/usr/include/ablas.h is in libalglib-dev 2.6.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 | /*************************************************************************
Copyright (c) 2009-2010, Sergey Bochkanov (ALGLIB project).
>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses
>>> END OF LICENSE >>>
*************************************************************************/
#ifndef _ablas_h
#define _ablas_h
#include "ap.h"
#include "ialglib.h"
#include "ablasf.h"
/*************************************************************************
Splits matrix length in two parts, left part should match ABLAS block size
INPUT PARAMETERS
A - real matrix, is passed to ensure that we didn't split
complex matrix using real splitting subroutine.
matrix itself is not changed.
N - length, N>0
OUTPUT PARAMETERS
N1 - length
N2 - length
N1+N2=N, N1>=N2, N2 may be zero
-- ALGLIB routine --
15.12.2009
Bochkanov Sergey
*************************************************************************/
void ablassplitlength(const ap::real_2d_array& a, int n, int& n1, int& n2);
/*************************************************************************
Complex ABLASSplitLength
-- ALGLIB routine --
15.12.2009
Bochkanov Sergey
*************************************************************************/
void ablascomplexsplitlength(const ap::complex_2d_array& a,
int n,
int& n1,
int& n2);
/*************************************************************************
Returns block size - subdivision size where cache-oblivious soubroutines
switch to the optimized kernel.
INPUT PARAMETERS
A - real matrix, is passed to ensure that we didn't split
complex matrix using real splitting subroutine.
matrix itself is not changed.
-- ALGLIB routine --
15.12.2009
Bochkanov Sergey
*************************************************************************/
int ablasblocksize(const ap::real_2d_array& a);
/*************************************************************************
Block size for complex subroutines.
-- ALGLIB routine --
15.12.2009
Bochkanov Sergey
*************************************************************************/
int ablascomplexblocksize(const ap::complex_2d_array& a);
/*************************************************************************
Microblock size
-- ALGLIB routine --
15.12.2009
Bochkanov Sergey
*************************************************************************/
int ablasmicroblocksize();
/*************************************************************************
Cache-oblivous complex "copy-and-transpose"
Input parameters:
M - number of rows
N - number of columns
A - source matrix, MxN submatrix is copied and transposed
IA - submatrix offset (row index)
JA - submatrix offset (column index)
A - destination matrix
IB - submatrix offset (row index)
JB - submatrix offset (column index)
*************************************************************************/
void cmatrixtranspose(int m,
int n,
const ap::complex_2d_array& a,
int ia,
int ja,
ap::complex_2d_array& b,
int ib,
int jb);
/*************************************************************************
Cache-oblivous real "copy-and-transpose"
Input parameters:
M - number of rows
N - number of columns
A - source matrix, MxN submatrix is copied and transposed
IA - submatrix offset (row index)
JA - submatrix offset (column index)
A - destination matrix
IB - submatrix offset (row index)
JB - submatrix offset (column index)
*************************************************************************/
void rmatrixtranspose(int m,
int n,
const ap::real_2d_array& a,
int ia,
int ja,
ap::real_2d_array& b,
int ib,
int jb);
/*************************************************************************
Copy
Input parameters:
M - number of rows
N - number of columns
A - source matrix, MxN submatrix is copied and transposed
IA - submatrix offset (row index)
JA - submatrix offset (column index)
B - destination matrix
IB - submatrix offset (row index)
JB - submatrix offset (column index)
*************************************************************************/
void cmatrixcopy(int m,
int n,
const ap::complex_2d_array& a,
int ia,
int ja,
ap::complex_2d_array& b,
int ib,
int jb);
/*************************************************************************
Copy
Input parameters:
M - number of rows
N - number of columns
A - source matrix, MxN submatrix is copied and transposed
IA - submatrix offset (row index)
JA - submatrix offset (column index)
B - destination matrix
IB - submatrix offset (row index)
JB - submatrix offset (column index)
*************************************************************************/
void rmatrixcopy(int m,
int n,
const ap::real_2d_array& a,
int ia,
int ja,
ap::real_2d_array& b,
int ib,
int jb);
/*************************************************************************
Rank-1 correction: A := A + u*v'
INPUT PARAMETERS:
M - number of rows
N - number of columns
A - target matrix, MxN submatrix is updated
IA - submatrix offset (row index)
JA - submatrix offset (column index)
U - vector #1
IU - subvector offset
V - vector #2
IV - subvector offset
*************************************************************************/
void cmatrixrank1(int m,
int n,
ap::complex_2d_array& a,
int ia,
int ja,
ap::complex_1d_array& u,
int iu,
ap::complex_1d_array& v,
int iv);
/*************************************************************************
Rank-1 correction: A := A + u*v'
INPUT PARAMETERS:
M - number of rows
N - number of columns
A - target matrix, MxN submatrix is updated
IA - submatrix offset (row index)
JA - submatrix offset (column index)
U - vector #1
IU - subvector offset
V - vector #2
IV - subvector offset
*************************************************************************/
void rmatrixrank1(int m,
int n,
ap::real_2d_array& a,
int ia,
int ja,
ap::real_1d_array& u,
int iu,
ap::real_1d_array& v,
int iv);
/*************************************************************************
Matrix-vector product: y := op(A)*x
INPUT PARAMETERS:
M - number of rows of op(A)
M>=0
N - number of columns of op(A)
N>=0
A - target matrix
IA - submatrix offset (row index)
JA - submatrix offset (column index)
OpA - operation type:
* OpA=0 => op(A) = A
* OpA=1 => op(A) = A^T
* OpA=2 => op(A) = A^H
X - input vector
IX - subvector offset
IY - subvector offset
OUTPUT PARAMETERS:
Y - vector which stores result
if M=0, then subroutine does nothing.
if N=0, Y is filled by zeros.
-- ALGLIB routine --
28.01.2010
Bochkanov Sergey
*************************************************************************/
void cmatrixmv(int m,
int n,
ap::complex_2d_array& a,
int ia,
int ja,
int opa,
ap::complex_1d_array& x,
int ix,
ap::complex_1d_array& y,
int iy);
/*************************************************************************
Matrix-vector product: y := op(A)*x
INPUT PARAMETERS:
M - number of rows of op(A)
N - number of columns of op(A)
A - target matrix
IA - submatrix offset (row index)
JA - submatrix offset (column index)
OpA - operation type:
* OpA=0 => op(A) = A
* OpA=1 => op(A) = A^T
X - input vector
IX - subvector offset
IY - subvector offset
OUTPUT PARAMETERS:
Y - vector which stores result
if M=0, then subroutine does nothing.
if N=0, Y is filled by zeros.
-- ALGLIB routine --
28.01.2010
Bochkanov Sergey
*************************************************************************/
void rmatrixmv(int m,
int n,
ap::real_2d_array& a,
int ia,
int ja,
int opa,
ap::real_1d_array& x,
int ix,
ap::real_1d_array& y,
int iy);
/*************************************************************************
This subroutine calculates X*op(A^-1) where:
* X is MxN general matrix
* A is NxN upper/lower triangular/unitriangular matrix
* "op" may be identity transformation, transposition, conjugate transposition
Multiplication result replaces X.
Cache-oblivious algorithm is used.
INPUT PARAMETERS
N - matrix size, N>=0
M - matrix size, N>=0
A - matrix, actial matrix is stored in A[I1:I1+N-1,J1:J1+N-1]
I1 - submatrix offset
J1 - submatrix offset
IsUpper - whether matrix is upper triangular
IsUnit - whether matrix is unitriangular
OpType - transformation type:
* 0 - no transformation
* 1 - transposition
* 2 - conjugate transposition
C - matrix, actial matrix is stored in C[I2:I2+M-1,J2:J2+N-1]
I2 - submatrix offset
J2 - submatrix offset
-- ALGLIB routine --
15.12.2009
Bochkanov Sergey
*************************************************************************/
void cmatrixrighttrsm(int m,
int n,
const ap::complex_2d_array& a,
int i1,
int j1,
bool isupper,
bool isunit,
int optype,
ap::complex_2d_array& x,
int i2,
int j2);
/*************************************************************************
This subroutine calculates op(A^-1)*X where:
* X is MxN general matrix
* A is MxM upper/lower triangular/unitriangular matrix
* "op" may be identity transformation, transposition, conjugate transposition
Multiplication result replaces X.
Cache-oblivious algorithm is used.
INPUT PARAMETERS
N - matrix size, N>=0
M - matrix size, N>=0
A - matrix, actial matrix is stored in A[I1:I1+M-1,J1:J1+M-1]
I1 - submatrix offset
J1 - submatrix offset
IsUpper - whether matrix is upper triangular
IsUnit - whether matrix is unitriangular
OpType - transformation type:
* 0 - no transformation
* 1 - transposition
* 2 - conjugate transposition
C - matrix, actial matrix is stored in C[I2:I2+M-1,J2:J2+N-1]
I2 - submatrix offset
J2 - submatrix offset
-- ALGLIB routine --
15.12.2009
Bochkanov Sergey
*************************************************************************/
void cmatrixlefttrsm(int m,
int n,
const ap::complex_2d_array& a,
int i1,
int j1,
bool isupper,
bool isunit,
int optype,
ap::complex_2d_array& x,
int i2,
int j2);
/*************************************************************************
Same as CMatrixRightTRSM, but for real matrices
OpType may be only 0 or 1.
-- ALGLIB routine --
15.12.2009
Bochkanov Sergey
*************************************************************************/
void rmatrixrighttrsm(int m,
int n,
const ap::real_2d_array& a,
int i1,
int j1,
bool isupper,
bool isunit,
int optype,
ap::real_2d_array& x,
int i2,
int j2);
/*************************************************************************
Same as CMatrixLeftTRSM, but for real matrices
OpType may be only 0 or 1.
-- ALGLIB routine --
15.12.2009
Bochkanov Sergey
*************************************************************************/
void rmatrixlefttrsm(int m,
int n,
const ap::real_2d_array& a,
int i1,
int j1,
bool isupper,
bool isunit,
int optype,
ap::real_2d_array& x,
int i2,
int j2);
/*************************************************************************
This subroutine calculates C=alpha*A*A^H+beta*C or C=alpha*A^H*A+beta*C
where:
* C is NxN Hermitian matrix given by its upper/lower triangle
* A is NxK matrix when A*A^H is calculated, KxN matrix otherwise
Additional info:
* cache-oblivious algorithm is used.
* multiplication result replaces C. If Beta=0, C elements are not used in
calculations (not multiplied by zero - just not referenced)
* if Alpha=0, A is not used (not multiplied by zero - just not referenced)
* if both Beta and Alpha are zero, C is filled by zeros.
INPUT PARAMETERS
N - matrix size, N>=0
K - matrix size, K>=0
Alpha - coefficient
A - matrix
IA - submatrix offset
JA - submatrix offset
OpTypeA - multiplication type:
* 0 - A*A^H is calculated
* 2 - A^H*A is calculated
Beta - coefficient
C - matrix
IC - submatrix offset
JC - submatrix offset
IsUpper - whether C is upper triangular or lower triangular
-- ALGLIB routine --
16.12.2009
Bochkanov Sergey
*************************************************************************/
void cmatrixsyrk(int n,
int k,
double alpha,
const ap::complex_2d_array& a,
int ia,
int ja,
int optypea,
double beta,
ap::complex_2d_array& c,
int ic,
int jc,
bool isupper);
/*************************************************************************
Same as CMatrixSYRK, but for real matrices
OpType may be only 0 or 1.
-- ALGLIB routine --
16.12.2009
Bochkanov Sergey
*************************************************************************/
void rmatrixsyrk(int n,
int k,
double alpha,
const ap::real_2d_array& a,
int ia,
int ja,
int optypea,
double beta,
ap::real_2d_array& c,
int ic,
int jc,
bool isupper);
/*************************************************************************
This subroutine calculates C = alpha*op1(A)*op2(B) +beta*C where:
* C is MxN general matrix
* op1(A) is MxK matrix
* op2(B) is KxN matrix
* "op" may be identity transformation, transposition, conjugate transposition
Additional info:
* cache-oblivious algorithm is used.
* multiplication result replaces C. If Beta=0, C elements are not used in
calculations (not multiplied by zero - just not referenced)
* if Alpha=0, A is not used (not multiplied by zero - just not referenced)
* if both Beta and Alpha are zero, C is filled by zeros.
INPUT PARAMETERS
N - matrix size, N>0
M - matrix size, N>0
K - matrix size, K>0
Alpha - coefficient
A - matrix
IA - submatrix offset
JA - submatrix offset
OpTypeA - transformation type:
* 0 - no transformation
* 1 - transposition
* 2 - conjugate transposition
B - matrix
IB - submatrix offset
JB - submatrix offset
OpTypeB - transformation type:
* 0 - no transformation
* 1 - transposition
* 2 - conjugate transposition
Beta - coefficient
C - matrix
IC - submatrix offset
JC - submatrix offset
-- ALGLIB routine --
16.12.2009
Bochkanov Sergey
*************************************************************************/
void cmatrixgemm(int m,
int n,
int k,
ap::complex alpha,
const ap::complex_2d_array& a,
int ia,
int ja,
int optypea,
const ap::complex_2d_array& b,
int ib,
int jb,
int optypeb,
ap::complex beta,
ap::complex_2d_array& c,
int ic,
int jc);
/*************************************************************************
Same as CMatrixGEMM, but for real numbers.
OpType may be only 0 or 1.
-- ALGLIB routine --
16.12.2009
Bochkanov Sergey
*************************************************************************/
void rmatrixgemm(int m,
int n,
int k,
double alpha,
const ap::real_2d_array& a,
int ia,
int ja,
int optypea,
const ap::real_2d_array& b,
int ib,
int jb,
int optypeb,
double beta,
ap::real_2d_array& c,
int ic,
int jc);
#endif
|