This file is indexed.

/usr/include/ace/Timer_Queue_T.cpp is in libace-dev 6.0.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
// $Id: Timer_Queue_T.cpp 92285 2010-10-20 16:34:57Z shuston $

#ifndef ACE_TIMER_QUEUE_T_CPP
#define ACE_TIMER_QUEUE_T_CPP

#include "ace/config-all.h"

#if !defined (ACE_LACKS_PRAGMA_ONCE)
# pragma once
#endif /* ACE_LACKS_PRAGMA_ONCE */

/*
 * Hook to specialize to add includes
 */
//@@ REACTOR_SPL_INCLUDE_FORWARD_DECL_ADD_HOOK

#include "ace/Timer_Queue_T.h"
#include "ace/Guard_T.h"
#include "ace/Log_Msg.h"
#include "ace/Reactor_Timer_Interface.h"
#include "ace/Reverse_Lock_T.h"
#include "ace/Null_Mutex.h"
#include "ace/OS_NS_sys_time.h"

#if !defined (__ACE_INLINE__)
#include "ace/Timer_Queue_T.inl"
#endif /* __ACE_INLINE__ */

ACE_BEGIN_VERSIONED_NAMESPACE_DECL

// This fudge factor can be overriden for timers that need it, such as on
// Solaris, by defining the ACE_TIMER_SKEW symbol in the appropriate config
// header.
#if !defined (ACE_TIMER_SKEW)
#  define ACE_TIMER_SKEW 0
#endif /* ACE_TIMER_SKEW */

template <class TYPE> void
ACE_Timer_Node_T<TYPE>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
  ACE_TRACE ("ACE_Timer_Node_T::dump");
  ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
  ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("\nact_ = %x"), this->act_));
  this->timer_value_.dump ();
  this->interval_.dump ();
  ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("\nprev_ = %x"), this->prev_));
  ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("\nnext_ = %x"), this->next_));
  ACE_DEBUG ((LM_DEBUG, ACE_TEXT ("\ntimer_id_ = %d\n"), this->timer_id_));
  ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}

template <class TYPE>
ACE_Timer_Node_T<TYPE>::ACE_Timer_Node_T (void)
{
  ACE_TRACE ("ACE_Timer_Node_T::ACE_Timer_Node_T");
}

template <class TYPE>
ACE_Timer_Node_T<TYPE>::~ACE_Timer_Node_T (void)
{
  ACE_TRACE ("ACE_Timer_Node_T::~ACE_Timer_Node_T");
}

template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Queue_Iterator_T<TYPE, FUNCTOR, ACE_LOCK>::ACE_Timer_Queue_Iterator_T (void)
{
}

template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Queue_Iterator_T<TYPE, FUNCTOR, ACE_LOCK>::~ACE_Timer_Queue_Iterator_T (void)
{
}

template <class TYPE, class FUNCTOR, class ACE_LOCK> ACE_Time_Value *
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK>::calculate_timeout (ACE_Time_Value *max_wait_time)
{
  ACE_TRACE ("ACE_Timer_Queue_T::calculate_timeout");
  ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, max_wait_time));

  if (this->is_empty ())
    // Nothing on the Timer_Queue, so use whatever the caller gave us.
    return max_wait_time;
  else
    {
      ACE_Time_Value const cur_time = this->gettimeofday ();

      if (this->earliest_time () > cur_time)
        {
          // The earliest item on the Timer_Queue is still in the
          // future.  Therefore, use the smaller of (1) caller's wait
          // time or (2) the delta time between now and the earliest
          // time on the Timer_Queue.

          this->timeout_ = this->earliest_time () - cur_time;
          if (max_wait_time == 0 || *max_wait_time > timeout_)
            return &this->timeout_;
          else
            return max_wait_time;
        }
      else
        {
          // The earliest item on the Timer_Queue is now in the past.
          // Therefore, we've got to "poll" the Reactor, i.e., it must
          // just check the descriptors and then dispatch timers, etc.
          this->timeout_ = ACE_Time_Value::zero;
          return &this->timeout_;
        }
    }
}

template <class TYPE, class FUNCTOR, class ACE_LOCK> ACE_Time_Value *
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK>::calculate_timeout (ACE_Time_Value *max_wait_time,
                                                               ACE_Time_Value *the_timeout)
{
  ACE_TRACE ("ACE_Timer_Queue_T::calculate_timeout");

  if (the_timeout == 0)
    return 0;

  if (this->is_empty ())
    {
      // Nothing on the Timer_Queue, so use whatever the caller gave us.
      if (max_wait_time)
        *the_timeout = *max_wait_time;
      else
        return 0;
    }
  else
    {
      ACE_Time_Value cur_time = this->gettimeofday ();

      if (this->earliest_time () > cur_time)
        {
          // The earliest item on the Timer_Queue is still in the
          // future.  Therefore, use the smaller of (1) caller's wait
          // time or (2) the delta time between now and the earliest
          // time on the Timer_Queue.

          *the_timeout = this->earliest_time () - cur_time;
          if (!(max_wait_time == 0 || *max_wait_time > *the_timeout))
            *the_timeout = *max_wait_time;
        }
      else
        {
          // The earliest item on the Timer_Queue is now in the past.
          // Therefore, we've got to "poll" the Reactor, i.e., it must
          // just check the descriptors and then dispatch timers, etc.
          *the_timeout = ACE_Time_Value::zero;
        }
    }
  return the_timeout;
}

template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK>::dump (void) const
{
#if defined (ACE_HAS_DUMP)
  ACE_TRACE ("ACE_Timer_Queue_T::dump");
  ACE_DEBUG ((LM_DEBUG, ACE_BEGIN_DUMP, this));
  this->timeout_.dump ();
  this->timer_skew_.dump ();
  ACE_DEBUG ((LM_DEBUG, ACE_END_DUMP));
#endif /* ACE_HAS_DUMP */
}

template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK>::ACE_Timer_Queue_T (FUNCTOR *upcall_functor,
                                                               ACE_Free_List<ACE_Timer_Node_T <TYPE> > *freelist)
  : gettimeofday_ (ACE_OS::gettimeofday),
    delete_upcall_functor_ (upcall_functor == 0),
    delete_free_list_ (freelist == 0),
    timer_skew_ (0, ACE_TIMER_SKEW)
{
  ACE_TRACE ("ACE_Timer_Queue_T::ACE_Timer_Queue_T");

  if (!freelist)
    ACE_NEW (free_list_,
             (ACE_Locked_Free_List<ACE_Timer_Node_T<TYPE>,ACE_Null_Mutex>));
  else
    free_list_ = freelist;

  if (!upcall_functor)
    ACE_NEW (upcall_functor_,
             FUNCTOR);
  else
    upcall_functor_ = upcall_functor;
}

template <class TYPE, class FUNCTOR, class ACE_LOCK>
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK>::~ACE_Timer_Queue_T (void)
{
  ACE_TRACE ("ACE_Timer_Queue_T::~ACE_Timer_Queue_T");

  // Cleanup the functor and free_list on the way out
  if (this->delete_upcall_functor_)
    delete this->upcall_functor_;

  if (this->delete_free_list_)
    delete this->free_list_;
}

template <class TYPE, class FUNCTOR, class ACE_LOCK> ACE_Timer_Node_T<TYPE> *
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK>::alloc_node (void)
{
  return this->free_list_->remove ();
}

template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK>::free_node (ACE_Timer_Node_T<TYPE> *node)
{
  this->free_list_->add (node);
}

template <class TYPE, class FUNCTOR, class ACE_LOCK> ACE_LOCK &
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK>::mutex (void)
{
  return this->mutex_;
}

template <class TYPE, class FUNCTOR, class ACE_LOCK> long
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK>::schedule (const TYPE &type,
                                                      const void *act,
                                                      const ACE_Time_Value &future_time,
                                                      const ACE_Time_Value &interval)
{
  ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, -1));

  // Schedule the timer.
  long const result =
    this->schedule_i (type,
                      act,
                      future_time,
                      interval);

  // Return on failure.
  if (result == -1)
    return result;

  // Inform upcall functor of successful registration.
  this->upcall_functor ().registration (*this,
                                        type,
                                        act);

  // Return result;
  return result;
}

// Run the <handle_timeout> method for all Timers whose values are <=
// <cur_time>.
template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK>::expire (const ACE_Time_Value &cur_time)
{
  ACE_TRACE ("ACE_Timer_Queue_T::expire");
  ACE_MT (ACE_GUARD_RETURN (ACE_LOCK, ace_mon, this->mutex_, -1));

  // Keep looping while there are timers remaining and the earliest
  // timer is <= the <cur_time> passed in to the method.

  if (this->is_empty ())
    return 0;

  int number_of_timers_expired = 0;
  int result = 0;

  ACE_Timer_Node_Dispatch_Info_T<TYPE> info;

  while ((result = this->dispatch_info_i (cur_time, info)) != 0)
    {
      ACE_MT (ACE_Reverse_Lock<ACE_LOCK> rev_lk(this->mutex_));
      ACE_MT (ACE_GUARD_RETURN (ACE_Reverse_Lock<ACE_LOCK>, rmon, rev_lk, -1));

      const void *upcall_act = 0;

      this->preinvoke (info, cur_time, upcall_act);

      this->upcall (info, cur_time);

      this->postinvoke (info, cur_time, upcall_act);

      ++number_of_timers_expired;

    }

  ACE_UNUSED_ARG (result);
  return number_of_timers_expired;
}

template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK>::recompute_next_abs_interval_time
    (ACE_Timer_Node_T<TYPE> *expired,
     const ACE_Time_Value &cur_time)
{
  if ( expired->get_timer_value () <= cur_time )
    {
      /*
       * Somehow the current time is past when this time was
       * supposed to expire (e.g., timer took too long,
       * somebody changed system time, etc.).  There used to
       * be a simple loop here that skipped ahead one timer
       * interval at a time, but that was horribly inefficient
       * (an O(n) algorithm) when the timer duration was small
       * relative to the amount of time skipped.
       *
       * So, we replace the loop with a simple computation,
       * which also happens to be O(1).  All times get
       * normalized in the computation to microseconds.
       *
       * For reference, the loop looked like this:
       *
       *   do
       *     expired->set_timer_value (expired->get_timer_value () +
       *                               expired->get_interval ());
       *   while (expired->get_timer_value () <= cur_time);
       *
       */

      // Compute the duration of the timer's interval
      ACE_UINT64 interval_usec;
      expired->get_interval ().to_usec (interval_usec);

      // Compute the span between the current time and when
      // the timer would have expired in the past (and
      // normalize to microseconds).
      ACE_Time_Value old_diff = cur_time - expired->get_timer_value ();
      ACE_UINT64 old_diff_usec;
      old_diff.to_usec (old_diff_usec);

      // Compute the delta time in the future when the timer
      // should fire as if it had advanced incrementally.  The
      // modulo arithmetic accomodates the likely case that
      // the current time doesn't fall precisely on a timer
      // firing interval.
      ACE_UINT64 new_timer_usec =
        interval_usec - (old_diff_usec % interval_usec);

      // Compute the absolute time in the future when this
      // interval timer should expire.
      ACE_Time_Value new_timer_value
        (cur_time.sec ()
         + static_cast<time_t>(new_timer_usec / ACE_ONE_SECOND_IN_USECS),
         cur_time.usec ()
         + static_cast<suseconds_t>(new_timer_usec % ACE_ONE_SECOND_IN_USECS));

      expired->set_timer_value (new_timer_value);
    }
}

template <class TYPE, class FUNCTOR, class ACE_LOCK> int
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK>::dispatch_info_i (const ACE_Time_Value &cur_time,
                                                             ACE_Timer_Node_Dispatch_Info_T<TYPE> &info)
{
  ACE_TRACE ("ACE_Timer_Queue_T::dispatch_info_i");

  if (this->is_empty ())
    return 0;

  ACE_Timer_Node_T<TYPE> *expired = 0;

  if (this->earliest_time () <= cur_time)
    {
      expired = this->remove_first ();

      // Get the dispatch info
      expired->get_dispatch_info (info);

      // Check if this is an interval timer.
      if (expired->get_interval () > ACE_Time_Value::zero)
        {
          // Make sure that we skip past values that have already
          // "expired".
          this->recompute_next_abs_interval_time (expired, cur_time);

          // Since this is an interval timer, we need to reschedule
          // it.
          this->reschedule (expired);
        }
      else
        {
          // Call the factory method to free up the node.
          this->free_node (expired);
        }

      return 1;
    }

  return 0;
}

template <class TYPE, class FUNCTOR, class ACE_LOCK> void
ACE_Timer_Queue_T<TYPE, FUNCTOR, ACE_LOCK>::return_node (ACE_Timer_Node_T<TYPE> *node)
{
  ACE_MT (ACE_GUARD (ACE_LOCK, ace_mon, this->mutex_));
  this->free_node (node);
}


template <class ACE_LOCK>
ACE_Event_Handler_Handle_Timeout_Upcall<ACE_LOCK>::ACE_Event_Handler_Handle_Timeout_Upcall (void)
{
}

template <class ACE_LOCK>
ACE_Event_Handler_Handle_Timeout_Upcall<ACE_LOCK>::~ACE_Event_Handler_Handle_Timeout_Upcall (void)
{
}

template <class ACE_LOCK> int
ACE_Event_Handler_Handle_Timeout_Upcall<ACE_LOCK>::registration (TIMER_QUEUE &,
                                                                 ACE_Event_Handler *event_handler,
                                                                 const void *)
{
  event_handler->add_reference ();
  return 0;
}

template <class ACE_LOCK> int
ACE_Event_Handler_Handle_Timeout_Upcall<ACE_LOCK>::preinvoke (TIMER_QUEUE & /* timer_queue */,
                                                              ACE_Event_Handler *event_handler,
                                                              const void * /* timer_act */,
                                                              int /* recurring_timer */,
                                                              const ACE_Time_Value & /* cur_time */,
                                                              const void *&upcall_act)
{
  bool const requires_reference_counting =
    event_handler->reference_counting_policy ().value () ==
    ACE_Event_Handler::Reference_Counting_Policy::ENABLED;

  if (requires_reference_counting)
    {
      event_handler->add_reference ();

      upcall_act = &this->requires_reference_counting_;
    }

  return 0;
}

template <class ACE_LOCK> int
ACE_Event_Handler_Handle_Timeout_Upcall<ACE_LOCK>::postinvoke (TIMER_QUEUE & /* timer_queue */,
                                                               ACE_Event_Handler *event_handler,
                                                               const void * /* timer_act */,
                                                               int /* recurring_timer */,
                                                               const ACE_Time_Value & /* cur_time */,
                                                               const void *upcall_act)
{
  if (upcall_act == &this->requires_reference_counting_)
    {
      event_handler->remove_reference ();
    }

  return 0;
}

template <class ACE_LOCK> int
ACE_Event_Handler_Handle_Timeout_Upcall<ACE_LOCK>::timeout (TIMER_QUEUE &timer_queue,
                                                            ACE_Event_Handler *event_handler,
                                                            const void *act,
                                                            int recurring_timer,
                                                            const ACE_Time_Value &cur_time)
{
  int requires_reference_counting = 0;

  if (!recurring_timer)
    {
      requires_reference_counting =
        event_handler->reference_counting_policy ().value () ==
        ACE_Event_Handler::Reference_Counting_Policy::ENABLED;
    }

  // Upcall to the <handler>s handle_timeout method.
  if (event_handler->handle_timeout (cur_time, act) == -1)
    {
      if (event_handler->reactor_timer_interface ())
        event_handler->reactor_timer_interface ()->cancel_timer (event_handler, 0);
      else
        timer_queue.cancel (event_handler, 0); // 0 means "call handle_close()".
    }

  if (!recurring_timer &&
      requires_reference_counting)
    {
      event_handler->remove_reference ();
    }

  return 0;
}

template <class ACE_LOCK> int
ACE_Event_Handler_Handle_Timeout_Upcall<ACE_LOCK>::cancel_type (TIMER_QUEUE &,
                                                                ACE_Event_Handler *event_handler,
                                                                int dont_call,
                                                                int &requires_reference_counting)
{
  requires_reference_counting =
    event_handler->reference_counting_policy ().value () ==
    ACE_Event_Handler::Reference_Counting_Policy::ENABLED;

  // Upcall to the <handler>s handle_close method
  if (dont_call == 0)
    event_handler->handle_close (ACE_INVALID_HANDLE,
                                 ACE_Event_Handler::TIMER_MASK);

  return 0;
}

template <class ACE_LOCK> int
ACE_Event_Handler_Handle_Timeout_Upcall<ACE_LOCK>::cancel_timer (TIMER_QUEUE &,
                                                                 ACE_Event_Handler *event_handler,
                                                                 int,
                                                                 int requires_reference_counting)
{
  if (requires_reference_counting)
    event_handler->remove_reference ();

  return 0;
}

template <class ACE_LOCK> int
ACE_Event_Handler_Handle_Timeout_Upcall<ACE_LOCK>::deletion (TIMER_QUEUE &timer_queue,
                                                             ACE_Event_Handler *event_handler,
                                                             const void *)
{
  int requires_reference_counting = 0;

  this->cancel_type (timer_queue,
                     event_handler,
                     0,
                     requires_reference_counting);

  this->cancel_timer (timer_queue,
                      event_handler,
                      0,
                      requires_reference_counting);

  return 0;
}

ACE_END_VERSIONED_NAMESPACE_DECL

#endif /* ACE_TIMER_QUEUE_T_CPP */