This file is indexed.

/usr/share/gauche-0.9/0.9.1/lib/util/lcs.scm is in gauche 0.9.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
;;;; lcs.scm -- find out the longest common sequence
;;;  
;;;   Copyright (c) 2002-2003 by Alex Shinn, All rights reserved.
;;;   Copyright (c) 2002-2010  Shiro Kawai  <shiro@acm.org>
;;;   
;;;   Redistribution and use in source and binary forms, with or without
;;;   modification, are permitted provided that the following conditions
;;;   are met:
;;;   
;;;   1. Redistributions of source code must retain the above copyright
;;;      notice, this list of conditions and the following disclaimer.
;;;  
;;;   2. Redistributions in binary form must reproduce the above copyright
;;;      notice, this list of conditions and the following disclaimer in the
;;;      documentation and/or other materials provided with the distribution.
;;;  
;;;   3. Neither the name of the authors nor the names of its contributors
;;;      may be used to endorse or promote products derived from this
;;;      software without specific prior written permission.
;;;  
;;;   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
;;;   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
;;;   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
;;;   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
;;;   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
;;;   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
;;;   TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
;;;   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
;;;   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
;;;   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
;;;   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
;;;  

;;; Created:    <2002-06-21 15:36:46 foof>
;;; Time-stamp: <2003-02-15 00:09:55 foof>
;;; Author:     Alex Shinn <foof@synthcode.com>

;;; Modified by Shiro Kawai
;;;  - added lcs-fold and rewrote lcs-edit-list using lcs-fold
;;;  - replaced base algorithm from DP to Myers'

(define-module util.lcs
  (use gauche.sequence)
  (use srfi-1)
  (use srfi-11)
  (export lcs lcs-with-positions lcs-fold lcs-edit-list))
(select-module util.lcs)

;; The base algorithm.   This code implements
;; Eugene Myers, "An O(ND) Difference Algorithm and Its Variations",
;; Algorithmica Vol. 1 No. 2, 1986, pp. 251-266.
;; It takes O((M+N)D) time and O((M+N)L) space, where
;; N = (length a), M = (length b), D is the length of the smallest edit
;; sequence (SES), and L is the length of the longest common subsequence (LCS).
;; In most applications the difference is small, so it is much better than
;; DP algorithm that is generally O(MN) time and space complextiy.
;; The worst case where a and b totally differ is O((M+N)^2).
;; The Myers's paper gives refinement of the algorithm
;; that improves worst case behavior, but I don't implement it yet. --[SK]

(define (lcs-with-positions a-ls b-ls . opt-eq)
  (let* ((eq (get-optional opt-eq equal?))
         (A  (list->vector a-ls))
         (B  (list->vector b-ls))
         (N  (vector-length A))
         (M  (vector-length B))
         (M+N (+ N M))
         (V_d (make-vector (+ (* 2 M+N) 1) 0))
         (V_r (make-vector (+ (* 2 M+N) 1) '()))
         (V_l (make-vector (+ (* 2 M+N) 1) 0)))

    (let-syntax ((vd
                  (syntax-rules ()
                    ((vd i) (vector-ref V_d (+ i M+N)))
                    ((vd i x) (vector-set! V_d (+ i M+N) x))))
                 (vr
                  (syntax-rules ()
                    ((vr i) (vector-ref V_r (+ i M+N)))
                    ((vr i x) (vector-set! V_r (+ i M+N) x))))
                 (vl
                  (syntax-rules ()
                    ((vl i) (vector-ref V_l (+ i M+N)))
                    ((vl i x) (vector-set! V_l (+ i M+N) x)))))

      (define (finish)
        (let loop ((i (- M+N)) (maxl 0) (r '()))
          (cond ((> i M+N) (list maxl (reverse! r)))
                ((> (vl i) maxl)
                 (loop (+ i 1) (vl i) (vr i)))
                (else
                 (loop (+ i 1) maxl r)))))

      (if (zero? M+N)
        '(0 ()) ;; boundary case
        (let d-loop ((d 0))
          (if (> d M+N)
            (error "lcs-with-positions; something's wrong (implementation error?)")
            (let k-loop ((k (- d)))
              (if (> k d)
                (d-loop (+ d 1))
                (receive (x l r)
                    (if (or (= k (- d))
                            (and (not (= k d))
                                 (< (vd (- k 1)) (vd (+ k 1)))))
                      (values (vd (+ k 1)) (vl (+ k 1)) (vr (+ k 1)))
                      (values (+ (vd (- k 1)) 1) (vl (- k 1)) (vr (- k 1))))
                  (receive (x y l r)
                      (let xy-loop ((x x) (y (- x k)) (l l) (r r))
                        (cond ((>= x N) (values x y l r))
                              ((>= y M) (values x y l r))
                              ((eq (vector-ref A x) (vector-ref B y))
                               (xy-loop (+ x 1) (+ y 1) (+ l 1)
                                        (cons (list (vector-ref A x) x y)
                                              r)))
                              (else (values x y l r))))
                    (vd k x)
                    (vr k r)
                    (vl k l)
                    (if (and (>= x N) (>= y M))
                      (finish)
                      (k-loop (+ k 2))))
                  )))
            )))
      )))

;; Just returns the LCS
(define (lcs a b . opt-eq)
  (map car (cadr (lcs-with-positions a b (get-optional opt-eq equal?)))))

;; Fundamental iterator to deal with editlist.
;;   Similar to Perl's Algorith::Diff's traverse_sequence.
(define (lcs-fold a-only b-only both seed a b . opt-eq)
  (let1 common (cadr (lcs-with-positions a b (get-optional opt-eq equal?)))
    ;; Calculates edit-list from the LCS.
    ;; Loop parameters:
    ;;   common - list of common elements
    ;;   seed   - seed value
    ;;   a      - head of sequence a
    ;;   a-pos  - current position count of sequence a
    ;;   b      - head of sequence b
    ;;   b-pos  - current position count of sequence b
    (let loop ((common common) (seed seed)
               (a a) (a-pos 0) (b b) (b-pos 0))
      (if (null? common)
        ;; No more common elements.  Fold the tail of a and b.
        (fold b-only (fold a-only seed a) b)
        ;; We have a common element.
        (let* ((elt   (car common))
               (a-off (cadr elt))
               (a-skip (- a-off a-pos))
               (b-off (caddr elt))
               (b-skip (- b-off b-pos)))
          (let-values (((a-head a-tail) (split-at a a-skip))
                       ((b-head b-tail) (split-at b b-skip)))
            (loop (cdr common)
                  (both (car elt)
                        (fold b-only (fold a-only seed a-head) b-head))
                  (cdr a-tail) (+ a-off 1) (cdr b-tail) (+ b-off 1)))))
      )
    ))

;; Returns an 'edit-list', which is a list of command sequences
;; that turns the sequence a to the sequence b.
;; The return value is a list of hunks, where each hunk is a
;; list of edit commands, (<command> <index> <element>).

(define (lcs-edit-list a b . opt-eq)
  (define a-pos -1)  ;; we use pre-increment, so begin from -1.
  (define b-pos -1)  ;; ditto
  (define hunks '())
  (let1 last
      (apply lcs-fold
             (lambda (elt hunk)  ;; a-only - remove
               (inc! a-pos) `((- ,a-pos ,elt) ,@hunk))
             (lambda (elt hunk)  ;; b-only - add
               (inc! b-pos) `((+ ,b-pos ,elt) ,@hunk))
             (lambda (elt hunk)  ;; same - reset hunks
               (inc! a-pos) (inc! b-pos)
               (unless (null? hunk) (push! hunks (reverse! hunk)))
               '())
             '()
             a b opt-eq)
    (unless (null? last) (push! hunks (reverse! last))))
  (reverse! hunks))