic: The values of the basic variables. Indexed by basis pos'n,
attached to dy_sys.
dy_y: The dual variables. Indexed by basis pos'n, attached to
dy_sys.
Projected Steepest Edge (PSE) Pricing
-------------------------------------
dy_cbar: Iteratively updated vector of reduced costs. Indexed by column,
attached to dy_sys.
dy_gamma: Iteratively updated vector of column norms ||abar<j>||^2.
Indexed by column, attached to dy_sys.
dy_frame: Boolean vector which indicates if a given variable is in the
current frame of reference. Indexed by column, attached to
dy_sys.
Dual Steepest Edge (DSE) Pricing
--------------------------------
dy_rho: Iteratively updated vector of row norms ||beta<i>||^2.
Indexed by basis position, attached to dy_sys.
DSE pricing also makes use of dy_xbasic (the reduced costs of the dual
variables), and maintains dy_cbar.
Antidegeneracy
--------------
dy_brkout: Specifies the direction a variable needs to move to escape
from a degenerate vertex. Indexed by basis pos'n, attached
to dy_sys.
dy_degenset: Specifies the set of constraints (equivalently, basic
variables) perturbed at each level of the antidegeneracy
algorithm. Indexed by basis pos'n, attached to dy_sys. The
entry for a constraint is the highest level of degenerate set
which includes the constraint. If the entry is 0, the
constraint is not involved in degeneracy.
dy_ddegenset: Specifies the set of dual constraints (equivalently, reduced
costs) perturbed at each level of the antidegeneracy
algorithm. Indexed by variable index, attached to dy_sys.
The entry for a dual constraint is the highest level of
degenerate set which includes the constraint. If the entry is
0, the constraint is not involved in degeneracy.
*/
extern bool dy_retained ;
extern lp_struct *dy_lp ;
extern consys_struct *dy_sys ;
extern lptols_struct *dy_tols ;
extern lpopts_struct *dy_opts ;
extern int *dy_actvars,*dy_actcons,*dy_origvars,*dy_origcons,
*dy_basis,*dy_var2basis,
*dy_brkout,*dy_degenset,*dy_ddegenset ;
extern flags *dy_status ;
extern double *dy_x,*dy_xbasic,*dy_y,*dy_cbar,*dy_gamma,*dy_rho ;
extern bool *dy_frame ;
extern lpstats_struct *dy_stats ;
/*
dy_scaling.c
*/
extern bool dy_initlclsystem(lpprob_struct *orig_lp, bool hotstart) ;
extern void dy_freelclsystem(lpprob_struct *orig_lp, bool freesys) ;
extern bool dy_isscaled(void) ;
extern void dy_scaling_vectors(const double **rscale, const double **cscale) ;
extern consys_struct *dy_scaled_origsys() ;
/*
dy_coldstart.c
*/
extern dyret_enum dy_coldstart(consys_struct *orig_sys),
dy_crash(void) ;
/*
dy_warmstart.c
*/
extern dyret_enum dy_warmstart(lpprob_struct *orig_lp) ;
/*
dy_hotstart.c
*/
extern dyret_enum dy_hotstart(lpprob_struct *orig_lp) ;
/*
dy_basis.c
*/
extern dyret_enum dy_factor(flags *calcflgs),
dy_pivot(int xipos, double abarij, double maxabarj) ;
extern double dy_chkpiv(double abarij, double maxabarj) ;
extern void dy_btran(double *col), dy_ftran(double *col, bool save) ;
extern bool dy_setpivparms(int curdelta, int mindelta) ;
extern char *dy_prtpivparms(int lvl) ;
/*
dy_bound.c
*/
extern int dy_activateBndCons(consys_struct *orig_sys) ;
extern int dy_dualaddvars(consys_struct *orig_sys) ;
/*
dy_conmgmt.c
*/
extern bool dy_loadcon(consys_struct *orig_sys, int orig_ndx,
bool genvars, int *inactndxs) ;
extern bool dy_deactNBLogPrimCon(consys_struct *orig_sys, int i),
dy_deactBLogPrimCon(consys_struct *orig_sys, int i),
dy_actBLogPrimCon(consys_struct *orig_sys, int i,
int *inactvars),
dy_actBLogPrimConList(consys_struct *orig_sys,
int cnt, int *ocndxs, int **inactvars) ;
extern int dy_deactivateCons(consys_struct *orig_sys),
dy_activateCons(consys_struct *orig_sys, bool with_vars) ;
/*
dy_varmgmt.c
*/
extern bool dy_actNBPrimArch(consys_struct *orig_sys, int ovndx),
dy_actNBPrimArchList(consys_struct *orig_sys,
int cnt, int *ovndxs),
dy_deactBPrimArch(consys_struct *orig_sys, int ovndx),
dy_deactNBPrimArch(consys_struct *orig_sys, int ovndx) ;
extern int dy_deactivateVars(consys_struct *orig_sys),
dy_activateVars(consys_struct *orig_sys, int *candidates) ;
/*
dy_primalpivot.c
*/
extern dyret_enum dy_primalin(int initcol, int scan, int *xjndx, int *nextcol),
dy_primalpivot(int xjndx, int indir, int *xindx, int *outdir,
double *abarij, double *delta, int *xjcand),
dy_degenout(int level) ;
/*
dy_duenna.c
*/
extern dyret_enum dy_duenna(dyret_enum pivresult, int xjndx, int xindx,
int xjcand, int xicand),
dy_accchk(flags *checks) ;
/*
dy_pivreject.c
*/
extern dyret_enum dy_addtopivrej(int xkndx, dyret_enum why,
double abarij, double maxabarij),
dy_dealWithPunt(void) ;
extern bool dy_clrpivrej(int *entries) ;
extern void dy_checkpivtol(void) ;
extern void dy_initpivrej(int sze), dy_freepivrej(void) ;
/*
dy_primal.c
*/
extern lpret_enum dy_primal(void) ;
extern bool dy_initp1obj(void),dy_swapobjs(dyphase_enum phase) ;
/*
dy_dualpivot.c
*/
extern dyret_enum
dy_dualout(int *xindx),
dy_dualpivot(int xindx, int outdir,
int *p_xjndx, int *p_indir, double *p_cbarj,
double *p_abarij, double *p_delta, int *xicand),
dy_dualdegenout(int level) ;
/*
dy_dual.c
*/
extern lpret_enum dy_dual(void) ;
#endif /* DYLP_INTERNAL */
/*
dy_setup.c
*/
extern void dy_defaults(lpopts_struct **opts, lptols_struct **tols),
dy_checkdefaults(consys_struct *sys,
lpopts_struct *opts, lptols_struct *tols),
dy_setprintopts(int lvl, lpopts_struct *opts) ;
/*
dylp.c
*/
extern lpret_enum dylp(lpprob_struct *orig_lp, lpopts_struct *orig_opts,
lptols_struct *orig_tols, lpstats_struct *orig_stats) ;
/*
dylp_utils.c
*/
#ifdef DYLP_INTERNAL
extern lpret_enum dyret2lpret(dyret_enum dyret) ;
extern dyret_enum dy_updateprimals(int j, double deltaj, double *p_abarj) ;
extern bool dy_reducerhs(double *rhs, bool init),
dy_calcprimals(void),dy_calccbar(void) ;
extern void dy_calcduals(void),dy_setbasicstatus(void),
dy_dseinit(void),dy_pseinit(void) ;
extern double dy_calcobj(void),dy_calcdualobj(void),dy_calcpinfeas(void) ;
extern void dy_finishup(lpprob_struct *orig_lp, dyphase_enum phase) ;
#ifdef DYLP_PARANOIA
extern bool dy_chkstatus(int vndx),
dy_chkdysys(consys_struct *orig_sys) ;
extern void dy_chkdual(int lvl) ;
#endif
#endif /* DYLP_INTERNAL */
extern bool dy_dupbasis(int dst_basissze, basis_struct **p_dst_basis,
basis_struct *src_basis, int dst_statussze,
flags **p_dst_status,
int src_statuslen, flags *src_status) ;
extern void dy_freesoln(lpprob_struct *lpprob) ;
/*
dy_penalty.c
*/
extern bool dy_pricenbvars(lpprob_struct *orig_lp, flags priceme,
double **p_ocbar, int *p_nbcnt, int **p_nbvars),
dy_pricedualpiv(lpprob_struct *orig_lp, int oxindx,
double nubi, double xi, double nlbi,
int nbcnt, int *nbvars,
double *cbar, double *p_upeni, double *p_dpeni) ;
/*
dy_tableau.c
*/
extern bool dy_abarj(lpprob_struct *orig_lp, int tgt_j, double **p_abarj) ;
extern bool dy_betaj(lpprob_struct *orig_lp, int tgt_j, double **p_betaj) ;
extern bool dy_betai(lpprob_struct *orig_lp, int tgt_i, double **p_betai) ;
extern bool dy_abari(lpprob_struct *orig_lp, int tgt_i, double **p_abari,
double **p_betai) ;
/*
dy_rays.c
*/
extern bool dy_primalRays(lpprob_struct *orig_lp,
int *p_numRays, double ***p_rays) ;
extern bool dy_dualRays(lpprob_struct *orig_lp, bool fullRay,
int *p_numRays, double ***p_rays, bool trueDuals) ;
/*
dy_solutions.c
*/
extern void dy_colDuals(lpprob_struct *orig_lp, double **p_cbar,
bool trueDuals) ;
extern void dy_rowDuals(lpprob_struct *orig_lp, double **p_y,
bool trueDuals) ;
extern void dy_colPrimals(lpprob_struct *orig_lp, double **p_x) ;
extern void dy_rowPrimals(lpprob_struct *orig_lp,
double **p_xB, int **p_indB) ;
extern void dy_logPrimals(lpprob_struct *orig_lp, double **p_logx) ;
extern void dy_colStatus(lpprob_struct *orig_lp, flags **p_colstat) ;
extern void dy_logStatus(lpprob_struct *orig_lp, flags **p_logstat) ;
extern bool dy_expandxopt(lpprob_struct *lp, double **p_xopt) ;
/*
dylp_io.c
*/
#include <dylib_io.h>
#ifdef DYLP_INTERNAL
extern void dy_logpivot(dyret_enum result, int xjndx, int indir, double cbarj,
int xindx, int outdir, double abarij, double delta) ;
extern const char *dy_prtdyret(dyret_enum retcode) ;
#endif /* DYLP_INTERNAL */
extern const char *dy_prtlpret(lpret_enum lpret),
*dy_prtlpphase(dyphase_enum phase, bool abbrv) ;
extern char *dy_prtvstat(flags status) ;
extern bool dy_dumpcompact(ioid chn, bool echo, lpprob_struct *soln,
bool nbzeros) ;
/*
dy_statistics.c
These routines are compiled unconditionally, but note that the compile-time
symbol DYLP_STATISTICS must be defined before dylp will actually take the
time to collect detailed statistics. See dy_statistics.c for additional
instructions.
*/
extern void dy_initstats(lpstats_struct **p_lpstats, consys_struct *orig_sys),
dy_dumpstats(ioid chn, bool echo, lpstats_struct *lpstats,
consys_struct *orig_sys),
dy_freestats(lpstats_struct **p_lpstats) ;
#ifdef DYLP_INTERNAL
extern void dy_finalstats(lpstats_struct *lpstats) ;
#endif /* DYLP_INTERNAL */
#endif /* _DYLP_H */
|