This file is indexed.

/usr/include/conv.h is in libalglib-dev 2.6.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
/*************************************************************************
Copyright (c) 2009, Sergey Bochkanov (ALGLIB project).

>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the 
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses

>>> END OF LICENSE >>>
*************************************************************************/

#ifndef _conv_h
#define _conv_h

#include "ap.h"
#include "ialglib.h"

#include "ftbase.h"
#include "fft.h"


/*************************************************************************
1-dimensional complex convolution.

For given A/B returns conv(A,B) (non-circular). Subroutine can automatically
choose between three implementations: straightforward O(M*N)  formula  for
very small N (or M), overlap-add algorithm for  cases  where  max(M,N)  is
significantly larger than min(M,N), but O(M*N) algorithm is too slow,  and
general FFT-based formula for cases where two previois algorithms are  too
slow.

Algorithm has max(M,N)*log(max(M,N)) complexity for any M/N.

INPUT PARAMETERS
    A   -   array[0..M-1] - complex function to be transformed
    M   -   problem size
    B   -   array[0..N-1] - complex function to be transformed
    N   -   problem size

OUTPUT PARAMETERS
    R   -   convolution: A*B. array[0..N+M-2].

NOTE:
    It is assumed that A is zero at T<0, B is zero too.  If  one  or  both
functions have non-zero values at negative T's, you  can  still  use  this
subroutine - just shift its result correspondingly.

  -- ALGLIB --
     Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void convc1d(const ap::complex_1d_array& a,
     int m,
     const ap::complex_1d_array& b,
     int n,
     ap::complex_1d_array& r);


/*************************************************************************
1-dimensional complex non-circular deconvolution (inverse of ConvC1D()).

Algorithm has M*log(M)) complexity for any M (composite or prime).

INPUT PARAMETERS
    A   -   array[0..M-1] - convolved signal, A = conv(R, B)
    M   -   convolved signal length
    B   -   array[0..N-1] - response
    N   -   response length, N<=M

OUTPUT PARAMETERS
    R   -   deconvolved signal. array[0..M-N].

NOTE:
    deconvolution is unstable process and may result in division  by  zero
(if your response function is degenerate, i.e. has zero Fourier coefficient).

NOTE:
    It is assumed that A is zero at T<0, B is zero too.  If  one  or  both
functions have non-zero values at negative T's, you  can  still  use  this
subroutine - just shift its result correspondingly.

  -- ALGLIB --
     Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void convc1dinv(const ap::complex_1d_array& a,
     int m,
     const ap::complex_1d_array& b,
     int n,
     ap::complex_1d_array& r);


/*************************************************************************
1-dimensional circular complex convolution.

For given S/R returns conv(S,R) (circular). Algorithm has linearithmic
complexity for any M/N.

IMPORTANT:  normal convolution is commutative,  i.e.   it  is symmetric  -
conv(A,B)=conv(B,A).  Cyclic convolution IS NOT.  One function - S - is  a
signal,  periodic function, and another - R - is a response,  non-periodic
function with limited length.

INPUT PARAMETERS
    S   -   array[0..M-1] - complex periodic signal
    M   -   problem size
    B   -   array[0..N-1] - complex non-periodic response
    N   -   problem size

OUTPUT PARAMETERS
    R   -   convolution: A*B. array[0..M-1].

NOTE:
    It is assumed that B is zero at T<0. If  it  has  non-zero  values  at
negative T's, you can still use this subroutine - just  shift  its  result
correspondingly.

  -- ALGLIB --
     Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void convc1dcircular(const ap::complex_1d_array& s,
     int m,
     const ap::complex_1d_array& r,
     int n,
     ap::complex_1d_array& c);


/*************************************************************************
1-dimensional circular complex deconvolution (inverse of ConvC1DCircular()).

Algorithm has M*log(M)) complexity for any M (composite or prime).

INPUT PARAMETERS
    A   -   array[0..M-1] - convolved periodic signal, A = conv(R, B)
    M   -   convolved signal length
    B   -   array[0..N-1] - non-periodic response
    N   -   response length

OUTPUT PARAMETERS
    R   -   deconvolved signal. array[0..M-1].

NOTE:
    deconvolution is unstable process and may result in division  by  zero
(if your response function is degenerate, i.e. has zero Fourier coefficient).

NOTE:
    It is assumed that B is zero at T<0. If  it  has  non-zero  values  at
negative T's, you can still use this subroutine - just  shift  its  result
correspondingly.

  -- ALGLIB --
     Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void convc1dcircularinv(const ap::complex_1d_array& a,
     int m,
     const ap::complex_1d_array& b,
     int n,
     ap::complex_1d_array& r);


/*************************************************************************
1-dimensional real convolution.

Analogous to ConvC1D(), see ConvC1D() comments for more details.

INPUT PARAMETERS
    A   -   array[0..M-1] - real function to be transformed
    M   -   problem size
    B   -   array[0..N-1] - real function to be transformed
    N   -   problem size

OUTPUT PARAMETERS
    R   -   convolution: A*B. array[0..N+M-2].

NOTE:
    It is assumed that A is zero at T<0, B is zero too.  If  one  or  both
functions have non-zero values at negative T's, you  can  still  use  this
subroutine - just shift its result correspondingly.

  -- ALGLIB --
     Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void convr1d(const ap::real_1d_array& a,
     int m,
     const ap::real_1d_array& b,
     int n,
     ap::real_1d_array& r);


/*************************************************************************
1-dimensional real deconvolution (inverse of ConvC1D()).

Algorithm has M*log(M)) complexity for any M (composite or prime).

INPUT PARAMETERS
    A   -   array[0..M-1] - convolved signal, A = conv(R, B)
    M   -   convolved signal length
    B   -   array[0..N-1] - response
    N   -   response length, N<=M

OUTPUT PARAMETERS
    R   -   deconvolved signal. array[0..M-N].

NOTE:
    deconvolution is unstable process and may result in division  by  zero
(if your response function is degenerate, i.e. has zero Fourier coefficient).

NOTE:
    It is assumed that A is zero at T<0, B is zero too.  If  one  or  both
functions have non-zero values at negative T's, you  can  still  use  this
subroutine - just shift its result correspondingly.

  -- ALGLIB --
     Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void convr1dinv(const ap::real_1d_array& a,
     int m,
     const ap::real_1d_array& b,
     int n,
     ap::real_1d_array& r);


/*************************************************************************
1-dimensional circular real convolution.

Analogous to ConvC1DCircular(), see ConvC1DCircular() comments for more details.

INPUT PARAMETERS
    S   -   array[0..M-1] - real signal
    M   -   problem size
    B   -   array[0..N-1] - real response
    N   -   problem size

OUTPUT PARAMETERS
    R   -   convolution: A*B. array[0..M-1].

NOTE:
    It is assumed that B is zero at T<0. If  it  has  non-zero  values  at
negative T's, you can still use this subroutine - just  shift  its  result
correspondingly.

  -- ALGLIB --
     Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void convr1dcircular(const ap::real_1d_array& s,
     int m,
     const ap::real_1d_array& r,
     int n,
     ap::real_1d_array& c);


/*************************************************************************
1-dimensional complex deconvolution (inverse of ConvC1D()).

Algorithm has M*log(M)) complexity for any M (composite or prime).

INPUT PARAMETERS
    A   -   array[0..M-1] - convolved signal, A = conv(R, B)
    M   -   convolved signal length
    B   -   array[0..N-1] - response
    N   -   response length

OUTPUT PARAMETERS
    R   -   deconvolved signal. array[0..M-N].

NOTE:
    deconvolution is unstable process and may result in division  by  zero
(if your response function is degenerate, i.e. has zero Fourier coefficient).

NOTE:
    It is assumed that B is zero at T<0. If  it  has  non-zero  values  at
negative T's, you can still use this subroutine - just  shift  its  result
correspondingly.

  -- ALGLIB --
     Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void convr1dcircularinv(const ap::real_1d_array& a,
     int m,
     const ap::real_1d_array& b,
     int n,
     ap::real_1d_array& r);


/*************************************************************************
1-dimensional complex convolution.

Extended subroutine which allows to choose convolution algorithm.
Intended for internal use, ALGLIB users should call ConvC1D()/ConvC1DCircular().

INPUT PARAMETERS
    A   -   array[0..M-1] - complex function to be transformed
    M   -   problem size
    B   -   array[0..N-1] - complex function to be transformed
    N   -   problem size, N<=M
    Alg -   algorithm type:
            *-2     auto-select Q for overlap-add
            *-1     auto-select algorithm and parameters
            * 0     straightforward formula for small N's
            * 1     general FFT-based code
            * 2     overlap-add with length Q
    Q   -   length for overlap-add

OUTPUT PARAMETERS
    R   -   convolution: A*B. array[0..N+M-1].

  -- ALGLIB --
     Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void convc1dx(const ap::complex_1d_array& a,
     int m,
     const ap::complex_1d_array& b,
     int n,
     bool circular,
     int alg,
     int q,
     ap::complex_1d_array& r);


/*************************************************************************
1-dimensional real convolution.

Extended subroutine which allows to choose convolution algorithm.
Intended for internal use, ALGLIB users should call ConvR1D().

INPUT PARAMETERS
    A   -   array[0..M-1] - complex function to be transformed
    M   -   problem size
    B   -   array[0..N-1] - complex function to be transformed
    N   -   problem size, N<=M
    Alg -   algorithm type:
            *-2     auto-select Q for overlap-add
            *-1     auto-select algorithm and parameters
            * 0     straightforward formula for small N's
            * 1     general FFT-based code
            * 2     overlap-add with length Q
    Q   -   length for overlap-add

OUTPUT PARAMETERS
    R   -   convolution: A*B. array[0..N+M-1].

  -- ALGLIB --
     Copyright 21.07.2009 by Bochkanov Sergey
*************************************************************************/
void convr1dx(const ap::real_1d_array& a,
     int m,
     const ap::real_1d_array& b,
     int n,
     bool circular,
     int alg,
     int q,
     ap::real_1d_array& r);


#endif