This file is indexed.

/usr/include/dforest.h is in libalglib-dev 2.6.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
/*************************************************************************
Copyright (c) 2009, Sergey Bochkanov (ALGLIB project).

>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the 
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses

>>> END OF LICENSE >>>
*************************************************************************/

#ifndef _dforest_h
#define _dforest_h

#include "ap.h"
#include "ialglib.h"

#include "tsort.h"
#include "descriptivestatistics.h"
#include "bdss.h"


struct decisionforest
{
    int nvars;
    int nclasses;
    int ntrees;
    int bufsize;
    ap::real_1d_array trees;
};


struct dfreport
{
    double relclserror;
    double avgce;
    double rmserror;
    double avgerror;
    double avgrelerror;
    double oobrelclserror;
    double oobavgce;
    double oobrmserror;
    double oobavgerror;
    double oobavgrelerror;
};


struct dfinternalbuffers
{
    ap::real_1d_array treebuf;
    ap::integer_1d_array idxbuf;
    ap::real_1d_array tmpbufr;
    ap::real_1d_array tmpbufr2;
    ap::integer_1d_array tmpbufi;
    ap::integer_1d_array classibuf;
    ap::integer_1d_array varpool;
    ap::boolean_1d_array evsbin;
    ap::real_1d_array evssplits;
};




/*************************************************************************
This subroutine builds random decision forest.

INPUT PARAMETERS:
    XY          -   training set
    NPoints     -   training set size, NPoints>=1
    NVars       -   number of independent variables, NVars>=1
    NClasses    -   task type:
                    * NClasses=1 - regression task with one
                                   dependent variable
                    * NClasses>1 - classification task with
                                   NClasses classes.
    NTrees      -   number of trees in a forest, NTrees>=1.
                    recommended values: 50-100.
    R           -   percent of a training set used to build
                    individual trees. 0<R<=1.
                    recommended values: 0.1 <= R <= 0.66.

OUTPUT PARAMETERS:
    Info        -   return code:
                    * -2, if there is a point with class number
                          outside of [0..NClasses-1].
                    * -1, if incorrect parameters was passed
                          (NPoints<1, NVars<1, NClasses<1, NTrees<1, R<=0
                          or R>1).
                    *  1, if task has been solved
    DF          -   model built
    Rep         -   training report, contains error on a training set
                    and out-of-bag estimates of generalization error.

  -- ALGLIB --
     Copyright 19.02.2009 by Bochkanov Sergey
*************************************************************************/
void dfbuildrandomdecisionforest(const ap::real_2d_array& xy,
     int npoints,
     int nvars,
     int nclasses,
     int ntrees,
     double r,
     int& info,
     decisionforest& df,
     dfreport& rep);


void dfbuildinternal(const ap::real_2d_array& xy,
     int npoints,
     int nvars,
     int nclasses,
     int ntrees,
     int samplesize,
     int nfeatures,
     int flags,
     int& info,
     decisionforest& df,
     dfreport& rep);


/*************************************************************************
Procesing

INPUT PARAMETERS:
    DF      -   decision forest model
    X       -   input vector,  array[0..NVars-1].

OUTPUT PARAMETERS:
    Y       -   result. Regression estimate when solving regression  task,
                vector of posterior probabilities for classification task.
                Subroutine does not allocate memory for this vector, it is
                responsibility of a caller to allocate it. Array  must  be
                at least [0..NClasses-1].

  -- ALGLIB --
     Copyright 16.02.2009 by Bochkanov Sergey
*************************************************************************/
void dfprocess(const decisionforest& df,
     const ap::real_1d_array& x,
     ap::real_1d_array& y);


/*************************************************************************
Relative classification error on the test set

INPUT PARAMETERS:
    DF      -   decision forest model
    XY      -   test set
    NPoints -   test set size

RESULT:
    percent of incorrectly classified cases.
    Zero if model solves regression task.

  -- ALGLIB --
     Copyright 16.02.2009 by Bochkanov Sergey
*************************************************************************/
double dfrelclserror(const decisionforest& df,
     const ap::real_2d_array& xy,
     int npoints);


/*************************************************************************
Average cross-entropy (in bits per element) on the test set

INPUT PARAMETERS:
    DF      -   decision forest model
    XY      -   test set
    NPoints -   test set size

RESULT:
    CrossEntropy/(NPoints*LN(2)).
    Zero if model solves regression task.

  -- ALGLIB --
     Copyright 16.02.2009 by Bochkanov Sergey
*************************************************************************/
double dfavgce(const decisionforest& df,
     const ap::real_2d_array& xy,
     int npoints);


/*************************************************************************
RMS error on the test set

INPUT PARAMETERS:
    DF      -   decision forest model
    XY      -   test set
    NPoints -   test set size

RESULT:
    root mean square error.
    Its meaning for regression task is obvious. As for
    classification task, RMS error means error when estimating posterior
    probabilities.

  -- ALGLIB --
     Copyright 16.02.2009 by Bochkanov Sergey
*************************************************************************/
double dfrmserror(const decisionforest& df,
     const ap::real_2d_array& xy,
     int npoints);


/*************************************************************************
Average error on the test set

INPUT PARAMETERS:
    DF      -   decision forest model
    XY      -   test set
    NPoints -   test set size

RESULT:
    Its meaning for regression task is obvious. As for
    classification task, it means average error when estimating posterior
    probabilities.

  -- ALGLIB --
     Copyright 16.02.2009 by Bochkanov Sergey
*************************************************************************/
double dfavgerror(const decisionforest& df,
     const ap::real_2d_array& xy,
     int npoints);


/*************************************************************************
Average relative error on the test set

INPUT PARAMETERS:
    DF      -   decision forest model
    XY      -   test set
    NPoints -   test set size

RESULT:
    Its meaning for regression task is obvious. As for
    classification task, it means average relative error when estimating
    posterior probability of belonging to the correct class.

  -- ALGLIB --
     Copyright 16.02.2009 by Bochkanov Sergey
*************************************************************************/
double dfavgrelerror(const decisionforest& df,
     const ap::real_2d_array& xy,
     int npoints);


/*************************************************************************
Copying of DecisionForest strucure

INPUT PARAMETERS:
    DF1 -   original

OUTPUT PARAMETERS:
    DF2 -   copy

  -- ALGLIB --
     Copyright 13.02.2009 by Bochkanov Sergey
*************************************************************************/
void dfcopy(const decisionforest& df1, decisionforest& df2);


/*************************************************************************
Serialization of DecisionForest strucure

INPUT PARAMETERS:
    DF      -   original

OUTPUT PARAMETERS:
    RA      -   array of real numbers which stores decision forest,
                array[0..RLen-1]
    RLen    -   RA lenght

  -- ALGLIB --
     Copyright 13.02.2009 by Bochkanov Sergey
*************************************************************************/
void dfserialize(const decisionforest& df, ap::real_1d_array& ra, int& rlen);


/*************************************************************************
Unserialization of DecisionForest strucure

INPUT PARAMETERS:
    RA      -   real array which stores decision forest

OUTPUT PARAMETERS:
    DF      -   restored structure

  -- ALGLIB --
     Copyright 13.02.2009 by Bochkanov Sergey
*************************************************************************/
void dfunserialize(const ap::real_1d_array& ra, decisionforest& df);


#endif