/usr/include/ap.h is in libalglib-dev 2.6.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 | /*************************************************************************
AP library 1.3
Copyright (c) 2003-2009 Sergey Bochkanov (ALGLIB project).
>>> LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses
>>> END OF LICENSE >>>
*************************************************************************/
#ifndef AP_H
#define AP_H
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <math.h>
#ifdef __BORLANDC__
#include <list.h>
#include <vector.h>
#else
#include <list>
#include <vector>
#endif
/********************************************************************
Array bounds check
********************************************************************/
#define NO_AP_ASSERT
#ifndef AP_ASSERT //
#define NO_AP_ASSERT // This code avoids definition of the
#endif // both AP_ASSERT and NO_AP_ASSERT symbols
#ifdef NO_AP_ASSERT //
#ifdef AP_ASSERT //
#undef NO_AP_ASSERT //
#endif //
#endif //
/********************************************************************
Current environment.
********************************************************************/
#ifndef AP_WIN32
#ifndef AP_UNKNOWN
#define AP_UNKNOWN
#endif
#endif
#ifdef AP_WIN32
#ifdef AP_UNKNOWN
#error Multiple environments are declared!
#endif
#endif
/********************************************************************
This symbol is used for debugging. Do not define it and do not remove
comments.
********************************************************************/
//#define UNSAFE_MEM_COPY
/********************************************************************
Namespace of a standard library AlgoPascal.
********************************************************************/
namespace ap
{
/********************************************************************
Service routines:
amalloc - allocates an aligned block of size bytes
afree - frees block allocated by amalloc
vlen - just alias for n2-n1+1
********************************************************************/
void* amalloc(size_t size, size_t alignment);
void afree(void *block);
int vlen(int n1, int n2);
/********************************************************************
Exception class.
********************************************************************/
class ap_error
{
public:
ap_error(){};
ap_error(const char *s){ msg = s; };
std::string msg;
static void make_assertion(bool bClause)
{ if(!bClause) throw ap_error(); };
static void make_assertion(bool bClause, const char *msg)
{ if(!bClause) throw ap_error(msg); };
private:
};
/********************************************************************
Class defining a complex number with double precision.
********************************************************************/
class complex;
class complex
{
public:
complex():x(0.0),y(0.0){};
complex(const double &_x):x(_x),y(0.0){};
complex(const double &_x, const double &_y):x(_x),y(_y){};
complex(const complex &z):x(z.x),y(z.y){};
complex& operator= (const double& v){ x = v; y = 0.0; return *this; };
complex& operator+=(const double& v){ x += v; return *this; };
complex& operator-=(const double& v){ x -= v; return *this; };
complex& operator*=(const double& v){ x *= v; y *= v; return *this; };
complex& operator/=(const double& v){ x /= v; y /= v; return *this; };
complex& operator= (const complex& z){ x = z.x; y = z.y; return *this; };
complex& operator+=(const complex& z){ x += z.x; y += z.y; return *this; };
complex& operator-=(const complex& z){ x -= z.x; y -= z.y; return *this; };
complex& operator*=(const complex& z){ double t = x*z.x-y*z.y; y = x*z.y+y*z.x; x = t; return *this; };
complex& operator/=(const complex& z)
{
ap::complex result;
double e;
double f;
if( fabs(z.y)<fabs(z.x) )
{
e = z.y/z.x;
f = z.x+z.y*e;
result.x = (x+y*e)/f;
result.y = (y-x*e)/f;
}
else
{
e = z.x/z.y;
f = z.y+z.x*e;
result.x = (y+x*e)/f;
result.y = (-x+y*e)/f;
}
*this = result;
return *this;
};
double x, y;
};
const complex operator/(const complex& lhs, const complex& rhs);
const bool operator==(const complex& lhs, const complex& rhs);
const bool operator!=(const complex& lhs, const complex& rhs);
const complex operator+(const complex& lhs);
const complex operator-(const complex& lhs);
const complex operator+(const complex& lhs, const complex& rhs);
const complex operator+(const complex& lhs, const double& rhs);
const complex operator+(const double& lhs, const complex& rhs);
const complex operator-(const complex& lhs, const complex& rhs);
const complex operator-(const complex& lhs, const double& rhs);
const complex operator-(const double& lhs, const complex& rhs);
const complex operator*(const complex& lhs, const complex& rhs);
const complex operator*(const complex& lhs, const double& rhs);
const complex operator*(const double& lhs, const complex& rhs);
const complex operator/(const complex& lhs, const complex& rhs);
const complex operator/(const double& lhs, const complex& rhs);
const complex operator/(const complex& lhs, const double& rhs);
const double abscomplex(const complex &z);
const complex conj(const complex &z);
const complex csqr(const complex &z);
/********************************************************************
Templates for vector operations
********************************************************************/
#include "apvt.h"
/********************************************************************
Level 1 BLAS functions
********************************************************************/
double vdotproduct(const double *v0, int stride0, const double *v1, int stride1, int n);
complex vdotproduct(const complex *v0, int stride0, const char *conj0, const complex *v1, int stride1, const char *conj1, int n);
void vmove(double *vdst, int stride_dst, const double* vsrc, int stride_src, int n);
void vmove(complex *vdst, int stride_dst, const complex* vsrc, int stride_src, const char *conj_src, int n);
void vmoveneg(double *vdst, int stride_dst, const double* vsrc, int stride_src, int n);
void vmoveneg(complex *vdst, int stride_dst, const complex* vsrc, int stride_src, const char *conj_src, int n);
void vmove(double *vdst, int stride_dst, const double* vsrc, int stride_src, int n, double alpha);
void vmove(complex *vdst, int stride_dst, const complex* vsrc, int stride_src, const char *conj_src, int n, double alpha);
void vmove(complex *vdst, int stride_dst, const complex* vsrc, int stride_src, const char *conj_src, int n, complex alpha);
void vadd(double *vdst, int stride_dst, const double *vsrc, int stride_src, int n);
void vadd(complex *vdst, int stride_dst, const complex *vsrc, int stride_src, const char *conj_src, int n);
void vadd(double *vdst, int stride_dst, const double *vsrc, int stride_src, int n, double alpha);
void vadd(complex *vdst, int stride_dst, const complex *vsrc, int stride_src, const char *conj_src, int n, double alpha);
void vadd(complex *vdst, int stride_dst, const complex *vsrc, int stride_src, const char *conj_src, int n, complex alpha);
void vsub(double *vdst, int stride_dst, const double *vsrc, int stride_src, int n);
void vsub(complex *vdst, int stride_dst, const complex *vsrc, int stride_src, const char *conj_src, int n);
void vsub(double *vdst, int stride_dst, const double *vsrc, int stride_src, int n, double alpha);
void vsub(complex *vdst, int stride_dst, const complex *vsrc, int stride_src, const char *conj_src, int n, double alpha);
void vsub(complex *vdst, int stride_dst, const complex *vsrc, int stride_src, const char *conj_src, int n, complex alpha);
void vmul(double *vdst, int stride_dst, int n, double alpha);
void vmul(complex *vdst, int stride_dst, int n, double alpha);
void vmul(complex *vdst, int stride_dst, int n, complex alpha);
/********************************************************************
Obsolete BLAS functions
********************************************************************/
double vdotproduct(const double *v1, const double *v2, int N);
complex vdotproduct(const complex *v1, const complex *v2, int N);
void vmove(double *vdst, const double* vsrc, int N);
void vmove(complex *vdst, const complex* vsrc, int N);
void vmoveneg(double *vdst, const double *vsrc, int N);
void vmoveneg(complex *vdst, const complex *vsrc, int N);
void vmove(double *vdst, const double *vsrc, int N, double alpha);
void vmove(complex *vdst, const complex *vsrc, int N, double alpha);
void vmove(complex *vdst, const complex *vsrc, int N, complex alpha);
void vadd(double *vdst, const double *vsrc, int N);
void vadd(complex *vdst, const complex *vsrc, int N);
void vadd(double *vdst, const double *vsrc, int N, double alpha);
void vadd(complex *vdst, const complex *vsrc, int N, double alpha);
void vadd(complex *vdst, const complex *vsrc, int N, complex alpha);
void vsub(double *vdst, const double *vsrc, int N);
void vsub(complex *vdst, const complex *vsrc, int N);
void vsub(double *vdst, const double *vsrc, int N, double alpha);
void vsub(complex *vdst, const complex *vsrc, int N, double alpha);
void vsub(complex *vdst, const complex *vsrc, int N, complex alpha);
void vmul(double *vdst, int N, double alpha);
void vmul(complex *vdst, int N, double alpha);
void vmul(complex *vdst, int N, complex alpha);
/********************************************************************
Template of a dynamical one-dimensional array
********************************************************************/
template<class T, bool Aligned = false>
class template_1d_array
{
public:
template_1d_array()
{
m_Vec=0;
m_iVecSize = 0;
m_iLow = 0;
m_iHigh = -1;
};
~template_1d_array()
{
if(m_Vec)
{
if( Aligned )
ap::afree(m_Vec);
else
delete[] m_Vec;
}
};
template_1d_array(const template_1d_array &rhs)
{
m_Vec=0;
m_iVecSize = 0;
m_iLow = 0;
m_iHigh = -1;
if( rhs.m_iVecSize!=0 )
setcontent(rhs.m_iLow, rhs.m_iHigh, rhs.getcontent());
};
const template_1d_array& operator=(const template_1d_array &rhs)
{
if( this==&rhs )
return *this;
if( rhs.m_iVecSize!=0 )
setcontent(rhs.m_iLow, rhs.m_iHigh, rhs.getcontent());
else
{
m_Vec=0;
m_iVecSize = 0;
m_iLow = 0;
m_iHigh = -1;
}
return *this;
};
const T& operator()(int i) const
{
#ifndef NO_AP_ASSERT
ap_error::make_assertion(i>=m_iLow && i<=m_iHigh);
#endif
return m_Vec[ i-m_iLow ];
};
T& operator()(int i)
{
#ifndef NO_AP_ASSERT
ap_error::make_assertion(i>=m_iLow && i<=m_iHigh);
#endif
return m_Vec[ i-m_iLow ];
};
void setbounds( int iLow, int iHigh )
{
if(m_Vec)
{
if( Aligned )
ap::afree(m_Vec);
else
delete[] m_Vec;
}
m_iLow = iLow;
m_iHigh = iHigh;
m_iVecSize = iHigh-iLow+1;
if( Aligned )
m_Vec = (T*)ap::amalloc((size_t)(m_iVecSize*sizeof(T)), 16);
else
m_Vec = new T[(size_t)m_iVecSize];
};
void setlength(int iLen)
{
setbounds(0, iLen-1);
}
void setcontent( int iLow, int iHigh, const T *pContent )
{
setbounds(iLow, iHigh);
for(int i=0; i<m_iVecSize; i++)
m_Vec[i] = pContent[i];
};
T* getcontent()
{
return m_Vec;
};
const T* getcontent() const
{
return m_Vec;
};
int getlowbound(int iBoundNum = 0) const
{
return m_iLow;
};
int gethighbound(int iBoundNum = 0) const
{
return m_iHigh;
};
raw_vector<T> getvector(int iStart, int iEnd)
{
if( iStart>iEnd || wrongIdx(iStart) || wrongIdx(iEnd) )
return raw_vector<T>(0, 0, 1);
else
return raw_vector<T>(m_Vec+iStart-m_iLow, iEnd-iStart+1, 1);
};
const_raw_vector<T> getvector(int iStart, int iEnd) const
{
if( iStart>iEnd || wrongIdx(iStart) || wrongIdx(iEnd) )
return const_raw_vector<T>(0, 0, 1);
else
return const_raw_vector<T>(m_Vec+iStart-m_iLow, iEnd-iStart+1, 1);
};
private:
bool wrongIdx(int i) const { return i<m_iLow || i>m_iHigh; };
T *m_Vec;
long m_iVecSize;
long m_iLow, m_iHigh;
};
/********************************************************************
Template of a dynamical two-dimensional array
********************************************************************/
template<class T, bool Aligned = false>
class template_2d_array
{
public:
template_2d_array()
{
m_Vec=0;
m_iVecSize=0;
m_iLow1 = 0;
m_iHigh1 = -1;
m_iLow2 = 0;
m_iHigh2 = -1;
};
~template_2d_array()
{
if(m_Vec)
{
if( Aligned )
ap::afree(m_Vec);
else
delete[] m_Vec;
}
};
template_2d_array(const template_2d_array &rhs)
{
m_Vec=0;
m_iVecSize=0;
m_iLow1 = 0;
m_iHigh1 = -1;
m_iLow2 = 0;
m_iHigh2 = -1;
if( rhs.m_iVecSize!=0 )
{
setbounds(rhs.m_iLow1, rhs.m_iHigh1, rhs.m_iLow2, rhs.m_iHigh2);
for(int i=m_iLow1; i<=m_iHigh1; i++)
for(int j=m_iLow2; j<=m_iHigh2; j++)
operator()(i,j) = rhs(i,j);
//vmove(&(operator()(i,m_iLow2)), &(rhs(i,m_iLow2)), m_iHigh2-m_iLow2+1);
}
};
const template_2d_array& operator=(const template_2d_array &rhs)
{
if( this==&rhs )
return *this;
if( rhs.m_iVecSize!=0 )
{
setbounds(rhs.m_iLow1, rhs.m_iHigh1, rhs.m_iLow2, rhs.m_iHigh2);
for(int i=m_iLow1; i<=m_iHigh1; i++)
for(int j=m_iLow2; j<=m_iHigh2; j++)
operator()(i,j) = rhs(i,j);
//vmove(&(operator()(i,m_iLow2)), &(rhs(i,m_iLow2)), m_iHigh2-m_iLow2+1);
}
else
{
if(m_Vec)
{
if( Aligned )
ap::afree(m_Vec);
else
delete[] m_Vec;
}
m_Vec=0;
m_iVecSize=0;
m_iLow1 = 0;
m_iHigh1 = -1;
m_iLow2 = 0;
m_iHigh2 = -1;
}
return *this;
};
const T& operator()(int i1, int i2) const
{
#ifndef NO_AP_ASSERT
ap_error::make_assertion(i1>=m_iLow1 && i1<=m_iHigh1);
ap_error::make_assertion(i2>=m_iLow2 && i2<=m_iHigh2);
#endif
return m_Vec[ m_iConstOffset + i2 +i1*m_iLinearMember];
};
T& operator()(int i1, int i2)
{
#ifndef NO_AP_ASSERT
ap_error::make_assertion(i1>=m_iLow1 && i1<=m_iHigh1);
ap_error::make_assertion(i2>=m_iLow2 && i2<=m_iHigh2);
#endif
return m_Vec[ m_iConstOffset + i2 +i1*m_iLinearMember];
};
void setbounds( int iLow1, int iHigh1, int iLow2, int iHigh2 )
{
if(m_Vec)
{
if( Aligned )
ap::afree(m_Vec);
else
delete[] m_Vec;
}
int n1 = iHigh1-iLow1+1;
int n2 = iHigh2-iLow2+1;
m_iVecSize = n1*n2;
if( Aligned )
{
//if( n2%2!=0 )
while( (n2*sizeof(T))%16!=0 )
{
n2++;
m_iVecSize += n1;
}
m_Vec = (T*)ap::amalloc((size_t)(m_iVecSize*sizeof(T)), 16);
}
else
m_Vec = new T[(size_t)m_iVecSize];
m_iLow1 = iLow1;
m_iHigh1 = iHigh1;
m_iLow2 = iLow2;
m_iHigh2 = iHigh2;
m_iConstOffset = -m_iLow2-m_iLow1*n2;
m_iLinearMember = n2;
};
void setlength(int iLen1, int iLen2)
{
setbounds(0, iLen1-1, 0, iLen2-1);
}
void setcontent( int iLow1, int iHigh1, int iLow2, int iHigh2, const T *pContent )
{
setbounds(iLow1, iHigh1, iLow2, iHigh2);
for(int i=m_iLow1; i<=m_iHigh1; i++, pContent += m_iHigh2-m_iLow2+1)
for(int j=m_iLow2; j<=m_iHigh2; j++)
operator()(i,j) = pContent[j-m_iLow2];
//vmove(&(operator()(i,m_iLow2)), pContent, m_iHigh2-m_iLow2+1);
};
int getlowbound(int iBoundNum) const
{
return iBoundNum==1 ? m_iLow1 : m_iLow2;
};
int gethighbound(int iBoundNum) const
{
return iBoundNum==1 ? m_iHigh1 : m_iHigh2;
};
raw_vector<T> getcolumn(int iColumn, int iRowStart, int iRowEnd)
{
if( (iRowStart>iRowEnd) || wrongColumn(iColumn) || wrongRow(iRowStart) ||wrongRow(iRowEnd) )
return raw_vector<T>(0, 0, 1);
else
return raw_vector<T>(&((*this)(iRowStart, iColumn)), iRowEnd-iRowStart+1, m_iLinearMember);
};
raw_vector<T> getrow(int iRow, int iColumnStart, int iColumnEnd)
{
if( (iColumnStart>iColumnEnd) || wrongRow(iRow) || wrongColumn(iColumnStart) || wrongColumn(iColumnEnd))
return raw_vector<T>(0, 0, 1);
else
return raw_vector<T>(&((*this)(iRow, iColumnStart)), iColumnEnd-iColumnStart+1, 1);
};
const_raw_vector<T> getcolumn(int iColumn, int iRowStart, int iRowEnd) const
{
if( (iRowStart>iRowEnd) || wrongColumn(iColumn) || wrongRow(iRowStart) ||wrongRow(iRowEnd) )
return const_raw_vector<T>(0, 0, 1);
else
return const_raw_vector<T>(&((*this)(iRowStart, iColumn)), iRowEnd-iRowStart+1, m_iLinearMember);
};
const_raw_vector<T> getrow(int iRow, int iColumnStart, int iColumnEnd) const
{
if( (iColumnStart>iColumnEnd) || wrongRow(iRow) || wrongColumn(iColumnStart) || wrongColumn(iColumnEnd))
return const_raw_vector<T>(0, 0, 1);
else
return const_raw_vector<T>(&((*this)(iRow, iColumnStart)), iColumnEnd-iColumnStart+1, 1);
};
int getstride() const
{
return m_iLinearMember;
};
private:
bool wrongRow(int i) const { return i<m_iLow1 || i>m_iHigh1; };
bool wrongColumn(int j) const { return j<m_iLow2 || j>m_iHigh2; };
T *m_Vec;
long m_iVecSize;
long m_iLow1, m_iLow2, m_iHigh1, m_iHigh2;
long m_iConstOffset, m_iLinearMember;
};
typedef template_1d_array<int> integer_1d_array;
typedef template_1d_array<double,true> real_1d_array;
typedef template_1d_array<complex> complex_1d_array;
typedef template_1d_array<bool> boolean_1d_array;
typedef template_2d_array<int> integer_2d_array;
typedef template_2d_array<double,true> real_2d_array;
typedef template_2d_array<complex> complex_2d_array;
typedef template_2d_array<bool> boolean_2d_array;
/********************************************************************
dataset information.
can store regression dataset, classification dataset, or non-labeled
task:
* nout==0 means non-labeled task (clustering, for example)
* nout>0 && nclasses==0 means regression task
* nout>0 && nclasses>0 means classification task
********************************************************************/
/*class dataset
{
public:
dataset():nin(0), nout(0), nclasses(0), trnsize(0), valsize(0), tstsize(0), totalsize(0){};
int nin, nout, nclasses;
int trnsize;
int valsize;
int tstsize;
int totalsize;
ap::real_2d_array trn;
ap::real_2d_array val;
ap::real_2d_array tst;
ap::real_2d_array all;
};
bool opendataset(std::string file, dataset *pdataset);
//
// internal functions
//
std::string strtolower(const std::string &s);
bool readstrings(std::string file, std::list<std::string> *pOutput);
bool readstrings(std::string file, std::list<std::string> *pOutput, std::string comment);
void explodestring(std::string s, char sep, std::vector<std::string> *pOutput);
std::string xtrim(std::string s);*/
/********************************************************************
reverse communication state
********************************************************************/
struct rcommstate
{
int stage;
ap::integer_1d_array ia;
ap::boolean_1d_array ba;
ap::real_1d_array ra;
ap::complex_1d_array ca;
};
/********************************************************************
Constants and functions introduced for compatibility with AlgoPascal
********************************************************************/
extern const double machineepsilon;
extern const double maxrealnumber;
extern const double minrealnumber;
int sign(double x);
double randomreal();
int randominteger(int maxv);
int round(double x);
int trunc(double x);
int ifloor(double x);
int iceil(double x);
double pi();
double sqr(double x);
int maxint(int m1, int m2);
int minint(int m1, int m2);
double maxreal(double m1, double m2);
double minreal(double m1, double m2);
bool fp_eq(double v1, double v2);
bool fp_neq(double v1, double v2);
bool fp_less(double v1, double v2);
bool fp_less_eq(double v1, double v2);
bool fp_greater(double v1, double v2);
bool fp_greater_eq(double v1, double v2);
}//namespace ap
#endif
|