/usr/include/alberta/alberta.h is in libalberta2-dev 2.0.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 | /*--------------------------------------------------------------------------*/
/* ALBERTA: an Adaptive multi Level finite element toolbox using */
/* Bisectioning refinement and Error control by Residual */
/* Techniques for scientific Applications */
/* */
/* file: alberta.h */
/* */
/* */
/* description: public header file of the ALBERTA package */
/* */
/*--------------------------------------------------------------------------*/
/* */
/* authors: Alfred Schmidt */
/* Zentrum fuer Technomathematik */
/* Fachbereich 3 Mathematik/Informatik */
/* Universitaet Bremen */
/* Bibliothekstr. 2 */
/* D-28359 Bremen, Germany */
/* */
/* Kunibert G. Siebert */
/* Institut fuer Mathematik */
/* Universitaet Augsburg */
/* Universitaetsstr. 14 */
/* D-86159 Augsburg, Germany */
/* */
/* Daniel Koester */
/* Institut fuer Mathematik */
/* Universitaet Augsburg */
/* Universitaetsstr. 14 */
/* D-86159 Augsburg, Germany */
/* */
/* http://www.alberta-fem.de */
/* */
/* (c) by A. Schmidt and K.G. Siebert (1996-2005) */
/* (c) by D. Koester (2002-2005) */
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/* Global configuration header */
/*--------------------------------------------------------------------------*/
#ifdef HAVE_CONFIG_H /* only defined during build of ALBERTA libs */
#include <config.h>
#endif
/*--------------------------------------------------------------------------*/
/* Header-File for ALBERTA utilities */
/*--------------------------------------------------------------------------*/
#ifndef _ALBERTA_H_
#define _ALBERTA_H_
#include "alberta_util.h"
#ifdef __cplusplus
extern "C" {
#endif
#define ALBERTA_VERSION "ALBERTA: Version 2.0"
/*--------------------------------------------------------------------------*/
/* Definition of the space dimension and of parameters depending on the */
/* space dimension: */
/* */
/* DIM_OF_WORLD: space dimension */
/* */
/* The ?D-suffix signals different simplex dimensions (formerly ==DIM). */
/*--------------------------------------------------------------------------*/
#ifndef DIM_OF_WORLD
# error DIM_OF_WORLD UNDEFINED
#endif
#ifndef ALBERTA_DEBUG
#warning ALBERTA_DEBUG WAS NOT DEFINED! DEFAULTING TO 0.
#define ALBERTA_DEBUG 0
#endif
/* The master dimension limit */
#define DIM_MAX 3
/* Various constants for dimension dependent geometrical quantities */
#define N_VERTICES(DIM) ((DIM)+1)
#define N_EDGES(DIM) ((DIM)*((DIM)+1)/2)
#define N_WALLS(DIM) ((DIM)+1) /* number of codim 1 subsimplexes */
#define N_FACES(DIM) (((DIM) == 3) * N_WALLS(DIM))
#define N_NEIGH(DIM) (((DIM) != 0) * N_WALLS(DIM))
#define DIM_FAC(DIM) ((DIM) < 2 ? 1 : (DIM) == 2 ? 2 : 6)
#define N_VERTICES_0D N_VERTICES(0)
#define N_EDGES_0D N_EDGES(0)
#define N_FACES_0D N_FACES(0)
#define N_NEIGH_0D N_NEIGH(0)
#define N_WALLS_0D N_WALLS(0)
#define N_VERTICES_1D N_VERTICES(1)
#define N_EDGES_1D N_EDGES(1)
#define N_FACES_1D N_FACES(1)
#define N_NEIGH_1D N_NEIGH(1)
#define N_WALLS_1D N_WALLS(1)
#define N_VERTICES_2D N_VERTICES(2)
#define N_EDGES_2D N_EDGES(2)
#define N_FACES_2D N_FACES(2)
#define N_NEIGH_2D N_NEIGH(2)
#define N_WALLS_2D N_WALLS(2)
#define N_VERTICES_3D N_VERTICES(3)
#define N_EDGES_3D N_EDGES(3)
#define N_FACES_3D N_FACES(3)
#define N_NEIGH_3D N_NEIGH(3)
#define N_WALLS_3D N_WALLS(3)
#define N_VERTICES_MAX N_VERTICES(DIM_MAX)
#define N_EDGES_MAX N_EDGES(DIM_MAX)
#define N_FACES_MAX N_FACES(DIM_MAX)
#define N_NEIGH_MAX N_NEIGH(DIM_MAX)
#define N_WALLS_MAX N_WALLS(DIM_MAX)
/* N_LAMBDA is the maximal number of barycentric coordinates, formerly DIM+1 */
/* Barycentric coords are often initialized using constant values, therefore */
/* we set this to 4. */
#define N_LAMBDA 4
#define LAMBDA_MAX N_LAMBDA
typedef REAL REAL_B[N_LAMBDA];
typedef REAL_B REAL_BB[N_LAMBDA];
typedef REAL REAL_D[DIM_OF_WORLD];
typedef REAL_D REAL_DD[DIM_OF_WORLD];
typedef REAL_D REAL_BD[N_LAMBDA];
typedef struct real_dds REAL_DDS;
struct real_dds {
REAL_D row0;
REAL row1[DIM_OF_WORLD-1]; /* zero size array in case of DOW == 1 */
#if DIM_OF_WORLD > 1
REAL row2[DIM_OF_WORLD-2]; /* zero size array in case of DOW == 2 */
#else
REAL row2[0];
#endif
};
/*--------------------------------------------------------------------------*/
/* some useful macros depending on DIM_OF_WORLD */
/*--------------------------------------------------------------------------*/
#include "alberta_inlines.h"
/*--------------------------------------------------------------------------*/
/* access to element index via element or element_info structure */
/*--------------------------------------------------------------------------*/
#if ALBERTA_DEBUG
#define INDEX(el) ((el) ? (el)->index : -1)
#else
#define INDEX(el) -1
#endif
/*--------------------------------------------------------------------------*/
/* access to leaf data (only for leaf elements) */
/*--------------------------------------------------------------------------*/
#define IS_LEAF_EL(el) (!(el)->child[0])
#define LEAF_DATA(el) ((void *)(el)->child[1])
/*--------------------------------------------------------------------------*/
/* boundary types */
/*--------------------------------------------------------------------------*/
#define INTERIOR 0
#define DIRICHLET 1
#define NEUMANN -1
#define IS_NEUMANN(bound) ((bound) <= NEUMANN)
#define IS_DIRICHLET(bound) ((bound) >= DIRICHLET)
#define IS_INTERIOR(bound) ((bound) == 0)
/*--------------------------------------------------------------------------*/
/* node types (indices in n_dof[] vectors, e.g.) */
/*--------------------------------------------------------------------------*/
#define N_NODE_TYPES (DIM_MAX+1)
#define VERTEX 0
#define CENTER 1
#define EDGE 2
#define FACE 3
/*--------------------------------------------------------------------------*/
/* basic types of the grid */
/*--------------------------------------------------------------------------*/
typedef signed int DOF;
typedef struct el EL;
typedef struct macro_el MACRO_EL;
typedef struct el_info EL_INFO;
typedef struct rc_list_el RC_LIST_EL;
typedef struct mesh MESH;
typedef struct parametric PARAMETRIC;
typedef struct traverse_stack TRAVERSE_STACK;
typedef struct adapt_stat ADAPT_STAT;
typedef struct adapt_instat ADAPT_INSTAT;
#ifndef DOF_ADMIN_DEF
typedef struct dof_admin DOF_ADMIN;
typedef struct dof_int_vec DOF_INT_VEC;
typedef struct dof_dof_vec DOF_DOF_VEC;
typedef struct dof_uchar_vec DOF_UCHAR_VEC;
typedef struct dof_schar_vec DOF_SCHAR_VEC;
typedef struct dof_real_vec DOF_REAL_VEC;
typedef struct dof_real_d_vec DOF_REAL_D_VEC;
typedef struct dof_ptr_vec DOF_PTR_VEC;
typedef struct matrix_row MATRIX_ROW;
typedef struct dof_matrix DOF_MATRIX;
typedef struct dowb_matrix_row DOWB_MATRIX_ROW;
typedef struct dof_dowb_matrix DOF_DOWB_MATRIX;
#endif
typedef struct bas_fcts BAS_FCTS;
typedef struct fe_space FE_SPACE;
typedef struct quadrature QUAD;
typedef struct quadrature QUADRATURE;
typedef struct quad_fast QUAD_FAST;
typedef struct macro_data MACRO_DATA;
typedef struct node_projection NODE_PROJECTION;
typedef struct list_node LIST_NODE;
typedef struct traverse_hook TRAVERSE_HOOK;
typedef void (*TRAVERSE_HOOK_FCT)(const EL_INFO *el_info, void *hook_data);
/* Traverse-hook node. See also add_traverse_hook(),
* remove_traverse_hook(). Traverse-Hooks are special hooks
* dynamically added and removed from the mesh. The hooks are run
* during mesh-traversal prior to calling the element function. They
* are intended to hide certain details from the application program,
* e.g. to modify basis functions on a per-element basis
* (hp-methods?). In principle, the init_element() of the PARAMETRIC
* structure could go into a traverse hook.
*/
struct list_node {
LIST_NODE *next;
LIST_NODE *prev;
};
#define LIST_ENTRY(node, type, nodename) \
((type *)((ptrdiff_t)node - (ptrdiff_t)&((type *)0)->nodename))
struct traverse_hook
{
TRAVERSE_HOOK_FCT function;
void *data; /* Per hook data. */
LIST_NODE node; /* doubly-linked list for efficient add and remove */
};
/*--------------------------------------------------------------------------*/
/* node projection descriptor: */
/* a function pointer which calculates the projected location of a new */
/* vertex resulting from refinement. */
/* curved boundary */
/* type: one of INTERIOR : DIRICHLET : NEUMANN */
/*--------------------------------------------------------------------------*/
struct node_projection
{
void (*func)(REAL_D old_coord, const EL_INFO *eli, const REAL_B lambda);
};
/*--------------------------------------------------------------------------*/
/* one single element (triangle) of the grid: */
/*--------------------------------------------------------------------------*/
/* */
/* position of the nodes in 1d: */
/* */
/* 0 _____ 1 or 0 _____ 1 */
/* 2 */
/* */
/* child[0] child[1] */
/* refinement: 0 _____ 1 0 ___ 1 0 ___ 1 */
/* 2 2 */
/* */
/*--------------------------------------------------------------------------*/
/* */
/* position of the nodes in 2d */
/* 2 2 2 2 */
/* /\ or /\ or /\ or /\ */
/* / \ 4/ \ 3 / \ 4/ \ 3 */
/* / \ / \ / 3 \ / 6 \ */
/* 0/______\1 0/______\1 0/______\1 0/______\1 */
/* 5 5 */
/* */
/* refinement: 2 child[0] 0 1 child[1] */
/* /\ /| |\ */
/* 4/ \ 3 --> 5/ |4 3| \ 5 */
/* / 6 \ /6 | |6 \ */
/* 0/______\1 1/___| |___\0 */
/* 5 3 2 2 4 */
/* */
/*--------------------------------------------------------------------------*/
/* */
/* 3d refinement: vertex numbering after (Baensch +) Kossaczky */
/* */
/* edges: */
/* E0: between V0, V1 */
/* E1: between V0, V2 */
/* E2: between V0, V3 */
/* E3: between V1, V2 */
/* E4: between V1, V3 */
/* E5: between V2, V3 */
/* */
/* Always edge 0 (between vertices 0 and 1) is bisected. */
/* */
/* V1 */
/* -+ */
/* ----- || */
/* E0 ------ | | */
/* ------ | | E3 */
/* ------ | | */
/* ------ | | */
/* V0 +. . . . . . . . . . . . . . | . . . | */
/* --- (E1) | + V2 */
/* --- | / */
/* --- |E4 / */
/* --- | / */
/* E2 --- | / E5 */
/* --- | / */
/* --- | / */
/* ---|/ */
/* + */
/* V3 */
/* */
/*--------------------------------------------------------------------------*/
/* child: pointers to the two children of the element */
/* if (child[0]==child[1]==nil) element is a leaf of the */
/* tree */
/* dof: vector of pointers to dof vectors :-) */
/* new_coord: in case of curved boundary, coords of ref.edge midpoint */
/* index: global element index (only for test purposes) */
/* mark: element is a leaf: */
/* mark == 0 do not refine/coarsen */
/* mark > 0 refine (mark times) */
/* mark < 0 may be coarsened (mark times) */
/*--------------------------------------------------------------------------*/
struct el
{
EL *child[2];
DOF **dof;
S_CHAR mark;
REAL *new_coord;
#if ALBERTA_DEBUG
int index;
#endif
};
/*--------------------------------------------------------------------------*/
/* child_vertex_3d[el_type][child][i] = */
/* parent's local vertex index of new vertex i */
/* 4 stands for the newly generated vertex */
/*--------------------------------------------------------------------------*/
/* child_edge_3d[el_type][child][i] = */
/* parent's local edge index of new edge i */
/* new edge 2 is half of old edge 0, */
/* new edges 4,5 are really new edges, and value is different: */
/* child_edge_3d[][][4,5] = index of same edge in other child */
/*--------------------------------------------------------------------------*/
/* vertex_of_edge_?d[edge][i], i = 1,2 are the two vertices of edge */
/*--------------------------------------------------------------------------*/
extern int vertex_of_edge_2d[3][2]; /* defined in traverse_r.c */
extern int child_vertex_3d[3][2][4]; /* defined in traverse_r.c */
extern int child_edge_3d[3][2][6]; /* defined in traverse_r.c */
extern int vertex_of_edge_3d[6][2]; /* defined in traverse_r.c */
/*--------------------------------------------------------------------------*/
/* edge_of_dofs_3d[i][j]: gives the local index of edge with vertices i, j */
/*--------------------------------------------------------------------------*/
extern U_CHAR edge_of_dofs_3d[4][4]; /* defined in refine.c */
/*--------------------------------------------------------------------------*/
/* PARAMETRIC structure, entry in MESH structure */
/* description of parametric meshes and elements */
/*--------------------------------------------------------------------------*/
struct parametric
{
char *name; /* textual description analogous to BAS_FCTS. */
int (*init_element)(const EL_INFO *info, const PARAMETRIC *parametric);
/* init_el = 0 : non-parametric element */
/* init_el = 1 : parametric element */
void (*coord_to_world)(const EL_INFO *info, const QUAD *quad,
int n, const REAL lambda[][N_LAMBDA], REAL_D *world);
int (*world_to_coord)(const EL_INFO *info,
int n, const REAL_D world[], REAL lambda[][N_LAMBDA]);
void (*det)(const EL_INFO *info, const QUAD *quad,
int n, const REAL lambda[][N_LAMBDA], REAL dets[]);
void (*grd_lambda)(const EL_INFO *info, const QUAD *quad,
int n, const REAL lambda[][N_LAMBDA],
REAL_D grd_lam[][N_LAMBDA], REAL dets[]);
int not_all; /* true: some elements may be non-parametric */
int use_reference_mesh; /* true: standard routines coord_to_world, etc. */
/* may be used to get data about the reference */
/* triangulation. Set to "false" by default. */
/* private entries */
void (*inherit_parametric)(MESH *slave);
void *data;
};
/*--------------------------------------------------------------------------*/
/* additional information to elements during hierarchy traversal */
/*--------------------------------------------------------------------------*/
/* mesh: pointer to the mesh structure */
/* coord: world coordinates of the nodes */
/* parametric case is handled via dof_vector */
/* vertex_bound: boundary type of the vertices */
/* edge_bound: boundary type of the edges */
/* face_bound: boundary type of the faces */
/* projection: node projection function for the new vertex which would */
/* result from a refinement of the current element. */
/* neigh: pointer to the adjacent elements */
/* nil-pointer for a part of the boundary */
/* opp_coord: world coordinates of opposite vertices */
/* opp_vertex: local indices of opposite vertices */
/* orientation: orientation of the tetrahedron (+1|-1) (only 3d) */
/*--------------------------------------------------------------------------*/
struct el_info
{
MESH *mesh;
REAL_D coord[N_VERTICES_MAX];
const MACRO_EL *macro_el;
EL *el, *parent;
FLAGS fill_flag;
S_CHAR vertex_bound[N_VERTICES_MAX];
S_CHAR edge_bound[N_EDGES_MAX];
S_CHAR face_bound[N_FACES_MAX];
NODE_PROJECTION *active_projection;
NODE_PROJECTION *projections[N_NEIGH_MAX + 1];
int level;
EL *neigh[N_NEIGH_MAX];
U_CHAR opp_vertex[N_NEIGH_MAX];
U_CHAR el_type;
REAL_D opp_coord[N_NEIGH_MAX];
S_CHAR orientation;
};
/* A macro for accessing the boundary type of the i-th wall,
* i.e. codim one sub-simplex.
*/
#define WALL_BOUND(eli, dim, i) \
((dim) == 1 \
? (eli)->vertex_bound[i] \
: ((dim) == 2 \
? (eli)->edge_bound[i] \
: (eli)->face_bound[i]))
/*--------------------------------------------------------------------------*/
/* RC_LIST_EL structure to describe a refinement/coarsening patch. */
/* el_info: contains information about the patch element. This is not*/
/* a pointer since EL_INFO structures are often overwritten */
/* during mesh traversal. */
/* no: index of the patch element in the patch. */
/* flag: for coarsening: true iff the coarsening edge of the */
/* patch element is the coarsening edge of the patch. */
/* neigh: neighbours to the right/left in the orientation of the */
/* edge, or nil pointer for a boundary face. (dim == 3 only)*/
/* opp_vertex: the opposite vertex of neigh[0/1]. (dim == 3 only) */
/*--------------------------------------------------------------------------*/
struct rc_list_el
{
EL_INFO el_info;
int no;
int flag;
RC_LIST_EL *neigh[2];
int opp_vertex[2];
};
/*--------------------------------------------------------------------------*/
/* flags, which information should be present in the EL_INFO structure */
/*--------------------------------------------------------------------------*/
#define FILL_NOTHING 0x00L
#define FILL_COORDS 0x01L
#define FILL_BOUND 0x02L
#define FILL_NEIGH 0x04L
#define FILL_OPP_COORDS 0x08L
#define FILL_ORIENTATION 0x10L
#define FILL_EL_TYPE 0x20L
#define FILL_PROJECTION 0x40L
#define FILL_ANY(mesh) \
(0x01L|0x02L|0x04L|0x08L|0x10L|0x20L|0x40L|(mesh)->active_hooks)
/* Hook-queue flags */
#define HOOK_QUEUE_OFFSET 24
enum hook_queue_enum {
HOOK_QUEUE_0 = 0,
BAS_FCTS_HOOK_QUEUE = HOOK_QUEUE_0,
HOOK_QUEUE_1,
HOOK_QUEUE_2,
HOOK_QUEUE_3,
HOOK_QUEUE_4,
HOOK_QUEUE_5,
HOOK_QUEUE_6,
HOOK_QUEUE_7,
};
/* Note: definition of enum must come before typedef for C++ compilation. */
typedef enum hook_queue_enum HOOK_QUEUE_ENUM;
#define RUN_HOOKS_0 (1UL << HOOK_QUEUE_0)
#define RUN_BAS_FCTS_HOOKS RUN_HOOKS_0
#define RUN_HOOKS_1 (1UL << HOOK_QUEUE_1)
#define RUN_HOOKS_2 (1UL << HOOK_QUEUE_2)
#define RUN_HOOKS_3 (1UL << HOOK_QUEUE_3)
#define RUN_HOOKS_4 (1UL << HOOK_QUEUE_4)
#define RUN_HOOKS_5 (1UL << HOOK_QUEUE_5)
#define RUN_HOOKS_6 (1UL << HOOK_QUEUE_6)
#define RUN_HOOKS_7 (1UL << HOOK_QUEUE_7)
/*--------------------------------------------------------------------------*/
/* flags for mesh traversal */
/*--------------------------------------------------------------------------*/
#define CALL_EVERY_EL_PREORDER 0x0100L
#define CALL_EVERY_EL_INORDER 0x0200L
#define CALL_EVERY_EL_POSTORDER 0x0400L
#define CALL_LEAF_EL 0x0800L
#define CALL_LEAF_EL_LEVEL 0x1000L
#define CALL_EL_LEVEL 0x2000L
#define CALL_MG_LEVEL 0x4000L /* used in multigrid methods */
#define TEST_FLAG(flags, el_info) \
TEST_EXIT(!((((el_info)->fill_flag)^(flags)) & (flags)),\
"flag %d not set\n", (flags))
#if ALBERTA_DEBUG==1
# define DEBUG_TEST_FLAG(flags, el_info) \
if((((el_info)->fill_flag)^(flags)) & (flags)) \
print_error_funcname(funcName, __FILE__, __LINE__),\
print_error_msg_exit("flag %d not set\n", (flags))
#else
# define DEBUG_TEST_FLAG(flags, el_info) do { funcName = funcName; } while (0)
#endif
/*--------------------------------------------------------------------------*/
/* one single element of the macro triangulation: */
/*--------------------------------------------------------------------------*/
/* el: pointer to the element data of the macro element */
/* coord: world coordinates of the nodes on the macro element */
/* vertex_bound: boundary type of the vertices */
/* edge_bound: boundary type of the edges */
/* face_bound: boundary type of the faces */
/* projection: possible node projection functions for all nodes [0] */
/* or for specific edges or faces (dim > 1), which will */
/* override entry [0]. */
/* index: unique global index of macro element */
/* neigh: pointer to the adjacent macro elements */
/* nil-pointer for a part of the boundary */
/* opp_vertex: local indices of opposite vertices */
/* el_type: type of corresponding element. */
/* orientation: orientation of corresponding element. */
/*--------------------------------------------------------------------------*/
struct macro_el
{
EL *el;
REAL *coord[N_VERTICES_MAX];
S_CHAR vertex_bound[N_VERTICES_MAX];
S_CHAR edge_bound[N_EDGES_MAX];
S_CHAR face_bound[N_FACES_MAX];
NODE_PROJECTION *projection[N_NEIGH_MAX + 1];
int index;
MACRO_EL *neigh[N_NEIGH_MAX];
S_CHAR opp_vertex[N_NEIGH_MAX];
U_CHAR el_type;
S_CHAR orientation;
};
/*--------------------------------------------------------------------------*/
/*--- index based storage of macro triangulations ---*/
/*--------------------------------------------------------------------------*/
struct macro_data
{
int dim; /* dimension of the elements */
int n_total_vertices;
int n_macro_elements;
REAL_D *coords; /* Length will be n_total_vertices */
int *mel_vertices; /* mel_vertices[i*n_vertices[dim]+j]: */
/* global index of jth vertex of element i */
int *neigh; /* neigh[i*n_neigh[dim]+j]: */
/* neighbour j of element i or -1 at boundaries */
S_CHAR *boundary; /* boundary[i*n_neigh[dim]+j]: */
/* boundary type of jth vertex/edge/face of element i */
/* WARNING: In 1D the local index 0 corresponds to vertex 1 & vice versa! */
/* (Consistent with macro_data.neigh) */
U_CHAR *el_type; /* el_type[i]: type of element i */
/* only used in 3d! */
};
#ifndef DOF_ADMIN_DEF
#define DOF_ADMIN_DEF
/*--------------------------------------------------------------------------*/
/* dof handling */
/*--------------------------------------------------------------------------*/
#define DOF_FREE_SIZE 32
#define DOF_UNIT_ALL_FREE 0xFFFFFFFF
typedef unsigned int DOF_FREE_UNIT;
extern DOF_FREE_UNIT dof_free_bit[DOF_FREE_SIZE]; /* in dof_admin.c */
#define FOR_ALL_DOFS(admin, todo) \
if ((admin)->hole_count == 0) { int dof; \
for (dof = 0; dof < (admin)->used_count; dof++) { todo; } } \
else { DOF_FREE_UNIT _dfu, *_dof_free = (admin)->dof_free; \
int _i, _ibit, dof=0; \
int _n= ((admin)->size_used + DOF_FREE_SIZE-1) / DOF_FREE_SIZE; \
for (_i = 0; _i < _n; _i++) { \
if ((_dfu = _dof_free[_i])) { \
if (_dfu == DOF_UNIT_ALL_FREE) dof += DOF_FREE_SIZE; \
else for (_ibit = 0; _ibit < DOF_FREE_SIZE; _ibit++) { \
if (!(_dfu & dof_free_bit[_ibit])) { todo; } dof++; } } \
else { \
for (_ibit = 0; _ibit < DOF_FREE_SIZE; _ibit++){ todo; dof++;}}}}
#define FOR_ALL_FREE_DOFS(admin, todo) \
if ((admin)->hole_count == 0) { int dof; \
for (dof = (admin)->used_count; \
dof < (admin)->size; dof++) { todo; } } \
else { DOF_FREE_UNIT _dfu, *_dof_free = (admin)->dof_free; \
int _i, _ibit, dof=0; \
int _n= ((admin)->size + DOF_FREE_SIZE-1) / DOF_FREE_SIZE; \
for (_i = 0; _i < _n; _i++) { \
if ((_dfu = _dof_free[_i])) { \
if (_dfu == DOF_UNIT_ALL_FREE) \
for (_ibit = 0 ; _ibit < DOF_FREE_SIZE; _ibit++)\
{ todo; dof++; } \
else for (_ibit = 0; _ibit < DOF_FREE_SIZE; _ibit++) { \
if (_dfu & dof_free_bit[_ibit]) { todo; } dof++; } } \
else dof += DOF_FREE_SIZE; }}
struct dof_admin
{
MESH *mesh;
const char *name;
DOF_FREE_UNIT *dof_free; /* flag bit vector */
unsigned int dof_free_size;/* flag bit vector size */
unsigned int first_hole; /* index of first non-zero dof_free entry */
U_CHAR preserve_coarse_dofs; /* preserve non-leaf DOFs or not */
DOF size; /* allocated size of dof_list vector */
DOF used_count; /* number of used dof indices */
DOF hole_count; /* number of FREED dof indices (NOT size-used)*/
DOF size_used; /* > max. index of a used entry */
int n_dof[N_NODE_TYPES]; /* dofs from THIS dof_admin */
int n0_dof[N_NODE_TYPES]; /* dofs from previous dof_admins */
DOF_INT_VEC *dof_int_vec; /* linked list of int vectors */
DOF_DOF_VEC *dof_dof_vec; /* linked list of dof vectors */
DOF_DOF_VEC *int_dof_vec; /* linked list of dof vectors */
DOF_UCHAR_VEC *dof_uchar_vec; /* linked list of u_char vectors */
DOF_SCHAR_VEC *dof_schar_vec; /* linked list of s_char vectors */
DOF_REAL_VEC *dof_real_vec; /* linked list of real vectors */
DOF_REAL_D_VEC *dof_real_d_vec; /* linked list of real_d vectors */
DOF_PTR_VEC *dof_ptr_vec; /* linked list of void * vectors */
DOF_MATRIX *dof_matrix; /* linked list of matrices */
DOF_DOWB_MATRIX *dof_dowb_matrix; /* linked list of block matrices */
/*--------------------------------------------------------------------------*/
/*--- pointer for administration; don't touch! ---*/
/*--------------------------------------------------------------------------*/
void *mem_info;
};
/*--------------------------------------------------------------------------*/
/* dof vector structures */
/*--------------------------------------------------------------------------*/
/* next: pointer to next structure containing vector of same type */
/* fe_space: pointer to fe_space structure */
/* refine_interpol: dof interpolation during refinement */
/* coarse_restrict: restriction of linear functionals evaluated on a finer */
/* grid and stored in dof vector to the coarser grid */
/* during coarsening */
/* or dof interpolation during coarsening */
/* size: allocated size of vector */
/* vec[]: vector entries (entry is used if dof index is used) */
/*--------------------------------------------------------------------------*/
struct dof_int_vec
{
DOF_INT_VEC *next;
const FE_SPACE *fe_space;
const char *name;
DOF size;
int *vec;
void (*refine_interpol)(DOF_INT_VEC *, RC_LIST_EL *, int n);
void (*coarse_restrict)(DOF_INT_VEC *, RC_LIST_EL *, int n);
/*--------------------------------------------------------------------------*/
/*--- pointer for administration; don't touch! ---*/
/*--------------------------------------------------------------------------*/
void *mem_info;
};
struct dof_dof_vec
{
DOF_DOF_VEC *next;
const FE_SPACE *fe_space;
const char *name;
DOF size;
DOF *vec;
void (*refine_interpol)(DOF_DOF_VEC *, RC_LIST_EL *, int n);
void (*coarse_restrict)(DOF_DOF_VEC *, RC_LIST_EL *, int n);
void *mem_info;
};
struct dof_uchar_vec
{
DOF_UCHAR_VEC *next;
const FE_SPACE *fe_space;
const char *name;
DOF size;
U_CHAR *vec;
void (*refine_interpol)(DOF_UCHAR_VEC *, RC_LIST_EL *, int n);
void (*coarse_restrict)(DOF_UCHAR_VEC *, RC_LIST_EL *, int n);
void *mem_info;
};
struct dof_schar_vec
{
DOF_SCHAR_VEC *next;
const FE_SPACE *fe_space;
const char *name;
DOF size;
S_CHAR *vec;
void (*refine_interpol)(DOF_SCHAR_VEC *, RC_LIST_EL *, int n);
void (*coarse_restrict)(DOF_SCHAR_VEC *, RC_LIST_EL *, int n);
void *mem_info;
};
struct dof_real_vec
{
DOF_REAL_VEC *next;
const FE_SPACE *fe_space;
const char *name;
DOF size;
REAL *vec;
void (*refine_interpol)(DOF_REAL_VEC *, RC_LIST_EL *, int n);
void (*coarse_restrict)(DOF_REAL_VEC *, RC_LIST_EL *, int n);
void *mem_info;
};
struct dof_real_d_vec
{
DOF_REAL_D_VEC *next;
const FE_SPACE *fe_space;
const char *name;
DOF size;
REAL_D *vec;
void (*refine_interpol)(DOF_REAL_D_VEC *, RC_LIST_EL *, int n);
void (*coarse_restrict)(DOF_REAL_D_VEC *, RC_LIST_EL *, int n);
void *mem_info;
};
struct dof_ptr_vec
{
DOF_PTR_VEC *next;
const FE_SPACE *fe_space;
const char *name;
DOF size;
void **vec;
void (*refine_interpol)(DOF_PTR_VEC *, RC_LIST_EL *, int n);
void (*coarse_restrict)(DOF_PTR_VEC *, RC_LIST_EL *, int n);
void *mem_info;
};
/*--------------------------------------------------------------------------*/
/* sparse matrix with one row for each dof, */
/* entries are either REAL or REAL_DD */
/*--------------------------------------------------------------------------*/
/* next: pointer to next matrix (linked list in MESH) */
/* matrix_row[]: pointers to row structures (or nil if row index is unused)*/
/* size: currently allocated size of matrix_row[] */
/*--------------------------------------------------------------------------*/
struct dof_matrix
{
DOF_MATRIX *next;
const FE_SPACE *row_fe_space;
const FE_SPACE *col_fe_space;
const char *name;
MATRIX_ROW **matrix_row; /* lists of matrix entries */
DOF size; /* size of vector matrix_row */
void (*refine_interpol)(DOF_MATRIX *, RC_LIST_EL *, int n);
void (*coarse_restrict)(DOF_MATRIX *, RC_LIST_EL *, int n);
void *mem_info;
};
/* "flag" values for "type" component */
#define DOWBM_FULL (1 << 0)
#define DOWBM_SYMM (1 << 1)
#define DOWBM_DIAG (1 << 2)
typedef enum dowbm_type {
dowbm_full = DOWBM_FULL,
dowbm_diag = DOWBM_DIAG,
dowbm_symm = DOWBM_SYMM
} DOWBM_TYPE;
struct dof_dowb_matrix
{
DOF_DOWB_MATRIX *next;
const FE_SPACE *row_fe_space;
const FE_SPACE *col_fe_space;
const char *name;
DOWB_MATRIX_ROW **matrix_row; /* lists of matrix entries */
DOF size; /* size of vector matrix_row */
DOWBM_TYPE type;
void (*refine_interpol)(DOF_DOWB_MATRIX *, RC_LIST_EL *, int n);
void (*coarse_restrict)(DOF_DOWB_MATRIX *, RC_LIST_EL *, int n);
void *mem_info;
};
/*--------------------------------------------------------------------------*/
/* row structure for sparse matrix, with either REAL or REAL_DD entries. */
/*--------------------------------------------------------------------------*/
/* next: pointer to next structure containing entries of same row */
/* col[]: column indices of entries (if >= 0; else unused) */
/* entry[]: matrix entries */
/*--------------------------------------------------------------------------*/
#define ROW_LENGTH 9
struct matrix_row
{
MATRIX_ROW *next;
DOF col[ROW_LENGTH]; /* column indices */
REAL entry[ROW_LENGTH]; /* matrix entries */
};
/* full featured blocks */
struct dowb_matrix_row
{
DOWB_MATRIX_ROW *next;
DOF col[ROW_LENGTH]; /* column indices */
union {
REAL_DD full[0]; /* full */
REAL_DDS symm[0]; /* symmetric, only upper triangle is stored */
REAL_D diag[0]; /* diagonal */
} entry; /* matrix entries */
};
/* shared by DOF_MATRIX and DOF_DOWB_MATRIX */
#define ENTRY_USED(col) ((col) >= 0)
#define ENTRY_NOT_USED(col) ((col) < 0)
#define UNUSED_ENTRY -1
#define NO_MORE_ENTRIES -2
#ifndef __CBLAS_H__
typedef enum { NoTranspose,
Transpose,
ConjugateTranspose } MatrixTranspose;
#endif
#endif /* DOF_ADMIN_DEF */
/*--------------------------------------------------------------------------*/
/* Here comes the MESH (giving access to the whole triangulation) */
/*--------------------------------------------------------------------------*/
struct mesh
{
const char *name;
int dim;
int n_vertices;
int n_elements;
int n_hier_elements;
int n_edges; /* Only used for dim > 1 */
int n_faces; /* Only used for dim == 3 */
int max_edge_neigh; /* Only used for dim == 3 */
int n_macro_el;
MACRO_EL *macro_els;
REAL diam[DIM_OF_WORLD];
PARAMETRIC *parametric;
DOF_ADMIN **dof_admin;
int n_dof_admin;
int n_dof_el; /* sum of all dofs from all admins */
int n_dof[N_NODE_TYPES]; /* sum of vertex/edge/... dofs from */
/* all admins */
int n_node_el; /* number of used nodes on each element */
int node[N_NODE_TYPES]; /* index of first vertex/edge/... node*/
int cookie; /* changed on each refine/coarsen. Use this to */
/* check consistency of meshes and DOF vectors when reading from files.*/
/*--------------------------------------------------------------------------*/
/*--- pointer for administration; don't touch! ---*/
/*--------------------------------------------------------------------------*/
void *mem_info;
/* Linked list of hook functions to be run during mesh-traverse
* before the per-element method is called.
*/
LIST_NODE traverse_hooks[8];
FLAGS active_hooks;
};
/*--------------------------------------------------------------------------*/
/* stack data structure for non-recursive mesh traversal */
/*--------------------------------------------------------------------------*/
struct traverse_stack
{
MESH *traverse_mesh;
int traverse_level;
FLAGS traverse_fill_flag;
const MACRO_EL *traverse_mel;
int stack_size;
int stack_used;
EL_INFO *elinfo_stack;
U_CHAR *info_stack;
const MACRO_EL *save_traverse_mel;
EL_INFO *save_elinfo_stack;
U_CHAR *save_info_stack;
int save_stack_used;
int el_count;
int marker;
TRAVERSE_STACK *next;
};
/*--------------------------------------------------------------------------*/
/*--- data structure for basis function representation ---*/
/*--------------------------------------------------------------------------*/
typedef REAL BAS_FCT(const REAL[N_LAMBDA]);
typedef const REAL *GRD_BAS_FCT(const REAL[N_LAMBDA]);
typedef const REAL (*D2_BAS_FCT(const REAL[N_LAMBDA]))[N_LAMBDA];
struct bas_fcts
{
char *name; /* textual description */
int dim; /* dimension of the corresponding mesh. */
int n_bas_fcts; /* number of basisfunctions on one el */
int degree; /* maximal degree of the basis functions */
const int n_dof[N_NODE_TYPES]; /* dofs from these bas_fcts */
void (*init_element)(const EL_INFO *, const FE_SPACE *, U_CHAR);
BAS_FCT **phi;
GRD_BAS_FCT **grd_phi;
D2_BAS_FCT **D2_phi;
const DOF *(*get_dof_indices)(const EL *, const DOF_ADMIN *, DOF *);
const S_CHAR *(*get_bound)(const EL_INFO *, S_CHAR *);
/*************** entries must be set for interpolation ********************/
const REAL *(*interpol)(const EL_INFO *el_info, int n, const int *indices,
REAL (*f)(const REAL_D),
REAL (*f_loc)(const EL_INFO *el_info,
const REAL lambda[N_LAMBDA]),
REAL *coeff);
const REAL_D *(*interpol_d)(const EL_INFO *el_info, int n,
const int *indices,
const REAL *(*f)(const REAL_D, REAL_D),
const REAL *(*f_loc)(const EL_INFO *el_info,
const REAL lambda[N_LAMBDA],
REAL_D val),
REAL_D *coeff);
/******************** optional entries ***********************************/
const int *(*get_int_vec)(const EL *, const DOF_INT_VEC *, int *);
const REAL *(*get_real_vec)(const EL *, const DOF_REAL_VEC *, REAL *);
const REAL_D *(*get_real_d_vec)(const EL *, const DOF_REAL_D_VEC *, REAL_D *);
const U_CHAR *(*get_uchar_vec)(const EL *, const DOF_UCHAR_VEC *, U_CHAR *);
const S_CHAR *(*get_schar_vec)(const EL *, const DOF_SCHAR_VEC *, S_CHAR *);
void (*real_refine_inter)(DOF_REAL_VEC *, RC_LIST_EL *, int);
void (*real_coarse_inter)(DOF_REAL_VEC *, RC_LIST_EL *, int);
void (*real_coarse_restr)(DOF_REAL_VEC *, RC_LIST_EL *, int);
void (*real_d_refine_inter)(DOF_REAL_D_VEC *, RC_LIST_EL *, int);
void (*real_d_coarse_inter)(DOF_REAL_D_VEC *, RC_LIST_EL *, int);
void (*real_d_coarse_restr)(DOF_REAL_D_VEC *, RC_LIST_EL *, int);
void *bas_fcts_data;
};
/* Barycentric coordinates of Lagrange nodes. */
#define LAGRANGE_NODES(bfcts) ((const REAL_B *)(bfcts)->bas_fcts_data)
/*--------------------------------------------------------------------------*/
/*--- FE spaces are a triple of DOFs and BAS_FCTs on a MESH ---*/
/*--------------------------------------------------------------------------*/
struct fe_space
{
const char *name;
const DOF_ADMIN *admin;
const BAS_FCTS *bas_fcts;
MESH *mesh;
};
/*--------------------------------------------------------------------------*/
/*--- data structures for numerical integration ---*/
/*--------------------------------------------------------------------------*/
struct quadrature
{
char *name;
int degree;
int dim;
int n_points;
const double **lambda;
const double *w;
};
#define MAX_N_QUAD_POINTS 64
/*--------------------------------------------------------------------------*/
/*--- data structure with precomputed values of basis functions at ---*/
/*--- quadrature nodes on the standard element ---*/
/*--------------------------------------------------------------------------*/
#define INIT_PHI 1
#define INIT_GRD_PHI 2
#define INIT_D2_PHI 4
struct quad_fast
{
const QUAD *quad;
const BAS_FCTS *bas_fcts;
int n_points;
int n_bas_fcts;
const double *w;
U_CHAR init_flag;
REAL **phi;
REAL (**grd_phi)[N_LAMBDA];
REAL (**D2_phi)[N_LAMBDA][N_LAMBDA];
};
/*--------------------------------------------------------------------------*/
/*--- data structure for adaptive methods ---*/
/*--------------------------------------------------------------------------*/
struct adapt_stat
{
const char *name;
REAL tolerance;
REAL p; /* power in estimator norm */
int max_iteration;
int info;
REAL (*estimate)(MESH *mesh, ADAPT_STAT *adapt);
REAL (*get_el_est)(EL *el); /* local error estimate */
REAL (*get_el_estc)(EL *el); /* local coarsening error estimate*/
U_CHAR (*marking)(MESH *mesh, ADAPT_STAT *adapt);
void *est_info; /* estimator parameters */
REAL err_sum, err_max; /* sum and max of el_est */
void (*build_before_refine)(MESH *mesh, U_CHAR flag);
void (*build_before_coarsen)(MESH *mesh, U_CHAR flag);
void (*build_after_coarsen)(MESH *mesh, U_CHAR flag);
void (*solve)(MESH *mesh);
int refine_bisections;
int coarsen_allowed; /* 0 : 1 */
int coarse_bisections;
int strategy; /* 1=GR, 2=MS, 3=ES, 4=GERS */
REAL MS_gamma, MS_gamma_c; /* maximum strategy */
REAL ES_theta, ES_theta_c; /* equidistribution strategy */
REAL GERS_theta_star, GERS_nu, GERS_theta_c; /* willy's strategy */
};
struct adapt_instat
{
const char *name;
ADAPT_STAT adapt_initial[1];
ADAPT_STAT adapt_space[1];
REAL time;
REAL start_time, end_time;
REAL timestep;
void (*init_timestep)(MESH *mesh, ADAPT_INSTAT *adapt);
void (*set_time)(MESH *mesh, ADAPT_INSTAT *adapt);
void (*one_timestep)(MESH *mesh, ADAPT_INSTAT *adapt);
REAL (*get_time_est)(MESH *mesh, ADAPT_INSTAT *adapt);
void (*close_timestep)(MESH *mesh, ADAPT_INSTAT *adapt);
int strategy;
int max_iteration;
REAL tolerance;
REAL rel_initial_error;
REAL rel_space_error;
REAL rel_time_error;
REAL time_theta_1;
REAL time_theta_2;
REAL time_delta_1;
REAL time_delta_2;
int info;
};
#define MESH_REFINED 1
#define MESH_COARSENED 2
#define H1_NORM 1
#define L2_NORM 2
/*--------------------------------------------------------------------------*/
/*--- data structures for matrix and vector update ---*/
/*--------------------------------------------------------------------------*/
typedef struct el_matrix_info EL_MATRIX_INFO;
struct el_matrix_info
{
int n_row;
const DOF_ADMIN *row_admin;
const DOF *(*get_row_dof)(const EL *,const DOF_ADMIN *, DOF *);
int n_col;
const DOF_ADMIN *col_admin;
const DOF *(*get_col_dof)(const EL *,const DOF_ADMIN *, DOF *);
const S_CHAR *(*get_bound)(const EL_INFO *, S_CHAR *);
REAL factor;
const REAL **(*el_matrix_fct)(const EL_INFO *, void *);
void *fill_info;
FLAGS fill_flag;
};
typedef struct el_dowb_matrix_info EL_DOWB_MATRIX_INFO;
struct el_dowb_matrix_info
{
int n_row;
const DOF_ADMIN *row_admin;
const DOF *(*get_row_dof)(const EL *,const DOF_ADMIN *, DOF *);
int n_col;
const DOF_ADMIN *col_admin;
const DOF *(*get_col_dof)(const EL *,const DOF_ADMIN *, DOF *);
const S_CHAR *(*get_bound)(const EL_INFO *, S_CHAR *);
REAL factor;
const void **(*el_matrix_fct)(const EL_INFO *, void *);
void *fill_info;
FLAGS fill_flag;
DOWBM_TYPE type; /* dowbm_full, _symm or _diag */
};
typedef struct el_vec_info EL_VEC_INFO;
struct el_vec_info
{
int n_dof;
const DOF_ADMIN *admin;
const DOF *(*get_dof)(const EL *,const DOF_ADMIN *, DOF *);
const S_CHAR *(*get_bound)(const EL_INFO *, S_CHAR *);
REAL factor;
const REAL *(*el_vec_fct)(const EL_INFO *, void *);
void *fill_info;
FLAGS fill_flag;
};
typedef struct el_vec_d_info EL_VEC_D_INFO;
struct el_vec_d_info
{
int n_dof;
const DOF_ADMIN *admin;
const DOF *(*get_dof)(const EL *,const DOF_ADMIN *, DOF *);
const S_CHAR *(*get_bound)(const EL_INFO *, S_CHAR *);
REAL factor;
const REAL_D *(*el_vec_fct)(const EL_INFO *, void *);
void *fill_info;
FLAGS fill_flag;
};
/*--------------------------------------------------------------------------*/
/*--- data structure about the differential operator for matrix assemblage */
/*--------------------------------------------------------------------------*/
typedef struct operator_info OPERATOR_INFO;
struct operator_info
{
const FE_SPACE *row_fe_space;
const FE_SPACE *col_fe_space;
const QUAD *quad[3];
int (*init_element)(const EL_INFO *, const QUAD *[3], void *);
const REAL (*(*LALt)(const EL_INFO *, const QUAD *, int, void *))[N_LAMBDA];
int LALt_pw_const;
int LALt_symmetric;
const REAL *(*Lb0)(const EL_INFO *, const QUAD *, int, void *);
int Lb0_pw_const;
const REAL *(*Lb1)(const EL_INFO *, const QUAD *, int, void *);
int Lb1_pw_const;
int Lb0_Lb1_anti_symmetric;
REAL (*c)(const EL_INFO *, const QUAD *, int, void *);
int c_pw_const;
int use_get_bound;
void *user_data;
FLAGS fill_flag;
};
typedef struct dowb_operator_info DOWB_OPERATOR_INFO;
struct dowb_operator_info
{
const FE_SPACE *row_fe_space;
const FE_SPACE *col_fe_space;
const QUAD *quad[3];
int (*init_element)(const EL_INFO *, const QUAD *[3], void *);
union {
const REAL_DD (*(*full)(const EL_INFO *,
const QUAD *, int, void *))[N_LAMBDA];
const REAL_DDS (*(*symm)(const EL_INFO *,
const QUAD *, int, void *))[N_LAMBDA];
const REAL_D (*(*diag)(const EL_INFO *,
const QUAD *, int, void *))[N_LAMBDA];
} LALt;
int LALt_pw_const;
int LALt_symmetric;
union {
const REAL_DD *(*full)(const EL_INFO *, const QUAD *, int, void *);
const REAL_DDS *(*symm)(const EL_INFO *, const QUAD *, int, void *);
const REAL_D *(*diag)(const EL_INFO *, const QUAD *, int, void *);
} Lb0;
int Lb0_pw_const;
union {
const REAL_DD *(*full)(const EL_INFO *, const QUAD *, int, void *);
const REAL_DDS *(*symm)(const EL_INFO *, const QUAD *, int, void *);
const REAL_D *(*diag)(const EL_INFO *, const QUAD *, int, void *);
} Lb1;
int Lb1_pw_const;
int Lb0_Lb1_anti_symmetric;
union {
const REAL_D *(*full)(const EL_INFO *, const QUAD *, int, void *);
const REAL_DDS *(*symm)(const EL_INFO *, const QUAD *, int, void *);
const REAL *(*diag)(const EL_INFO *, const QUAD *, int, void *);
} c;
int c_pw_const;
int use_get_bound;
void *user_data;
FLAGS fill_flag;
DOWBM_TYPE type; /* dowbm_full, _symm or _diag */
};
/*--------------------------------------------------------------------------*/
/* calculate element stiffness matrices by preevaluated integrals over the */
/* the reference element. */
/*--------------------------------------------------------------------------*/
typedef struct q11_psi_phi Q11_PSI_PHI;
typedef struct q01_psi_phi Q01_PSI_PHI;
typedef struct q10_psi_phi Q10_PSI_PHI;
typedef struct q00_psi_phi Q00_PSI_PHI;
struct q11_psi_phi
{
const BAS_FCTS *psi;
const BAS_FCTS *phi;
const QUAD *quad;
const int **n_entries;
const REAL ***values;
const int ***k;
const int ***l;
};
struct q01_psi_phi
{
const BAS_FCTS *psi;
const BAS_FCTS *phi;
const QUAD *quad;
const int **n_entries;
const REAL ***values;
const int ***l;
};
struct q10_psi_phi
{
const BAS_FCTS *psi;
const BAS_FCTS *phi;
const QUAD *quad;
const int **n_entries;
const REAL ***values;
const int ***k;
};
struct q00_psi_phi
{
const BAS_FCTS *psi;
const BAS_FCTS *phi;
const QUAD *quad;
const REAL **values;
};
/*--------------------------------------------------------------------------*/
/* data type for preconditioning */
/*--------------------------------------------------------------------------*/
typedef struct precon PRECON;
struct precon
{
void *precon_data;
int (*init_precon)(void *precon_data);
void (*precon)(void *precon_data, int n, REAL *vec);
void (*exit_precon)(void *precon_data);
};
const PRECON *get_diag_precon_s(const DOF_MATRIX *, const DOF_SCHAR_VEC *);
const PRECON *get_diag_precon_d(const DOF_MATRIX *, const DOF_SCHAR_VEC *);
const PRECON *get_diag_precon_dowb(const DOF_DOWB_MATRIX *,
const DOF_SCHAR_VEC *);
const PRECON *get_HB_precon_s(const FE_SPACE *, const DOF_SCHAR_VEC *, int, int);
const PRECON *get_HB_precon_d(const FE_SPACE *, const DOF_SCHAR_VEC *, int, int);
const PRECON *get_BPX_precon_s(const FE_SPACE *, const DOF_SCHAR_VEC *, int, int);
const PRECON *get_BPX_precon_d(const FE_SPACE *, const DOF_SCHAR_VEC *, int, int);
/*--------------------------------------------------------------------------*/
/* solver identification for interface to OEM-lib */
/*--------------------------------------------------------------------------*/
typedef enum {NoSolver, BiCGStab, CG, TfQMR, GMRes, ODir, ORes} OEM_SOLVER;
/*--------------------------------------------------------------------------*/
/*--- abstract multigrid ---*/
/*--------------------------------------------------------------------------*/
typedef struct multi_grid_info MULTI_GRID_INFO;
struct multi_grid_info
{
REAL tolerance; /* tol. for resid */
REAL exact_tolerance; /* tol. for exact_solver */
int cycle; /* 1=V-cycle, 2=W-cycle */
int n_pre_smooth, n_in_smooth; /* no of smoothing loops */
int n_post_smooth; /* no of smoothing loops */
int mg_levels; /* current no. of levels */
int exact_level; /* level for exact_solver */
int max_iter; /* max. no of MG iter's */
int info;
int (*init_multi_grid)(MULTI_GRID_INFO *mg_info);
void (*pre_smooth)(MULTI_GRID_INFO *mg_info, int level, int n);
void (*in_smooth)(MULTI_GRID_INFO *mg_info, int level, int n);
void (*post_smooth)(MULTI_GRID_INFO *mg_info, int level, int n);
void (*mg_restrict)(MULTI_GRID_INFO *mg_info, int level);
void (*mg_prolongate)(MULTI_GRID_INFO *mg_info, int level);
void (*exact_solver)(MULTI_GRID_INFO *mg_info, int level);
REAL (*mg_resid)(MULTI_GRID_INFO *mg_info, int level);
void (*exit_multi_grid)(MULTI_GRID_INFO *mg_info);
void *data; /* application dep. data */
};
int MG(MULTI_GRID_INFO *mg_info);
/*--------------------------------------------------------------------------*/
/*--- concrete multigrid ---*/
/*--------------------------------------------------------------------------*/
typedef struct mg_s_info MG_S_INFO;
struct mg_s_info
{
MULTI_GRID_INFO *mg_info; /* abstract MG info */
const FE_SPACE *fe_space;
DOF_MATRIX *mat;
const DOF_REAL_VEC *f;
DOF_REAL_VEC *u;
const DOF_SCHAR_VEC *bound;
int smoother, exact_solver;
REAL smooth_omega, exact_omega;
int size; /* current size of vectors*/
DOF_MATRIX **matrix; /* one for each level */
REAL **f_h; /* one for each level */
REAL **u_h; /* one for each level */
REAL **r_h; /* one for each level */
int *dofs_per_level; /* count dofs per level */
int sort_size; /* size of sort vectors */
DOF *sort_dof; /* dofs in order of levels*/
DOF *(dof_parent[2]); /* (for linear elements) */
U_CHAR *dof_level;
S_CHAR *sort_bound; /* sorted bound */
int sort_invers_size; /* size of inv. sort list */
int *sort_dof_invers; /* inverse sort list */
};
/*--------------------------------------------------------------------------*/
/* sort_dof[ sorted dof ] = unsorted dof */
/* sort_dof_invers[ unsorted dof ] = sorted dof */
/*--------------------------------------------------------------------------*/
/* file MG_s1.c DOF_sort routines *******************************************/
void MG_s_setup_levels(MG_S_INFO *mg_s_info);
void MG_s_setup_mat_b(MG_S_INFO *mg_s_info,
DOF_MATRIX *mat, const DOF_SCHAR_VEC *bound);
void MG_s_dof_copy_to_sparse(MG_S_INFO *mg_s_info,
const DOF_REAL_VEC *x, REAL *y);
void MG_s_dof_copy_from_sparse(MG_S_INFO *mg_s_info,
const REAL *x, DOF_REAL_VEC *y);
void MG_s_reset_mat(MG_S_INFO *mg_s_info);
void MG_s_sort_mat(MG_S_INFO *mg_s_info);
void MG_s_free_mem(MG_S_INFO *mg_s_info);
/* file MG_s2.c: DOF_sort independent routines ******************************/
void MG_s_restrict_mg_matrices(MG_S_INFO *mg_s_info);
void MG_s_restrict(MULTI_GRID_INFO *mg_info, int mg_level);
void MG_s_prolongate(MULTI_GRID_INFO *mg_info, int mg_level);
REAL MG_s_resid(MULTI_GRID_INFO *mg_info, int mg_level);
void MG_s_smoother(MULTI_GRID_INFO *mg_info, int mg_level, int n);
void MG_s_exact_solver(MULTI_GRID_INFO *mg_info, int mg_level);
void MG_s_gemv(MG_S_INFO *mg_s_info, int mg_level, MatrixTranspose transpose,
REAL alpha, DOF_MATRIX *a, REAL *x, REAL beta, REAL *y);
/* file MG_s.c: *************************************************************/
int mg_s(DOF_MATRIX *matrix, DOF_REAL_VEC *u, const DOF_REAL_VEC *f,
const DOF_SCHAR_VEC *bound,
REAL tol, int max_iter, int info, char *prefix);
MG_S_INFO *mg_s_init(DOF_MATRIX *matrix, const DOF_SCHAR_VEC *bound,
int info, char *prefix);
int mg_s_solve(MG_S_INFO *mg_s_info,
DOF_REAL_VEC *u, const DOF_REAL_VEC *f, REAL tol, int max_iter);
void mg_s_exit(MG_S_INFO *mg_s_info);
/*--------------------------------------------------------------------------*/
/* Graphic output Definitions */
/*--------------------------------------------------------------------------*/
typedef void * GRAPH_WINDOW;
typedef float GRAPH_RGBCOLOR[3];
/** flags used by graph_mesh(): ****/
#define GRAPH_MESH_BOUNDARY 1
#define GRAPH_MESH_ELEMENT_MARK 2
#define GRAPH_MESH_VERTEX_DOF 4
#define GRAPH_MESH_ELEMENT_INDEX 8
/*--------------------------------------------------------------------------*/
/* very usefull macro definitons */
/*--------------------------------------------------------------------------*/
#define GET_MESH(dim,name,macro_data,init_node_proj) \
check_and_get_mesh((dim),DIM_OF_WORLD,ALBERTA_DEBUG, \
ALBERTA_VERSION,(name),(macro_data), \
(init_node_proj))
#define GET_DOF_VEC(ptr, dof_vec)\
TEST_EXIT((dof_vec) && ((ptr) = (dof_vec)->vec),\
"%s == nil\n", (dof_vec) ? NAME(dof_vec) : #dof_vec)
/*--------------------------------------------------------------------------*/
/* defined in graphXO.c */
/*--------------------------------------------------------------------------*/
extern const GRAPH_RGBCOLOR rgb_black;
extern const GRAPH_RGBCOLOR rgb_white;
extern const GRAPH_RGBCOLOR rgb_red;
extern const GRAPH_RGBCOLOR rgb_green;
extern const GRAPH_RGBCOLOR rgb_blue;
extern const GRAPH_RGBCOLOR rgb_yellow;
extern const GRAPH_RGBCOLOR rgb_magenta;
extern const GRAPH_RGBCOLOR rgb_cyan;
extern const GRAPH_RGBCOLOR rgb_grey50;
extern const GRAPH_RGBCOLOR rgb_albert;
extern const GRAPH_RGBCOLOR rgb_alberta;
/*--------------------------------------------------------------------------*/
/* used in wall_quad_fast.c */
/*--------------------------------------------------------------------------*/
/* We use sort_face_indices() & friends and build the tables for every
* relative permutation possible.
*/
typedef struct wall_quad_fast WALL_QUAD_FAST;
#define CARD_SN_MAX 6 /* this must be (N_LAMBDA-1)! */
struct wall_quad_fast
{
const QUAD *quad;
int n_points;
int n_bas_fcts;
const REAL *w;
REAL_B *lambda[CARD_SN_MAX][N_FACES_MAX];
U_CHAR init_flag;
REAL **phi[CARD_SN_MAX][N_FACES_MAX];
WALL_QUAD_FAST *next;
BAS_FCTS *bas_fcts;
REAL_B **grd_phi[CARD_SN_MAX][N_FACES_MAX];
REAL_BB **D2_phi[CARD_SN_MAX][N_FACES_MAX];
};
/*--------------------------------------------------------------------------*/
/* functions supplied by ALBERTA */
/*--------------------------------------------------------------------------*/
/*** file coarsen.c *****************************************************/
extern U_CHAR coarsen(MESH *mesh);
extern U_CHAR global_coarsen(MESH *mesh, int no);
extern int get_max_level(MESH *mesh);
/*** file dof_admin.c ***************************************************/
/*extern void add_bas_fcts_to_admin(DOF_ADMIN *admin, const BAS_FCTS *bas_fcts);*/
extern const DOF_ADMIN *get_vertex_admin(MESH *mesh);
void add_element_matrix(DOF_MATRIX *, REAL, int, int, const DOF *,
const DOF *, const REAL **, const S_CHAR *);
void add_element_dowb_matrix(DOF_DOWB_MATRIX *, REAL, int, int, const DOF *,
const DOF *, const void **, const S_CHAR *);
void add_element_vec(DOF_REAL_VEC *, REAL, int, const DOF *,
const REAL *, const S_CHAR *);
void add_element_d_vec(DOF_REAL_D_VEC *, REAL, int, const DOF *,
const REAL_D *, const S_CHAR *);
extern void dof_compress(MESH *mesh);
extern void clear_dof_matrix(DOF_MATRIX *matrix);
extern void clear_dof_dowb_matrix(DOF_DOWB_MATRIX *matrix);
extern void print_dof_matrix(const DOF_MATRIX *matrix);
extern void print_dof_dowb_matrix(const DOF_DOWB_MATRIX *matrix);
extern void print_dof_real_vec(const DOF_REAL_VEC *drv);
extern void print_dof_real_d_vec(const DOF_REAL_D_VEC *drdv);
extern void print_dof_ptr_vec(const DOF_PTR_VEC *dpv);
extern void print_dof_int_vec(const DOF_INT_VEC *div);
extern void print_dof_uchar_vec(const DOF_UCHAR_VEC *div);
extern void print_dof_schar_vec(const DOF_SCHAR_VEC *div);
/* BLAS 1 */
extern REAL dof_nrm2(const DOF_REAL_VEC *x);
extern REAL dof_asum(const DOF_REAL_VEC *x);
extern void dof_set(REAL alpha, DOF_REAL_VEC *x);
extern void dof_scal(REAL alpha, DOF_REAL_VEC *x);
extern REAL dof_dot(const DOF_REAL_VEC *x, const DOF_REAL_VEC *y);
extern void dof_copy(const DOF_REAL_VEC *x, DOF_REAL_VEC *y);
extern void dof_axpy(REAL alpha, const DOF_REAL_VEC *x, DOF_REAL_VEC *y);
/* some non BLAS */
extern void dof_xpay(REAL alpha, const DOF_REAL_VEC *x, DOF_REAL_VEC *y);
extern REAL dof_min(const DOF_REAL_VEC *x);
extern REAL dof_max(const DOF_REAL_VEC *x);
/* BLAS 2 */
extern void dof_gemv(MatrixTranspose transpose, REAL alpha,
const DOF_MATRIX *a, const DOF_REAL_VEC *x,
REAL beta, DOF_REAL_VEC *y);
extern void dof_mv(MatrixTranspose transpose, const DOF_MATRIX *a,
const DOF_REAL_VEC *x, DOF_REAL_VEC *y);
/* now the same for REAL_D */
extern void dof_axpy_d(REAL alpha, const DOF_REAL_D_VEC *x, DOF_REAL_D_VEC *y);
extern void dof_copy_d(const DOF_REAL_D_VEC *x, DOF_REAL_D_VEC *y);
extern REAL dof_dot_d(const DOF_REAL_D_VEC *x, const DOF_REAL_D_VEC *y);
extern REAL dof_nrm2_d(const DOF_REAL_D_VEC *x);
extern void dof_scal_d(REAL alpha, DOF_REAL_D_VEC *x);
extern void dof_set_d(REAL alpha, DOF_REAL_D_VEC *x);
extern void dof_xpay_d(REAL alpha, const DOF_REAL_D_VEC *x, DOF_REAL_D_VEC *y);
extern REAL dof_min_d(const DOF_REAL_D_VEC *x);
extern REAL dof_max_d(const DOF_REAL_D_VEC *x);
/*--- BLAS 2 for REAL_D ---*/
extern void dof_mv_d(MatrixTranspose transpose, const DOF_MATRIX *a,
const DOF_REAL_D_VEC *x, DOF_REAL_D_VEC *y);
extern void dof_mv_dowb(MatrixTranspose transpose, const DOF_DOWB_MATRIX *a,
const DOF_REAL_D_VEC *x, DOF_REAL_D_VEC *y);
extern void dof_gemv_d(MatrixTranspose transpose, REAL alpha,
const DOF_MATRIX *a, const DOF_REAL_D_VEC *x,
REAL beta, DOF_REAL_D_VEC *y);
extern void dof_gemv_dowb(MatrixTranspose transpose, REAL alpha,
const DOF_DOWB_MATRIX *a, const DOF_REAL_D_VEC *x,
REAL beta, DOF_REAL_D_VEC *y);
void update_matrix(DOF_MATRIX *dof_matrix, const EL_MATRIX_INFO *minfo);
void update_dowb_matrix(DOF_DOWB_MATRIX *dof_matrix,
const EL_DOWB_MATRIX_INFO *minfo);
void update_real_vec(DOF_REAL_VEC *drv, const EL_VEC_INFO *vec_info);
void update_real_d_vec(DOF_REAL_D_VEC *drdv, const EL_VEC_D_INFO *vecd_info);
/*** file wall_quad_fast.c *********************************************/
extern const WALL_QUAD_FAST *get_wall_quad_fast(const BAS_FCTS *,
const QUAD *,
U_CHAR init_flag);
/*** file macro.c *******************************************************/
extern void macro_test(MACRO_DATA *data, const char *new_filename);
extern MACRO_DATA *read_macro(const char *name);
extern MACRO_DATA *read_macro_bin(const char *name);
extern MACRO_DATA *read_macro_xdr(const char *name);
extern int write_macro(MESH *mesh, const char *name);
extern int write_macro_bin(MESH *mesh, const char *name);
extern int write_macro_xdr(MESH *mesh, const char *name);
extern int write_macro_data(MACRO_DATA *data, const char *name);
extern int write_macro_data_bin(MACRO_DATA *data, const char *name);
extern int write_macro_data_xdr(MACRO_DATA *data, const char *name);
extern MACRO_DATA *alloc_macro_data(int dim, int nv, int ne, FLAGS);
extern void free_macro_data(MACRO_DATA *data);
extern void compute_neigh_fast(MACRO_DATA *data);
extern void dirichlet_boundary(MACRO_DATA *data);
extern MACRO_DATA *mesh2macro_data(MESH *mesh);
extern void macro_data2mesh(MESH *mesh, const MACRO_DATA *data,
NODE_PROJECTION *(*n_proj)(MESH *,MACRO_EL *,int));
/*** file memory.c ******************************************************/
extern MESH *check_and_get_mesh(int dim, int dow, int neigh,
const char *version, const char *name,
const MACRO_DATA *macro_data,
NODE_PROJECTION *(*init_node_proj)
(MESH *, MACRO_EL *, int));
extern void add_traverse_hook(MESH *mesh,
TRAVERSE_HOOK *hook,
HOOK_QUEUE_ENUM queue);
extern void remove_traverse_hook(MESH *mesh,
TRAVERSE_HOOK *hook,
HOOK_QUEUE_ENUM queue);
extern void free_dof_admin(DOF_ADMIN *admin, MESH *mesh);
extern void free_int_dof_vec(DOF_DOF_VEC *vec);
extern void free_dof_int_vec(DOF_INT_VEC *vec);
extern void free_dof_dof_vec(DOF_DOF_VEC *vec);
extern void free_dof_matrix(DOF_MATRIX *mat);
extern void free_dof_dowb_matrix(DOF_DOWB_MATRIX *mat);
extern void free_dof_real_vec(DOF_REAL_VEC *vec);
extern void free_dof_real_d_vec(DOF_REAL_D_VEC *vec);
extern void free_dof_schar_vec(DOF_SCHAR_VEC *vec);
extern void free_dof_uchar_vec(DOF_UCHAR_VEC *vec);
extern void free_dof_ptr_vec(DOF_PTR_VEC *vec);
extern void free_fe_space(FE_SPACE *fe_space);
extern void free_real_d(MESH *mesh, REAL *ptr);
extern void free_matrix_row(const FE_SPACE *, MATRIX_ROW *);
extern void free_dowb_matrix_row(const FE_SPACE *, DOWBM_TYPE type,
DOWB_MATRIX_ROW *);
extern void free_element(EL *el, MESH *mesh);
extern void free_rc_list(MESH *mesh, RC_LIST_EL *list); /* only for 3D */
extern void free_mesh(MESH *);
extern void free_dof(DOF *dof, MESH *mesh, int position,
const int is_coarse_dof);
extern DOF *get_dof(MESH *mesh, int position);
extern const FE_SPACE *get_fe_space(MESH *mesh, const char *name,
const int ndof[N_NODE_TYPES],
const BAS_FCTS *bas_fcts,
const U_CHAR preserve_coarse_dofs);
extern DOF_INT_VEC *get_dof_int_vec(const char *name, const FE_SPACE *);
extern DOF_DOF_VEC *get_int_dof_vec(const char *name, const FE_SPACE *);
extern DOF_DOF_VEC *get_dof_dof_vec(const char *name, const FE_SPACE *);
extern DOF_MATRIX *get_dof_matrix(const char *name,
const FE_SPACE *row_fe_space,
const FE_SPACE *col_fe_space);
extern DOF_DOWB_MATRIX *get_dof_dowb_matrix(const char *name,
const FE_SPACE *row_fe_space,
const FE_SPACE *col_fe_space,
DOWBM_TYPE type);
extern DOF_REAL_VEC *get_dof_real_vec(const char *name, const FE_SPACE *);
extern DOF_REAL_D_VEC *get_dof_real_d_vec(const char *name, const FE_SPACE *);
extern DOF_SCHAR_VEC *get_dof_schar_vec(const char *name, const FE_SPACE *);
extern DOF_UCHAR_VEC *get_dof_uchar_vec(const char *name, const FE_SPACE *);
extern DOF_PTR_VEC *get_dof_ptr_vec(const char *name, const FE_SPACE *);
extern REAL *get_real_d(MESH *mesh);
extern MATRIX_ROW *get_matrix_row(const FE_SPACE *);
extern DOWB_MATRIX_ROW *get_dowb_matrix_row(const FE_SPACE *, DOWBM_TYPE type);
extern EL *get_element(MESH *mesh);
extern RC_LIST_EL *get_rc_list(MESH *mesh); /* only for 3D */
extern size_t init_leaf_data(MESH *mesh, size_t size,
void (*refine_leaf_data)(EL *parent, EL *child[2]),
void (*coarsen_leaf_data)(EL *parent, EL *child[2]));
/*** file submesh.c ******************************************************/
extern MESH *get_submesh(MESH *master, const char *name,
int (*binding_method)(MESH *master, MACRO_EL *el,
int face, void *data),
void *data);
extern void unchain_submesh(MESH *slave);
extern MESH *read_submesh(MESH *master,
const char *slave_filename,
int (*binding_method)(MESH *master, MACRO_EL *el,
int face, void *data),
NODE_PROJECTION *(*)(MESH *, MACRO_EL *, int),
void *data);
extern MESH *read_submesh_xdr(MESH *master,
const char *slave_filename,
int (*binding_method)(MESH *master, MACRO_EL *el,
int face, void *data),
NODE_PROJECTION *(*)(MESH *, MACRO_EL *, int),
void *data);
extern void trace_dof_real_vec(DOF_REAL_VEC *slave_vec,
DOF_REAL_VEC *master_vec);
extern void trace_dof_real_d_vec(DOF_REAL_D_VEC *slave_vec,
DOF_REAL_D_VEC *master_vec);
extern void get_slave_dof_mapping(const FE_SPACE *m_fe_space,
DOF_INT_VEC *s_map);
extern MESH *get_master(MESH *slave);
extern DOF_PTR_VEC *get_master_binding(MESH *slave);
extern DOF_PTR_VEC *get_slave_binding(MESH *slave);
/*** file level.c ******************************************************/
extern REAL level_element_det_2d(const REAL_D coord[]);
extern void level_coord_to_world_2d(const REAL_D coord[],
const REAL_B lambda,
REAL_D world);
extern void level_coord_to_el_coord_2d(const REAL_B v_lambda[],
const REAL_B lambda,
REAL_B el_lambda);
extern REAL level_element_det_3d(const REAL_D coord[]);
extern void level_coord_to_world_3d(const REAL_D coord[],
const REAL_B lambda,
REAL_D world);
extern void level_coord_to_el_coord_3d(const REAL_B v_lambda[],
const REAL_B lambda,
REAL_B el_lambda);
extern int find_level(MESH *mesh, FLAGS fill_flag, const DOF_REAL_VEC *Level,
REAL value,
int (*init)(const EL_INFO *el_info,
REAL v[],
int N, int face, const REAL_B lambda[]),
void (*cal)(const EL_INFO *el_info,
REAL v[],
int i,
int face, const REAL_B lambda[],
const REAL_D coord[]));
extern void set_element_mark(MESH *mesh, FLAGS fill_flag, S_CHAR mark);
/*** file numint.c ******************************************************/
const QUAD *get_quadrature(int dim, int degree);
const QUAD *get_lumping_quadrature(int dim);
void print_quadrature(const QUAD *quad);
REAL integrate_std_simp(const QUAD *quad, REAL (*f)(const REAL *));
const REAL *f_at_qp(const QUAD*, REAL (*f)(const REAL [N_LAMBDA]), REAL*);
int max_quad_points(void);
const REAL_D *f_d_at_qp(const QUAD *quad,
const REAL *(*f)(const REAL[N_LAMBDA]),
REAL_D *vec);
const REAL_D *grd_f_at_qp(const QUAD *,
const REAL *(*)(const REAL [N_LAMBDA]),
REAL_D *);
const REAL_DD *grd_f_d_at_qp(const QUAD *,
const REAL_D *(*)(const REAL [N_LAMBDA]),
REAL_DD *);
const QUAD_FAST *get_quad_fast(const BAS_FCTS *, const QUAD *,
U_CHAR init_flag);
/*** file refine.c ******************************************************/
extern U_CHAR refine(MESH *mesh);
extern U_CHAR global_refine(MESH *mesh, int mark);
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/*** file adapt.c *******************************************************/
extern void adapt_method_stat(MESH *mesh, ADAPT_STAT *adapt);
extern void adapt_method_instat(MESH *mesh, ADAPT_INSTAT *adapt);
extern int marking(MESH *mesh, ADAPT_STAT *adapt);
extern ADAPT_INSTAT *get_adapt_instat(const int dim, const char *name,
const char *prefix,
int info, ADAPT_INSTAT *adapt_instat);
extern ADAPT_STAT *get_adapt_stat(const int dim, const char *name,
const char *prefix,
int info, ADAPT_STAT *adapt_stat);
/*** file assemble.c ****************************************************/
const EL_MATRIX_INFO *fill_matrix_info(const OPERATOR_INFO *,
EL_MATRIX_INFO *);
const Q00_PSI_PHI *get_q00_psi_phi(const BAS_FCTS *psi, const BAS_FCTS *phi,
const QUAD *quad);
const Q01_PSI_PHI *get_q01_psi_phi(const BAS_FCTS *psi, const BAS_FCTS *phi,
const QUAD *quad);
const Q10_PSI_PHI *get_q10_psi_phi(const BAS_FCTS *psi, const BAS_FCTS *phi,
const QUAD *quad);
const Q11_PSI_PHI *get_q11_psi_phi(const BAS_FCTS *psi, const BAS_FCTS *phi,
const QUAD *quad);
/*** file assemble_dowb.c ************************************************/
const EL_DOWB_MATRIX_INFO *
fill_dowb_matrix_info(const DOWB_OPERATOR_INFO *operator_info,
EL_DOWB_MATRIX_INFO *matrix_info);
/*** file bas_fct.c *****************************************************/
extern const BAS_FCTS *get_bas_fcts(const char *name);
extern const BAS_FCTS *get_discontinuous_lagrange(int dim, int degree);
extern const BAS_FCTS *get_lagrange(int dim, int degree);
extern int new_bas_fcts(const BAS_FCTS * bas_fcts);
/*** file check.c *******************************************************/
extern void check_mesh(MESH *mesh);
/*** file dof_admin.c ***************************************************/
extern void free_dof_index(DOF_ADMIN *admin, int dof);
extern int get_dof_index(DOF_ADMIN *admin);
extern void enlarge_dof_lists(DOF_ADMIN *admin, int minsize);
extern void update_dof_matrix(DOF_MATRIX *, REAL, int, const REAL **,
const DOF *, const S_CHAR *);
extern void update_dof_dowb_matrix(DOF_DOWB_MATRIX *, REAL, int,
const void **,
const DOF *, const S_CHAR *);
extern void update_dof_real_vec(DOF_REAL_VEC *, REAL, int, const REAL *,
const DOF *, const S_CHAR *);
extern void update_dof_real_d_vec(DOF_REAL_D_VEC *, REAL, int, const REAL_D *,
const DOF *, const S_CHAR *);
extern void test_dof_matrix(DOF_MATRIX *matrix);
extern void test_dof_dowb_matrix(DOF_DOWB_MATRIX *matrix);
/*** file element.c ***************************************************/
/* These routines are partially available as _?d-versions to avoid looking*/
/* up the dimension. This should be a small efficiency bonus. */
extern int *sorted_wall_indices(const int dim, int face, int permno);
extern int wall_orientation(int dim, const EL *el, int face, int **vecp);
extern int *sort_wall_indices(const int dim,
const EL *el, int face, int *vec);
/* Dimension dependent routines, 0d, just dummies in most cases. */
extern int *sorted_wall_indices_0d(int face, int permno);
extern int wall_orientation_0d(const EL *el, int face, int **vec);
extern int *sort_wall_indices_0d(const EL *el, int face, int *vec);
extern int world_to_coord_0d(const EL_INFO *el_info, const REAL *,
REAL_B);
extern const REAL *coord_to_world_0d(const EL_INFO *, const REAL *, REAL_D);
extern REAL el_det_0d(const EL_INFO *);
extern REAL el_volume_0d(const EL_INFO *el_info);
extern REAL el_grd_lambda_0d(const EL_INFO *el_info,
REAL grd_lam[N_LAMBDA][DIM_OF_WORLD]);
extern REAL get_wall_normal_0d(const EL_INFO *, int , REAL *);
/* Dimension dependent routines, 1d */
extern int *sorted_wall_indices_1d(int face, int permno);
extern int wall_orientation_1d(const EL *el, int face, int **vec);
extern int *sort_wall_indices_1d(const EL *el, int face, int *vec);
extern int world_to_coord_1d(const EL_INFO *el_info, const REAL *,
REAL_B);
extern const REAL *coord_to_world_1d(const EL_INFO *, const REAL *, REAL_D);
extern REAL el_det_1d(const EL_INFO *);
extern REAL el_volume_1d(const EL_INFO *el_info);
extern REAL el_grd_lambda_1d(const EL_INFO *,
REAL grd_lam[N_LAMBDA][DIM_OF_WORLD]);
extern REAL get_wall_normal_1d(const EL_INFO *, int , REAL *);
#if DIM_OF_WORLD > 1
/* Dimension dependent routines, 2d */
extern int *sorted_wall_indices_2d(int face, int permno);
extern int wall_orientation_2d(const EL *el, int face, int **vec);
extern int *sort_wall_indices_2d(const EL *el, int face, int *vec);
extern int world_to_coord_2d(const EL_INFO *el_info, const REAL *,
REAL_B);
extern const REAL *coord_to_world_2d(const EL_INFO *, const REAL *, REAL_D);
extern REAL el_det_2d(const EL_INFO *);
extern REAL el_volume_2d(const EL_INFO *el_info);
extern REAL el_grd_lambda_2d(const EL_INFO *,
REAL grd_lam[N_LAMBDA][DIM_OF_WORLD]);
extern REAL get_wall_normal_2d(const EL_INFO *, int , REAL *);
#if DIM_OF_WORLD > 2
/* Dimension dependent routines, 3d */
extern int *sorted_wall_indices_3d(int face, int permno);
extern int wall_orientation_3d(const EL *el, int face, int **vec);
extern int *sort_wall_indices_3d(const EL *el, int face, int *vec);
extern int world_to_coord_3d(const EL_INFO *el_info, const REAL *,
REAL_B);
extern const REAL *coord_to_world_3d(const EL_INFO *, const REAL *, REAL_D);
extern REAL el_det_3d(const EL_INFO *);
extern REAL el_volume_3d(const EL_INFO *el_info);
extern REAL el_grd_lambda_3d(const EL_INFO *,
REAL grd_lam[N_LAMBDA][DIM_OF_WORLD]);
extern REAL get_wall_normal_3d(const EL_INFO *, int , REAL *);
#endif
#endif
/* Below we provide wrapper functions which distinguish the dimension
* dependent routines by the co-dimension rather than by the dimension
* of the underlying mesh. We start by defining a preprocessor macro
* which spares us some typing and especially typos.
*
* In addition, we provide wrapper functions which decide by looking
* at el_info->mesh->dim what to do.
*
*/
#if DIM_OF_WORLD == 1
# define ALBERTA_CODIM_WRAPPER(ret, name, argtypes, argnames) \
static inline ret name argtypes \
{ \
FUNCNAME(#name); \
\
switch (el_info->mesh->dim) { \
case 0: return name##_0d argnames; \
case 1: return name##_1d argnames; \
default: \
ERROR_EXIT("Illegal dim!\n"); \
return (ret)0; /* just to make the compiler happy */ \
} \
}
# define ALBERTA_CODIM_ALIAS(ret, name, argtypes, argnames) \
static inline ret name##_0cd argtypes { return name##_1d argnames; } \
static inline ret name##_1cd argtypes { return name##_0d argnames; }
/* Variants which start at DOW == 2 and thus are empty here */
# define ALBERTA_CODIM_ALIAS_2(ret, name, argtypes, argnames)
# define ALBERTA_VOID_CODIM_ALIAS_2(name, argtypes, argnames)
#elif DIM_OF_WORLD == 2
# define ALBERTA_CODIM_WRAPPER(ret, name, argtypes, argnames) \
static inline ret name argtypes \
{ \
FUNCNAME(#name); \
\
switch (el_info->mesh->dim) { \
case 0: return name##_0d argnames; \
case 1: return name##_1d argnames; \
case 2: return name##_2d argnames; \
default: \
ERROR_EXIT("Illegal dim!\n"); \
return (ret)0; /* just to make the compiler happy ... */ \
} \
}
# define ALBERTA_CODIM_ALIAS(ret, name, argtypes, argnames) \
static inline ret name##_0cd argtypes { return name##_2d argnames; } \
static inline ret name##_1cd argtypes { return name##_1d argnames; } \
static inline ret name##_2cd argtypes { return name##_0d argnames; }
/* Variants which start at DOW == 2 */
# define ALBERTA_CODIM_ALIAS_2(ret, name, argtypes, argnames) \
static inline ret name##_0cd argtypes { return name##_2d argnames; }
# define ALBERTA_VOID_CODIM_ALIAS_2(name, argtypes, argnames) \
static inline void name##_0cd argtypes { name##_2d argnames; }
#elif DIM_OF_WORLD == 3
# define ALBERTA_CODIM_WRAPPER(ret, name, argtypes, argnames) \
static inline ret name argtypes \
{ \
FUNCNAME(#name); \
\
switch (el_info->mesh->dim) { \
case 0: return name##_0d argnames; \
case 1: return name##_1d argnames; \
case 2: return name##_2d argnames; \
case 3: return name##_3d argnames; \
default: \
ERROR_EXIT("Illegal dim!\n"); \
return (ret)0; /* just to make the compiler happy ... */ \
} \
}
# define ALBERTA_CODIM_ALIAS(ret, name, argtypes, argnames) \
static inline ret name##_0cd argtypes { return name##_3d argnames; } \
static inline ret name##_1cd argtypes { return name##_2d argnames; } \
static inline ret name##_2cd argtypes { return name##_1d argnames; } \
static inline ret name##_3cd argtypes { return name##_0d argnames; }
/* Variants which start at DOW == 2 */
# define ALBERTA_CODIM_ALIAS_2(ret, name, argtypes, argnames) \
static inline ret name##_0cd argtypes { return name##_3d argnames; } \
static inline ret name##_1cd argtypes { return name##_2d argnames; }
# define ALBERTA_VOID_CODIM_ALIAS_2(name, argtypes, argnames) \
static inline void name##_0cd argtypes { name##_3d argnames; } \
static inline void name##_1cd argtypes { name##_2d argnames; }
#else
# error Unsupported DIM_OF_WORLD
#endif
/* ..._Xcd() alias definitions */
ALBERTA_CODIM_ALIAS(int, world_to_coord,
(const EL_INFO *el_info,
const REAL *xy,
REAL_B lambda),
(el_info, xy, lambda))
ALBERTA_CODIM_ALIAS(const REAL *, coord_to_world,
(const EL_INFO *el_info, const REAL *l, REAL_D w),
(el_info, l, w))
ALBERTA_CODIM_ALIAS(REAL, el_volume, (const EL_INFO *el_info), (el_info))
ALBERTA_CODIM_ALIAS(REAL, el_det, (const EL_INFO *el_info), (el_info))
ALBERTA_CODIM_ALIAS(REAL, el_grd_lambda,
(const EL_INFO *el_info,
REAL grd_lam[N_LAMBDA][DIM_OF_WORLD]),
(el_info, grd_lam))
ALBERTA_CODIM_ALIAS(REAL, get_wall_normal,
(const EL_INFO *el_info, int i0, REAL *normal),
(el_info, i0, normal))
ALBERTA_CODIM_ALIAS(int *, sorted_wall_indices,
(int face, int permno),
(face, permno))
ALBERTA_CODIM_ALIAS(int, wall_orientation,
(const EL *el, int face, int **vecp),
(el, face, vecp))
ALBERTA_CODIM_ALIAS(int *, sort_wall_indices,
(const EL *el, int face, int *vec),
(el, face, vec))
/* Wrappers which look at el_info->mesh->dim */
ALBERTA_CODIM_WRAPPER(int, world_to_coord,
(const EL_INFO *el_info, const REAL *x, REAL_B lambda),
(el_info, x, lambda))
ALBERTA_CODIM_WRAPPER(const REAL *, coord_to_world,
(const EL_INFO *el_info, const REAL *lambda, REAL_D x),
(el_info, lambda, x))
ALBERTA_CODIM_WRAPPER(REAL, el_volume, (const EL_INFO *el_info), (el_info))
ALBERTA_CODIM_WRAPPER(REAL, el_det, (const EL_INFO *el_info), (el_info))
ALBERTA_CODIM_WRAPPER(REAL, el_grd_lambda,
(const EL_INFO *el_info,
REAL grd_lam[N_LAMBDA][DIM_OF_WORLD]),
(el_info, grd_lam))
ALBERTA_CODIM_WRAPPER(REAL, get_wall_normal,
(const EL_INFO *el_info, int i0, REAL *normal),
(el_info, i0, normal))
/* Some special wrapper functions, used for some stuff defined in
* level.c
*/
ALBERTA_CODIM_ALIAS_2(REAL, level_element_det, (const REAL_D coord[]), (coord))
ALBERTA_VOID_CODIM_ALIAS_2(level_coord_to_world,
(const REAL_D coord[],
const REAL_B lambda,
REAL_D world),
(coord, lambda, world))
ALBERTA_VOID_CODIM_ALIAS_2(level_coord_to_el_coord,
(const REAL_B v_lambda[],
const REAL_B lambda,
REAL_B el_lambda),
(v_lambda, lambda, el_lambda))
/*** file estimator.c **************************************************/
#define INIT_UH 1
#define INIT_GRD_UH 2
REAL ellipt_est(const DOF_REAL_VEC *uh, ADAPT_STAT *adapt,
REAL *(*rw_est)(EL *), REAL *(*rw_estc)(EL *),
int degree, int norm, REAL C[3], const REAL_DD A,
REAL (*f)(const EL_INFO *,const QUAD *,int,REAL,const REAL_D),
FLAGS f_flag);
REAL heat_est(const DOF_REAL_VEC *uh, ADAPT_INSTAT *adapt,
REAL *(*rw_est)(EL *), REAL *(*rw_estc)(EL *),
int degree, REAL C[4],
const DOF_REAL_VEC *uh_old, const REAL_DD A,
REAL (*f)(const EL_INFO *, const QUAD *, int iq, REAL t,
REAL u, const REAL_D grd_u),
FLAGS f_flag);
/*** file estimator_dowb.c ************************************************/
REAL ellipt_est_d(const DOF_REAL_D_VEC *uh, ADAPT_STAT *adapt,
REAL *(*rw_est)(EL *), REAL *(*rw_estc)(EL *),
int degree, int norm, REAL C[3],
const REAL_DD A[DIM_OF_WORLD][DIM_OF_WORLD],
const REAL *(*f)(const EL_INFO *,
const QUAD *, int qp,
const REAL_D uh, const REAL_DD grd_uh,
REAL_D res),
FLAGS f_flag);
REAL heat_est_d(const DOF_REAL_D_VEC *uh, ADAPT_INSTAT *adapt,
REAL *(*rw_est)(EL *), REAL *(*rw_estc)(EL *),
int degree, REAL C[4],
const DOF_REAL_D_VEC *uh_old,
const REAL_DD A[DIM_OF_WORLD][DIM_OF_WORLD],
const REAL *(*f)(const EL_INFO *, const QUAD *, int iq, REAL t,
const REAL_D u, const REAL_DD grd_u,
REAL_D res),
FLAGS f_flag);
/*** file error.c *******************************************************/
REAL max_err_at_qp(REAL (*)(const REAL_D), const DOF_REAL_VEC *, const QUAD *);
REAL max_err_d_at_qp(const REAL *(*)(const REAL_D, REAL_D),
const DOF_REAL_D_VEC *, const QUAD *);
REAL max_err_at_vert(REAL (*)(const REAL_D), const DOF_REAL_VEC *);
REAL L2_err(REAL (*)(const REAL_D), const DOF_REAL_VEC *, const QUAD *, int,
REAL *(*)(EL *), REAL *);
REAL H1_err(const REAL *(*)(const REAL_D, REAL_D), const DOF_REAL_VEC *,
const QUAD *, int, REAL *(*)(EL *), REAL *);
REAL H1_err_d(const REAL_D *(*grd_u)(const REAL_D, REAL_DD),
const DOF_REAL_D_VEC *uh, const QUAD *quad, int rel_err,
REAL *(*rw_err_el)(EL *), REAL *max_h1_err2);
REAL L2_err_d(const REAL *(*)(const REAL_D, REAL_D), const DOF_REAL_D_VEC *,
const QUAD *, int, REAL *(*)(EL *), REAL *);
/*** file eval.c ********************************************************/
REAL eval_uh(const REAL_B lambda, const REAL *uh_loc, const BAS_FCTS *b);
REAL eval_uh_fast(const REAL *uh_loc, const REAL *phi_val, int n_bfcts);
const REAL *eval_grd_uh(const REAL [N_LAMBDA], const REAL_D [N_LAMBDA],
const REAL *, const BAS_FCTS *, REAL_D);
const REAL *eval_grd_uh_fast(const REAL_D [N_LAMBDA], const REAL *,
const REAL (*)[N_LAMBDA], int , REAL_D);
const REAL_D *eval_D2_uh(const REAL [N_LAMBDA], const REAL_D [N_LAMBDA],
const REAL *, const BAS_FCTS *, REAL_DD);
const REAL_D *eval_D2_uh_fast(const REAL_D [N_LAMBDA], const REAL *,
const REAL (*)[N_LAMBDA][N_LAMBDA],
int, REAL_DD);
const REAL *eval_uh_d(const REAL [N_LAMBDA], const REAL_D *, const BAS_FCTS *,
REAL_D);
const REAL *eval_uh_d_fast(const REAL_D *, const REAL *, int, REAL_D);
const REAL_D *eval_grd_uh_d(const REAL [N_LAMBDA], const REAL_D [N_LAMBDA],
const REAL_D *, const BAS_FCTS *, REAL_DD);
const REAL_D *eval_grd_uh_d_fast(const REAL_D [N_LAMBDA], const REAL_D *,
const REAL (*)[N_LAMBDA], int, REAL_DD);
const REAL_DD *eval_D2_uh_d(const REAL [N_LAMBDA], const REAL_D [N_LAMBDA],
const REAL_D *, const BAS_FCTS *, REAL_DD *);
const REAL_DD *eval_D2_uh_d_fast(const REAL_D [N_LAMBDA], const REAL_D *,
const REAL (*)[N_LAMBDA][N_LAMBDA], int,
REAL_DD *);
const REAL *uh_at_qp(const QUAD_FAST *, const REAL *uh_loc, REAL *vec);
const REAL_D *grd_uh_at_qp(const QUAD_FAST *,
const REAL_D grd_lambda[N_LAMBDA],
const REAL *uh_loc, REAL_D *vec);
const REAL_D *param_grd_uh_at_qp(const QUAD_FAST *fast,
REAL_D Lambda[][N_LAMBDA],
const REAL *uh_loc, REAL_D *vec);
const REAL_DD *D2_uh_at_qp(const QUAD_FAST *, const REAL_D [N_LAMBDA],
const REAL *, REAL_DD *);
const REAL_D *uh_d_at_qp(const QUAD_FAST *fast, const REAL_D *uh_loc,
REAL_D *vec);
const REAL_DD *grd_uh_d_at_qp(const QUAD_FAST *fast,
const REAL_D grd_lambda[N_LAMBDA],
const REAL_D *uh_loc, REAL_DD *vec);
const REAL_DD *param_grd_uh_d_at_qp(const QUAD_FAST *fast,
REAL_D Lambda[][N_LAMBDA],
const REAL_D *uh_loc, REAL_DD *vec);
const REAL_DD (*D2_uh_d_at_qp(const QUAD_FAST *, const REAL_D [N_LAMBDA],
const REAL_D *,
REAL_DD (*)[DIM_OF_WORLD]))[DIM_OF_WORLD];
REAL eval_div_uh_d(const REAL lambda[N_LAMBDA],
const REAL_D grd_lambda[N_LAMBDA],
const REAL_D *uh_loc, const BAS_FCTS *b);
REAL eval_div_uh_d_fast(const REAL_D grd_lambda[N_LAMBDA],
const REAL_D *uh_loc,
const REAL (*grd_phi)[N_LAMBDA], int n_bas_fcts);
const REAL *div_uh_d_at_qp(const QUAD_FAST *fast,
const REAL_D Lambda[N_LAMBDA],
const REAL_D *uh_loc, REAL *vec);
const REAL *param_div_uh_d_at_qp(const QUAD_FAST *fast,
const REAL_D Lambda[][N_LAMBDA],
const REAL_D *uh_loc, REAL *vec);
const REAL_DD *param_D2_uh_at_qp(const QUAD_FAST *fast,
const REAL_D Lambda[][N_LAMBDA],
const REAL *uh_loc, REAL_DD *vec);
const REAL_DD (*param_D2_uh_d_at_qp(const QUAD_FAST *fast,
const REAL_D grd_lam[][N_LAMBDA],
const REAL_D *uh_loc,
REAL_DD (*vec)[DIM_OF_WORLD]))[DIM_OF_WORLD];
REAL H1_norm_uh(const QUAD *quad, const DOF_REAL_VEC *u_h);
REAL L2_norm_uh(const QUAD *quad, const DOF_REAL_VEC *u_h);
REAL H1_norm_uh_d(const QUAD *quad, const DOF_REAL_D_VEC *u_h);
REAL L2_norm_uh_d(const QUAD *quad, const DOF_REAL_D_VEC *u_h);
extern void interpol(REAL (*fct)(const REAL_D), DOF_REAL_VEC *);
extern void interpol_d(const REAL *(*)(const REAL_D, REAL_D),
DOF_REAL_D_VEC *);
/*** file graphXO.c ******************************************************/
GRAPH_WINDOW graph_open_window(const char *title, const char *geometry,
REAL *world, MESH *mesh);
void graph_close_window(GRAPH_WINDOW win);
void graph_clear_window(GRAPH_WINDOW win, const GRAPH_RGBCOLOR c);
void graph_mesh(GRAPH_WINDOW win, MESH *mesh, const GRAPH_RGBCOLOR c,
FLAGS flag);
void graph_drv(GRAPH_WINDOW win, const DOF_REAL_VEC *uh,
REAL min, REAL max, int refine);
void graph_drv_d(GRAPH_WINDOW win, const DOF_REAL_D_VEC *uh,
REAL min, REAL max, int refine);
void graph_el_est(GRAPH_WINDOW win, MESH *mesh, REAL (*get_el_est)(EL *el),
REAL min, REAL max);
void graph_point(GRAPH_WINDOW, const REAL [2], const GRAPH_RGBCOLOR, float);
void graph_points(GRAPH_WINDOW win, int np, REAL (*p)[2],
const GRAPH_RGBCOLOR c, float ps);
void graph_line(GRAPH_WINDOW, const REAL [2], const REAL [2],
const GRAPH_RGBCOLOR, float);
void graph_fvalues_2d(GRAPH_WINDOW win, MESH *mesh,
REAL(*fct)(const EL_INFO *el_info, const REAL *lambda),
FLAGS flags, REAL min, REAL max, int refine);
void graph_level_2d(GRAPH_WINDOW win, const DOF_REAL_VEC *v, REAL level,
const GRAPH_RGBCOLOR c, int refine);
void graph_levels_2d(GRAPH_WINDOW win, const DOF_REAL_VEC *v,
int n, REAL const *levels, const GRAPH_RGBCOLOR *color,
int refine);
void graph_level_d_2d(GRAPH_WINDOW, const DOF_REAL_D_VEC *,
REAL, const GRAPH_RGBCOLOR, int);
void graph_levels_d_2d(GRAPH_WINDOW, const DOF_REAL_D_VEC *,
int, const REAL *, const GRAPH_RGBCOLOR *, int);
/* multigrid level display routines: */
void graph_mesh_mg_2d(GRAPH_WINDOW win, MESH *mesh, const GRAPH_RGBCOLOR c,
FLAGS flags, int mg_level);
void graph_values_mg_2d(GRAPH_WINDOW win, const DOF_REAL_VEC *v,
REAL min, REAL max, int refine,
int mg_level, const FE_SPACE *fe_space,
const int *sort_dof_invers);
/*** file l2scp.c *******************************************************/
void dirichlet_bound(REAL (*)(const REAL_D), DOF_REAL_VEC *, DOF_REAL_VEC *,
DOF_SCHAR_VEC *);
void L2scp_fct_bas(REAL (*f)(const REAL_D), const QUAD *, DOF_REAL_VEC *fh);
void dirichlet_bound_d(const REAL *(*)(const REAL_D, REAL_D),
DOF_REAL_D_VEC *, DOF_REAL_D_VEC *, DOF_SCHAR_VEC *);
void L2scp_fct_bas_d(const REAL *(*f)(const REAL_D, REAL_D), const QUAD *,
DOF_REAL_D_VEC *fhd);
/*--- file oem_solve_s.c -------------------------------------------------*/
int oem_solve_s(const DOF_MATRIX *A, const DOF_REAL_VEC *f,
DOF_REAL_VEC *u, OEM_SOLVER, REAL, int, int, int, int);
int mat_vec_s(void *ud, int dim, const REAL *x, REAL *y);
void *init_mat_vec_s(MatrixTranspose,
const DOF_MATRIX *, const DOF_SCHAR_VEC *);
void exit_mat_vec_s(void *);
/*--- file oem_solve_d.c -------------------------------------------------*/
int oem_solve_d(const DOF_MATRIX *A, const DOF_REAL_D_VEC *f,
DOF_REAL_D_VEC *u, OEM_SOLVER, REAL, int, int, int, int);
int mat_vec_d(void *ud, int dim, const REAL *x, REAL *y);
void *init_mat_vec_d(MatrixTranspose, const DOF_MATRIX *,
const DOF_SCHAR_VEC *);
void exit_mat_vec_d(void *);
/*--- file oem_solve_dowb.c ----------------------------------------------*/
int oem_solve_dowb(const DOF_DOWB_MATRIX *A, const DOF_REAL_D_VEC *f,
DOF_REAL_D_VEC *u, OEM_SOLVER, REAL, int, int, int, int);
int mat_vec_dowb(void *ud, int dim, const REAL *x, REAL *y);
void *init_mat_vec_dowb(MatrixTranspose, const DOF_DOWB_MATRIX *,
const DOF_SCHAR_VEC *);
void exit_mat_vec_dowb(void *);
/*--- file parametric.c --------------------------------------------------*/
void use_lagrange_parametric(MESH *mesh, int degree,
NODE_PROJECTION *n_proj, int strategy);
DOF_REAL_D_VEC *get_lagrange_coords(MESH *mesh);
DOF_UCHAR_VEC *get_lagrange_coord_flags(MESH *mesh);
/*-- file sor.c ----------------------------------------------------------*/
int sor_dowb(DOF_DOWB_MATRIX *a, const DOF_REAL_D_VEC *f,
const DOF_SCHAR_VEC *b,
DOF_REAL_D_VEC *u, REAL omega, REAL tol, int max_iter, int info);
int sor_d(DOF_MATRIX *a, const DOF_REAL_D_VEC *f, const DOF_SCHAR_VEC *b,
DOF_REAL_D_VEC *u, REAL omega, REAL tol, int max_iter, int info);
int sor_s(DOF_MATRIX *a, const DOF_REAL_VEC *f, const DOF_SCHAR_VEC *b,
DOF_REAL_VEC *u, REAL omega, REAL tol, int max_iter, int info);
/*** file ssor.c **********************************************************/
int ssor_dowb(DOF_DOWB_MATRIX *a,
const DOF_REAL_D_VEC *f, const DOF_SCHAR_VEC *b,
DOF_REAL_D_VEC *u, REAL omega, REAL tol, int max_iter, int info);
int ssor_d(DOF_MATRIX *a, const DOF_REAL_D_VEC *f, const DOF_SCHAR_VEC *b,
DOF_REAL_D_VEC *u, REAL omega, REAL tol, int max_iter, int info);
int ssor_s(DOF_MATRIX *a, const DOF_REAL_VEC *f, const DOF_SCHAR_VEC *b,
DOF_REAL_VEC *u, REAL omega, REAL tol, int max_iter, int info);
/*** file traverse_r.c ***************************************************/
extern void mesh_traverse(MESH *mesh, int level, FLAGS fill_flag,
void (*el_fct)(const EL_INFO *, void *data),
void *data);
extern void fill_macro_info(MESH *mesh, const MACRO_EL *mel, EL_INFO *elinfo);
extern void fill_elinfo(int ichild, const EL_INFO *parent_info, EL_INFO *elinfo);
/*** file traverse_nr.c ***************************************************/
extern TRAVERSE_STACK *get_traverse_stack(void);
extern void free_traverse_stack(TRAVERSE_STACK *stack);
extern const EL_INFO *traverse_first(TRAVERSE_STACK *stack,
MESH *mesh, int level, FLAGS fill_flag);
extern const EL_INFO *traverse_next(TRAVERSE_STACK *stack, const EL_INFO *);
extern const EL_INFO *traverse_neighbour(TRAVERSE_STACK *stack, const EL_INFO *,
int neighbour);
extern const EL_INFO *traverse_parent(const TRAVERSE_STACK *stack,
const EL_INFO *child);
extern const EL_INFO *subtree_traverse_first(TRAVERSE_STACK *stack,
const EL_INFO *local_root,
int level, FLAGS fill_flag);
#define TRAVERSE_START(mesh, stack, level, fill_flag, eli) \
if (((eli) = traverse_first(stack, mesh, level, fill_flag))) do
#define TRAVERSE_STOP(stack, eli) \
while (((eli) = traverse_next(stack, eli)))
/*--- file trav_xy.c -----------------------------------------------------*/
extern int find_el_at_pt(MESH *mesh, const REAL_D xy,
EL_INFO **el_info_p, FLAGS flag, REAL bary[N_LAMBDA],
const MACRO_EL *start_mel,
const REAL_D xy0, REAL *sp);
/*** file read_mesh.c *********************************************/
MESH *read_mesh(const char *fn, REAL *timeptr,
NODE_PROJECTION *(*n_proj)(MESH *, MACRO_EL *, int));
DOF_REAL_VEC *read_dof_real_vec(const char *, MESH *, FE_SPACE *);
DOF_REAL_D_VEC *read_dof_real_d_vec(const char *, MESH *, FE_SPACE *);
DOF_INT_VEC *read_dof_int_vec(const char *, MESH *, FE_SPACE *);
DOF_SCHAR_VEC *read_dof_schar_vec(const char *, MESH *, FE_SPACE *);
DOF_UCHAR_VEC *read_dof_uchar_vec(const char *, MESH *, FE_SPACE *);
MESH *read_mesh_xdr(const char *, REAL *,
NODE_PROJECTION *(*)(MESH *, MACRO_EL *, int));
DOF_REAL_VEC *read_dof_real_vec_xdr(const char *, MESH *, FE_SPACE *);
DOF_REAL_D_VEC *read_dof_real_d_vec_xdr(const char *, MESH *, FE_SPACE *);
DOF_INT_VEC *read_dof_int_vec_xdr(const char *, MESH *, FE_SPACE *);
DOF_SCHAR_VEC *read_dof_schar_vec_xdr(const char *, MESH *, FE_SPACE *);
DOF_UCHAR_VEC *read_dof_uchar_vec_xdr(const char *, MESH *, FE_SPACE *);
/*** file write_mesh.c ********************************************/
int write_mesh(MESH *, const char *, REAL);
int write_dof_real_vec(const DOF_REAL_VEC *, const char *);
int write_dof_real_d_vec(const DOF_REAL_D_VEC *, const char *);
int write_dof_int_vec(const DOF_INT_VEC *, const char *);
int write_dof_schar_vec(const DOF_SCHAR_VEC *, const char *);
int write_dof_uchar_vec(const DOF_UCHAR_VEC *, const char *);
int write_mesh_xdr(MESH *, const char *, REAL);
int write_dof_real_vec_xdr(const DOF_REAL_VEC *, const char *);
int write_dof_real_d_vec_xdr(const DOF_REAL_D_VEC *, const char *);
int write_dof_int_vec_xdr(const DOF_INT_VEC *, const char *);
int write_dof_schar_vec_xdr(const DOF_SCHAR_VEC *, const char *);
int write_dof_uchar_vec_xdr(const DOF_UCHAR_VEC *, const char *);
int write_dof_matrix_pbm(const DOF_MATRIX *matrix,
const char *filename);
/*** file write_mesh_gmv.c ********************************************/
int write_mesh_gmv(MESH *mesh, const char *file_name, int write_ascii,
int use_refined_grid,
const int n_drv,
DOF_REAL_VEC **drv_ptr,
const int n_drdv,
DOF_REAL_D_VEC **drdv_ptr,
DOF_REAL_D_VEC *velocity,
REAL sim_time);
int write_dof_vec_gmv(MESH *mesh,
const char *mesh_file,
const char *file_name, int write_ascii,
int use_refined_grid,
const int n_drv,
DOF_REAL_VEC **drv_ptr,
const int n_drdv,
DOF_REAL_D_VEC **drdv_ptr,
DOF_REAL_D_VEC *velocity,
REAL sim_time);
/*-- file write_mesh_ps.c ------------------------------------------------*/
void write_mesh_ps(MESH *mesh, const char *filename, const char *title,
const REAL x[2], const REAL y[2], int keepaspect,
int draw_bound);
/*--------------------------------------------------------------------------*/
/* interface for Lagrange elements for the gltools */
/* file gltools.c */
/*--------------------------------------------------------------------------*/
typedef void* GLTOOLS_WINDOW;
GLTOOLS_WINDOW open_gltools_window(const char *, const char *, const REAL *,
MESH *, int);
void close_gltools_window(GLTOOLS_WINDOW);
extern int gltools_get_next_dialog(void);
extern void gltools_set_next_dialog(int dialog);
void gltools_est(GLTOOLS_WINDOW, MESH *, REAL (*)(EL *), REAL, REAL);
void gltools_disp_mesh(GLTOOLS_WINDOW, MESH *, int, const DOF_REAL_D_VEC *);
void gltools_mesh(GLTOOLS_WINDOW win, MESH *, int);
void gltools_disp_drv(GLTOOLS_WINDOW, const DOF_REAL_VEC *,
REAL, REAL, const DOF_REAL_D_VEC *);
void gltools_drv(GLTOOLS_WINDOW, const DOF_REAL_VEC *, REAL, REAL);
void gltools_disp_drv_d(GLTOOLS_WINDOW, const DOF_REAL_D_VEC *,
REAL, REAL, const DOF_REAL_D_VEC *);
void gltools_drv_d(GLTOOLS_WINDOW, const DOF_REAL_D_VEC *, REAL, REAL);
void gltools_disp_vec(GLTOOLS_WINDOW, const DOF_REAL_D_VEC *,
REAL, REAL, const DOF_REAL_D_VEC *);
void gltools_vec(GLTOOLS_WINDOW, const DOF_REAL_D_VEC *, REAL, REAL);
/*--------------------------------------------------------------------------*/
/* interface for Lagrange elements for the dxtools */
/* file dxtools.c */
/*--------------------------------------------------------------------------*/
typedef struct dxtools_window DXTOOLS_WINDOW;
extern DXTOOLS_WINDOW *open_dxtools_window(const char *title,
const char *geometry);
extern void close_dxtools_window(DXTOOLS_WINDOW *win);
extern void dxtools_mesh(DXTOOLS_WINDOW *win, MESH *mesh);
extern void dxtools_drv(DXTOOLS_WINDOW *win, const DOF_REAL_VEC *u);
extern void dxtools_drdv(DXTOOLS_WINDOW *win, const DOF_REAL_D_VEC *u);
#ifdef __cplusplus
}
#endif
#endif /* !_ALBERTA_H_ */
|