This file is indexed.

/usr/include/elliptic.h is in libalglib-dev 2.6.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/*************************************************************************
Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier

Contributors:
    * Sergey Bochkanov (ALGLIB project). Translation from C to
      pseudocode.

See subroutines comments for additional copyrights.

>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the 
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses

>>> END OF LICENSE >>>
*************************************************************************/

#ifndef _elliptic_h
#define _elliptic_h

#include "ap.h"
#include "ialglib.h"

/*************************************************************************
Complete elliptic integral of the first kind

Approximates the integral



           pi/2
            -
           | |
           |           dt
K(m)  =    |    ------------------
           |                   2
         | |    sqrt( 1 - m sin t )
          -
           0

using the approximation

    P(x)  -  log x Q(x).

ACCURACY:

                     Relative error:
arithmetic   domain     # trials      peak         rms
   IEEE       0,1        30000       2.5e-16     6.8e-17

Cephes Math Library, Release 2.8:  June, 2000
Copyright 1984, 1987, 2000 by Stephen L. Moshier
*************************************************************************/
double ellipticintegralk(double m);


/*************************************************************************
Complete elliptic integral of the first kind

Approximates the integral



           pi/2
            -
           | |
           |           dt
K(m)  =    |    ------------------
           |                   2
         | |    sqrt( 1 - m sin t )
          -
           0

where m = 1 - m1, using the approximation

    P(x)  -  log x Q(x).

The argument m1 is used rather than m so that the logarithmic
singularity at m = 1 will be shifted to the origin; this
preserves maximum accuracy.

K(0) = pi/2.

ACCURACY:

                     Relative error:
arithmetic   domain     # trials      peak         rms
   IEEE       0,1        30000       2.5e-16     6.8e-17

Àëãîðèòì âçÿò èç áèáëèîòåêè Cephes
*************************************************************************/
double ellipticintegralkhighprecision(double m1);


/*************************************************************************
Incomplete elliptic integral of the first kind F(phi|m)

Approximates the integral



               phi
                -
               | |
               |           dt
F(phi_\m)  =    |    ------------------
               |                   2
             | |    sqrt( 1 - m sin t )
              -
               0

of amplitude phi and modulus m, using the arithmetic -
geometric mean algorithm.




ACCURACY:

Tested at random points with m in [0, 1] and phi as indicated.

                     Relative error:
arithmetic   domain     # trials      peak         rms
   IEEE     -10,10       200000      7.4e-16     1.0e-16

Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1987, 2000 by Stephen L. Moshier
*************************************************************************/
double incompleteellipticintegralk(double phi, double m);


/*************************************************************************
Complete elliptic integral of the second kind

Approximates the integral


           pi/2
            -
           | |                 2
E(m)  =    |    sqrt( 1 - m sin t ) dt
         | |
          -
           0

using the approximation

     P(x)  -  x log x Q(x).

ACCURACY:

                     Relative error:
arithmetic   domain     # trials      peak         rms
   IEEE       0, 1       10000       2.1e-16     7.3e-17

Cephes Math Library, Release 2.8: June, 2000
Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier
*************************************************************************/
double ellipticintegrale(double m);


/*************************************************************************
Incomplete elliptic integral of the second kind

Approximates the integral


               phi
                -
               | |
               |                   2
E(phi_\m)  =    |    sqrt( 1 - m sin t ) dt
               |
             | |
              -
               0

of amplitude phi and modulus m, using the arithmetic -
geometric mean algorithm.

ACCURACY:

Tested at random arguments with phi in [-10, 10] and m in
[0, 1].
                     Relative error:
arithmetic   domain     # trials      peak         rms
   IEEE     -10,10      150000       3.3e-15     1.4e-16

Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1987, 1993, 2000 by Stephen L. Moshier
*************************************************************************/
double incompleteellipticintegrale(double phi, double m);


#endif