This file is indexed.

/usr/include/binomialdistr.h is in libalglib-dev 2.6.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
/*************************************************************************
Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier

Contributors:
    * Sergey Bochkanov (ALGLIB project). Translation from C to
      pseudocode.

See subroutines comments for additional copyrights.

>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the 
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses

>>> END OF LICENSE >>>
*************************************************************************/

#ifndef _binomialdistr_h
#define _binomialdistr_h

#include "ap.h"
#include "ialglib.h"

#include "gammafunc.h"
#include "normaldistr.h"
#include "ibetaf.h"
#include "nearunityunit.h"


/*************************************************************************
Binomial distribution

Returns the sum of the terms 0 through k of the Binomial
probability density:

  k
  --  ( n )   j      n-j
  >   (   )  p  (1-p)
  --  ( j )
 j=0

The terms are not summed directly; instead the incomplete
beta integral is employed, according to the formula

y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ).

The arguments must be positive, with p ranging from 0 to 1.

ACCURACY:

Tested at random points (a,b,p), with p between 0 and 1.

              a,b                     Relative error:
arithmetic  domain     # trials      peak         rms
 For p between 0.001 and 1:
   IEEE     0,100       100000      4.3e-15     2.6e-16

Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
*************************************************************************/
double binomialdistribution(int k, int n, double p);


/*************************************************************************
Complemented binomial distribution

Returns the sum of the terms k+1 through n of the Binomial
probability density:

  n
  --  ( n )   j      n-j
  >   (   )  p  (1-p)
  --  ( j )
 j=k+1

The terms are not summed directly; instead the incomplete
beta integral is employed, according to the formula

y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ).

The arguments must be positive, with p ranging from 0 to 1.

ACCURACY:

Tested at random points (a,b,p).

              a,b                     Relative error:
arithmetic  domain     # trials      peak         rms
 For p between 0.001 and 1:
   IEEE     0,100       100000      6.7e-15     8.2e-16
 For p between 0 and .001:
   IEEE     0,100       100000      1.5e-13     2.7e-15

Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
*************************************************************************/
double binomialcdistribution(int k, int n, double p);


/*************************************************************************
Inverse binomial distribution

Finds the event probability p such that the sum of the
terms 0 through k of the Binomial probability density
is equal to the given cumulative probability y.

This is accomplished using the inverse beta integral
function and the relation

1 - p = incbi( n-k, k+1, y ).

ACCURACY:

Tested at random points (a,b,p).

              a,b                     Relative error:
arithmetic  domain     # trials      peak         rms
 For p between 0.001 and 1:
   IEEE     0,100       100000      2.3e-14     6.4e-16
   IEEE     0,10000     100000      6.6e-12     1.2e-13
 For p between 10^-6 and 0.001:
   IEEE     0,100       100000      2.0e-12     1.3e-14
   IEEE     0,10000     100000      1.5e-12     3.2e-14

Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
*************************************************************************/
double invbinomialdistribution(int k, int n, double y);


#endif