This file is indexed.

/usr/include/evd.h is in libalglib-dev 2.6.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
/*************************************************************************
Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project).

>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the 
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses

>>> END OF LICENSE >>>
*************************************************************************/

#ifndef _evd_h
#define _evd_h

#include "ap.h"
#include "ialglib.h"

#include "hblas.h"
#include "reflections.h"
#include "creflections.h"
#include "sblas.h"
#include "ablasf.h"
#include "ablas.h"
#include "ortfac.h"
#include "blas.h"
#include "rotations.h"
#include "hsschur.h"


/*************************************************************************
Finding the eigenvalues and eigenvectors of a symmetric matrix

The algorithm finds eigen pairs of a symmetric matrix by reducing it to
tridiagonal form and using the QL/QR algorithm.

Input parameters:
    A       -   symmetric matrix which is given by its upper or lower
                triangular part.
                Array whose indexes range within [0..N-1, 0..N-1].
    N       -   size of matrix A.
    IsUpper -   storage format.
    ZNeeded -   flag controlling whether the eigenvectors are needed or not.
                If ZNeeded is equal to:
                 * 0, the eigenvectors are not returned;
                 * 1, the eigenvectors are returned.

Output parameters:
    D       -   eigenvalues in ascending order.
                Array whose index ranges within [0..N-1].
    Z       -   if ZNeeded is equal to:
                 * 0, Z hasn�t changed;
                 * 1, Z contains the eigenvectors.
                Array whose indexes range within [0..N-1, 0..N-1].
                The eigenvectors are stored in the matrix columns.

Result:
    True, if the algorithm has converged.
    False, if the algorithm hasn't converged (rare case).

  -- ALGLIB --
     Copyright 2005-2008 by Bochkanov Sergey
*************************************************************************/
bool smatrixevd(ap::real_2d_array a,
     int n,
     int zneeded,
     bool isupper,
     ap::real_1d_array& d,
     ap::real_2d_array& z);


/*************************************************************************
Subroutine for finding the eigenvalues (and eigenvectors) of  a  symmetric
matrix  in  a  given half open interval (A, B] by using  a  bisection  and
inverse iteration

Input parameters:
    A       -   symmetric matrix which is given by its upper or lower
                triangular part. Array [0..N-1, 0..N-1].
    N       -   size of matrix A.
    ZNeeded -   flag controlling whether the eigenvectors are needed or not.
                If ZNeeded is equal to:
                 * 0, the eigenvectors are not returned;
                 * 1, the eigenvectors are returned.
    IsUpperA -  storage format of matrix A.
    B1, B2 -    half open interval (B1, B2] to search eigenvalues in.

Output parameters:
    M       -   number of eigenvalues found in a given half-interval (M>=0).
    W       -   array of the eigenvalues found.
                Array whose index ranges within [0..M-1].
    Z       -   if ZNeeded is equal to:
                 * 0, Z hasn�t changed;
                 * 1, Z contains eigenvectors.
                Array whose indexes range within [0..N-1, 0..M-1].
                The eigenvectors are stored in the matrix columns.

Result:
    True, if successful. M contains the number of eigenvalues in the given
    half-interval (could be equal to 0), W contains the eigenvalues,
    Z contains the eigenvectors (if needed).

    False, if the bisection method subroutine wasn't able to find the
    eigenvalues in the given interval or if the inverse iteration subroutine
    wasn't able to find all the corresponding eigenvectors.
    In that case, the eigenvalues and eigenvectors are not returned,
    M is equal to 0.

  -- ALGLIB --
     Copyright 07.01.2006 by Bochkanov Sergey
*************************************************************************/
bool smatrixevdr(ap::real_2d_array a,
     int n,
     int zneeded,
     bool isupper,
     double b1,
     double b2,
     int& m,
     ap::real_1d_array& w,
     ap::real_2d_array& z);


/*************************************************************************
Subroutine for finding the eigenvalues and  eigenvectors  of  a  symmetric
matrix with given indexes by using bisection and inverse iteration methods.

Input parameters:
    A       -   symmetric matrix which is given by its upper or lower
                triangular part. Array whose indexes range within [0..N-1, 0..N-1].
    N       -   size of matrix A.
    ZNeeded -   flag controlling whether the eigenvectors are needed or not.
                If ZNeeded is equal to:
                 * 0, the eigenvectors are not returned;
                 * 1, the eigenvectors are returned.
    IsUpperA -  storage format of matrix A.
    I1, I2 -    index interval for searching (from I1 to I2).
                0 <= I1 <= I2 <= N-1.

Output parameters:
    W       -   array of the eigenvalues found.
                Array whose index ranges within [0..I2-I1].
    Z       -   if ZNeeded is equal to:
                 * 0, Z hasn�t changed;
                 * 1, Z contains eigenvectors.
                Array whose indexes range within [0..N-1, 0..I2-I1].
                In that case, the eigenvectors are stored in the matrix columns.

Result:
    True, if successful. W contains the eigenvalues, Z contains the
    eigenvectors (if needed).

    False, if the bisection method subroutine wasn't able to find the
    eigenvalues in the given interval or if the inverse iteration subroutine
    wasn't able to find all the corresponding eigenvectors.
    In that case, the eigenvalues and eigenvectors are not returned.

  -- ALGLIB --
     Copyright 07.01.2006 by Bochkanov Sergey
*************************************************************************/
bool smatrixevdi(ap::real_2d_array a,
     int n,
     int zneeded,
     bool isupper,
     int i1,
     int i2,
     ap::real_1d_array& w,
     ap::real_2d_array& z);


/*************************************************************************
Finding the eigenvalues and eigenvectors of a Hermitian matrix

The algorithm finds eigen pairs of a Hermitian matrix by  reducing  it  to
real tridiagonal form and using the QL/QR algorithm.

Input parameters:
    A       -   Hermitian matrix which is given  by  its  upper  or  lower
                triangular part.
                Array whose indexes range within [0..N-1, 0..N-1].
    N       -   size of matrix A.
    IsUpper -   storage format.
    ZNeeded -   flag controlling whether the eigenvectors  are  needed  or
                not. If ZNeeded is equal to:
                 * 0, the eigenvectors are not returned;
                 * 1, the eigenvectors are returned.

Output parameters:
    D       -   eigenvalues in ascending order.
                Array whose index ranges within [0..N-1].
    Z       -   if ZNeeded is equal to:
                 * 0, Z hasn�t changed;
                 * 1, Z contains the eigenvectors.
                Array whose indexes range within [0..N-1, 0..N-1].
                The eigenvectors are stored in the matrix columns.

Result:
    True, if the algorithm has converged.
    False, if the algorithm hasn't converged (rare case).

Note:
    eigenvectors of Hermitian matrix are defined up to  multiplication  by
    a complex number L, such that |L|=1.

  -- ALGLIB --
     Copyright 2005, 23 March 2007 by Bochkanov Sergey
*************************************************************************/
bool hmatrixevd(ap::complex_2d_array a,
     int n,
     int zneeded,
     bool isupper,
     ap::real_1d_array& d,
     ap::complex_2d_array& z);


/*************************************************************************
Subroutine for finding the eigenvalues (and eigenvectors) of  a  Hermitian
matrix  in  a  given half-interval (A, B] by using a bisection and inverse
iteration

Input parameters:
    A       -   Hermitian matrix which is given  by  its  upper  or  lower
                triangular  part.  Array  whose   indexes   range   within
                [0..N-1, 0..N-1].
    N       -   size of matrix A.
    ZNeeded -   flag controlling whether the eigenvectors  are  needed  or
                not. If ZNeeded is equal to:
                 * 0, the eigenvectors are not returned;
                 * 1, the eigenvectors are returned.
    IsUpperA -  storage format of matrix A.
    B1, B2 -    half-interval (B1, B2] to search eigenvalues in.

Output parameters:
    M       -   number of eigenvalues found in a given half-interval, M>=0
    W       -   array of the eigenvalues found.
                Array whose index ranges within [0..M-1].
    Z       -   if ZNeeded is equal to:
                 * 0, Z hasn�t changed;
                 * 1, Z contains eigenvectors.
                Array whose indexes range within [0..N-1, 0..M-1].
                The eigenvectors are stored in the matrix columns.

Result:
    True, if successful. M contains the number of eigenvalues in the given
    half-interval (could be equal to 0), W contains the eigenvalues,
    Z contains the eigenvectors (if needed).

    False, if the bisection method subroutine  wasn't  able  to  find  the
    eigenvalues  in  the  given  interval  or  if  the  inverse  iteration
    subroutine  wasn't  able  to  find all the corresponding eigenvectors.
    In that case, the eigenvalues and eigenvectors are not returned, M  is
    equal to 0.

Note:
    eigen vectors of Hermitian matrix are defined up to multiplication  by
    a complex number L, such as |L|=1.

  -- ALGLIB --
     Copyright 07.01.2006, 24.03.2007 by Bochkanov Sergey.
*************************************************************************/
bool hmatrixevdr(ap::complex_2d_array a,
     int n,
     int zneeded,
     bool isupper,
     double b1,
     double b2,
     int& m,
     ap::real_1d_array& w,
     ap::complex_2d_array& z);


/*************************************************************************
Subroutine for finding the eigenvalues and  eigenvectors  of  a  Hermitian
matrix with given indexes by using bisection and inverse iteration methods

Input parameters:
    A       -   Hermitian matrix which is given  by  its  upper  or  lower
                triangular part.
                Array whose indexes range within [0..N-1, 0..N-1].
    N       -   size of matrix A.
    ZNeeded -   flag controlling whether the eigenvectors  are  needed  or
                not. If ZNeeded is equal to:
                 * 0, the eigenvectors are not returned;
                 * 1, the eigenvectors are returned.
    IsUpperA -  storage format of matrix A.
    I1, I2 -    index interval for searching (from I1 to I2).
                0 <= I1 <= I2 <= N-1.

Output parameters:
    W       -   array of the eigenvalues found.
                Array whose index ranges within [0..I2-I1].
    Z       -   if ZNeeded is equal to:
                 * 0, Z hasn�t changed;
                 * 1, Z contains eigenvectors.
                Array whose indexes range within [0..N-1, 0..I2-I1].
                In  that  case,  the eigenvectors are stored in the matrix
                columns.

Result:
    True, if successful. W contains the eigenvalues, Z contains the
    eigenvectors (if needed).

    False, if the bisection method subroutine  wasn't  able  to  find  the
    eigenvalues  in  the  given  interval  or  if  the  inverse  iteration
    subroutine wasn't able to find  all  the  corresponding  eigenvectors.
    In that case, the eigenvalues and eigenvectors are not returned.

Note:
    eigen vectors of Hermitian matrix are defined up to multiplication  by
    a complex number L, such as |L|=1.

  -- ALGLIB --
     Copyright 07.01.2006, 24.03.2007 by Bochkanov Sergey.
*************************************************************************/
bool hmatrixevdi(ap::complex_2d_array a,
     int n,
     int zneeded,
     bool isupper,
     int i1,
     int i2,
     ap::real_1d_array& w,
     ap::complex_2d_array& z);


/*************************************************************************
Finding the eigenvalues and eigenvectors of a tridiagonal symmetric matrix

The algorithm finds the eigen pairs of a tridiagonal symmetric matrix by
using an QL/QR algorithm with implicit shifts.

Input parameters:
    D       -   the main diagonal of a tridiagonal matrix.
                Array whose index ranges within [0..N-1].
    E       -   the secondary diagonal of a tridiagonal matrix.
                Array whose index ranges within [0..N-2].
    N       -   size of matrix A.
    ZNeeded -   flag controlling whether the eigenvectors are needed or not.
                If ZNeeded is equal to:
                 * 0, the eigenvectors are not needed;
                 * 1, the eigenvectors of a tridiagonal matrix
                   are multiplied by the square matrix Z. It is used if the
                   tridiagonal matrix is obtained by the similarity
                   transformation of a symmetric matrix;
                 * 2, the eigenvectors of a tridiagonal matrix replace the
                   square matrix Z;
                 * 3, matrix Z contains the first row of the eigenvectors
                   matrix.
    Z       -   if ZNeeded=1, Z contains the square matrix by which the
                eigenvectors are multiplied.
                Array whose indexes range within [0..N-1, 0..N-1].

Output parameters:
    D       -   eigenvalues in ascending order.
                Array whose index ranges within [0..N-1].
    Z       -   if ZNeeded is equal to:
                 * 0, Z hasn�t changed;
                 * 1, Z contains the product of a given matrix (from the left)
                   and the eigenvectors matrix (from the right);
                 * 2, Z contains the eigenvectors.
                 * 3, Z contains the first row of the eigenvectors matrix.
                If ZNeeded<3, Z is the array whose indexes range within [0..N-1, 0..N-1].
                In that case, the eigenvectors are stored in the matrix columns.
                If ZNeeded=3, Z is the array whose indexes range within [0..0, 0..N-1].

Result:
    True, if the algorithm has converged.
    False, if the algorithm hasn't converged.

  -- LAPACK routine (version 3.0) --
     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
     Courant Institute, Argonne National Lab, and Rice University
     September 30, 1994
*************************************************************************/
bool smatrixtdevd(ap::real_1d_array& d,
     ap::real_1d_array e,
     int n,
     int zneeded,
     ap::real_2d_array& z);


/*************************************************************************
Subroutine for finding the tridiagonal matrix eigenvalues/vectors in a
given half-interval (A, B] by using bisection and inverse iteration.

Input parameters:
    D       -   the main diagonal of a tridiagonal matrix.
                Array whose index ranges within [0..N-1].
    E       -   the secondary diagonal of a tridiagonal matrix.
                Array whose index ranges within [0..N-2].
    N       -   size of matrix, N>=0.
    ZNeeded -   flag controlling whether the eigenvectors are needed or not.
                If ZNeeded is equal to:
                 * 0, the eigenvectors are not needed;
                 * 1, the eigenvectors of a tridiagonal matrix are multiplied
                   by the square matrix Z. It is used if the tridiagonal
                   matrix is obtained by the similarity transformation
                   of a symmetric matrix.
                 * 2, the eigenvectors of a tridiagonal matrix replace matrix Z.
    A, B    -   half-interval (A, B] to search eigenvalues in.
    Z       -   if ZNeeded is equal to:
                 * 0, Z isn't used and remains unchanged;
                 * 1, Z contains the square matrix (array whose indexes range
                   within [0..N-1, 0..N-1]) which reduces the given symmetric
                   matrix to tridiagonal form;
                 * 2, Z isn't used (but changed on the exit).

Output parameters:
    D       -   array of the eigenvalues found.
                Array whose index ranges within [0..M-1].
    M       -   number of eigenvalues found in the given half-interval (M>=0).
    Z       -   if ZNeeded is equal to:
                 * 0, doesn't contain any information;
                 * 1, contains the product of a given NxN matrix Z (from the
                   left) and NxM matrix of the eigenvectors found (from the
                   right). Array whose indexes range within [0..N-1, 0..M-1].
                 * 2, contains the matrix of the eigenvectors found.
                   Array whose indexes range within [0..N-1, 0..M-1].

Result:

    True, if successful. In that case, M contains the number of eigenvalues
    in the given half-interval (could be equal to 0), D contains the eigenvalues,
    Z contains the eigenvectors (if needed).
    It should be noted that the subroutine changes the size of arrays D and Z.

    False, if the bisection method subroutine wasn't able to find the
    eigenvalues in the given interval or if the inverse iteration subroutine
    wasn't able to find all the corresponding eigenvectors. In that case,
    the eigenvalues and eigenvectors are not returned, M is equal to 0.

  -- ALGLIB --
     Copyright 31.03.2008 by Bochkanov Sergey
*************************************************************************/
bool smatrixtdevdr(ap::real_1d_array& d,
     const ap::real_1d_array& e,
     int n,
     int zneeded,
     double a,
     double b,
     int& m,
     ap::real_2d_array& z);


/*************************************************************************
Subroutine for finding tridiagonal matrix eigenvalues/vectors with given
indexes (in ascending order) by using the bisection and inverse iteraion.

Input parameters:
    D       -   the main diagonal of a tridiagonal matrix.
                Array whose index ranges within [0..N-1].
    E       -   the secondary diagonal of a tridiagonal matrix.
                Array whose index ranges within [0..N-2].
    N       -   size of matrix. N>=0.
    ZNeeded -   flag controlling whether the eigenvectors are needed or not.
                If ZNeeded is equal to:
                 * 0, the eigenvectors are not needed;
                 * 1, the eigenvectors of a tridiagonal matrix are multiplied
                   by the square matrix Z. It is used if the
                   tridiagonal matrix is obtained by the similarity transformation
                   of a symmetric matrix.
                 * 2, the eigenvectors of a tridiagonal matrix replace
                   matrix Z.
    I1, I2  -   index interval for searching (from I1 to I2).
                0 <= I1 <= I2 <= N-1.
    Z       -   if ZNeeded is equal to:
                 * 0, Z isn't used and remains unchanged;
                 * 1, Z contains the square matrix (array whose indexes range within [0..N-1, 0..N-1])
                   which reduces the given symmetric matrix to  tridiagonal form;
                 * 2, Z isn't used (but changed on the exit).

Output parameters:
    D       -   array of the eigenvalues found.
                Array whose index ranges within [0..I2-I1].
    Z       -   if ZNeeded is equal to:
                 * 0, doesn't contain any information;
                 * 1, contains the product of a given NxN matrix Z (from the left) and
                   Nx(I2-I1) matrix of the eigenvectors found (from the right).
                   Array whose indexes range within [0..N-1, 0..I2-I1].
                 * 2, contains the matrix of the eigenvalues found.
                   Array whose indexes range within [0..N-1, 0..I2-I1].


Result:

    True, if successful. In that case, D contains the eigenvalues,
    Z contains the eigenvectors (if needed).
    It should be noted that the subroutine changes the size of arrays D and Z.

    False, if the bisection method subroutine wasn't able to find the eigenvalues
    in the given interval or if the inverse iteration subroutine wasn't able
    to find all the corresponding eigenvectors. In that case, the eigenvalues
    and eigenvectors are not returned.

  -- ALGLIB --
     Copyright 25.12.2005 by Bochkanov Sergey
*************************************************************************/
bool smatrixtdevdi(ap::real_1d_array& d,
     const ap::real_1d_array& e,
     int n,
     int zneeded,
     int i1,
     int i2,
     ap::real_2d_array& z);


/*************************************************************************
Finding eigenvalues and eigenvectors of a general matrix

The algorithm finds eigenvalues and eigenvectors of a general matrix by
using the QR algorithm with multiple shifts. The algorithm can find
eigenvalues and both left and right eigenvectors.

The right eigenvector is a vector x such that A*x = w*x, and the left
eigenvector is a vector y such that y'*A = w*y' (here y' implies a complex
conjugate transposition of vector y).

Input parameters:
    A       -   matrix. Array whose indexes range within [0..N-1, 0..N-1].
    N       -   size of matrix A.
    VNeeded -   flag controlling whether eigenvectors are needed or not.
                If VNeeded is equal to:
                 * 0, eigenvectors are not returned;
                 * 1, right eigenvectors are returned;
                 * 2, left eigenvectors are returned;
                 * 3, both left and right eigenvectors are returned.

Output parameters:
    WR      -   real parts of eigenvalues.
                Array whose index ranges within [0..N-1].
    WR      -   imaginary parts of eigenvalues.
                Array whose index ranges within [0..N-1].
    VL, VR  -   arrays of left and right eigenvectors (if they are needed).
                If WI[i]=0, the respective eigenvalue is a real number,
                and it corresponds to the column number I of matrices VL/VR.
                If WI[i]>0, we have a pair of complex conjugate numbers with
                positive and negative imaginary parts:
                    the first eigenvalue WR[i] + sqrt(-1)*WI[i];
                    the second eigenvalue WR[i+1] + sqrt(-1)*WI[i+1];
                    WI[i]>0
                    WI[i+1] = -WI[i] < 0
                In that case, the eigenvector  corresponding to the first
                eigenvalue is located in i and i+1 columns of matrices
                VL/VR (the column number i contains the real part, and the
                column number i+1 contains the imaginary part), and the vector
                corresponding to the second eigenvalue is a complex conjugate to
                the first vector.
                Arrays whose indexes range within [0..N-1, 0..N-1].

Result:
    True, if the algorithm has converged.
    False, if the algorithm has not converged.

Note 1:
    Some users may ask the following question: what if WI[N-1]>0?
    WI[N] must contain an eigenvalue which is complex conjugate to the
    N-th eigenvalue, but the array has only size N?
    The answer is as follows: such a situation cannot occur because the
    algorithm finds a pairs of eigenvalues, therefore, if WI[i]>0, I is
    strictly less than N-1.

Note 2:
    The algorithm performance depends on the value of the internal parameter
    NS of the InternalSchurDecomposition subroutine which defines the number
    of shifts in the QR algorithm (similarly to the block width in block-matrix
    algorithms of linear algebra). If you require maximum performance
    on your machine, it is recommended to adjust this parameter manually.


See also the InternalTREVC subroutine.

The algorithm is based on the LAPACK 3.0 library.
*************************************************************************/
bool rmatrixevd(ap::real_2d_array a,
     int n,
     int vneeded,
     ap::real_1d_array& wr,
     ap::real_1d_array& wi,
     ap::real_2d_array& vl,
     ap::real_2d_array& vr);


bool internalbisectioneigenvalues(ap::real_1d_array d,
     ap::real_1d_array e,
     int n,
     int irange,
     int iorder,
     double vl,
     double vu,
     int il,
     int iu,
     double abstol,
     ap::real_1d_array& w,
     int& m,
     int& nsplit,
     ap::integer_1d_array& iblock,
     ap::integer_1d_array& isplit,
     int& errorcode);


void internaldstein(const int& n,
     const ap::real_1d_array& d,
     ap::real_1d_array e,
     const int& m,
     ap::real_1d_array w,
     const ap::integer_1d_array& iblock,
     const ap::integer_1d_array& isplit,
     ap::real_2d_array& z,
     ap::integer_1d_array& ifail,
     int& info);


#endif