This file is indexed.

/usr/include/fdistr.h is in libalglib-dev 2.6.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
/*************************************************************************
Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier

Contributors:
    * Sergey Bochkanov (ALGLIB project). Translation from C to
      pseudocode.

See subroutines comments for additional copyrights.

>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the 
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses

>>> END OF LICENSE >>>
*************************************************************************/

#ifndef _fdistr_h
#define _fdistr_h

#include "ap.h"
#include "ialglib.h"

#include "gammafunc.h"
#include "normaldistr.h"
#include "ibetaf.h"


/*************************************************************************
F distribution

Returns the area from zero to x under the F density
function (also known as Snedcor's density or the
variance ratio density).  This is the density
of x = (u1/df1)/(u2/df2), where u1 and u2 are random
variables having Chi square distributions with df1
and df2 degrees of freedom, respectively.
The incomplete beta integral is used, according to the
formula

P(x) = incbet( df1/2, df2/2, (df1*x/(df2 + df1*x) ).


The arguments a and b are greater than zero, and x is
nonnegative.

ACCURACY:

Tested at random points (a,b,x).

               x     a,b                     Relative error:
arithmetic  domain  domain     # trials      peak         rms
   IEEE      0,1    0,100       100000      9.8e-15     1.7e-15
   IEEE      1,5    0,100       100000      6.5e-15     3.5e-16
   IEEE      0,1    1,10000     100000      2.2e-11     3.3e-12
   IEEE      1,5    1,10000     100000      1.1e-11     1.7e-13

Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
*************************************************************************/
double fdistribution(int a, int b, double x);


/*************************************************************************
Complemented F distribution

Returns the area from x to infinity under the F density
function (also known as Snedcor's density or the
variance ratio density).


                     inf.
                      -
             1       | |  a-1      b-1
1-P(x)  =  ------    |   t    (1-t)    dt
           B(a,b)  | |
                    -
                     x


The incomplete beta integral is used, according to the
formula

P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ).


ACCURACY:

Tested at random points (a,b,x) in the indicated intervals.
               x     a,b                     Relative error:
arithmetic  domain  domain     # trials      peak         rms
   IEEE      0,1    1,100       100000      3.7e-14     5.9e-16
   IEEE      1,5    1,100       100000      8.0e-15     1.6e-15
   IEEE      0,1    1,10000     100000      1.8e-11     3.5e-13
   IEEE      1,5    1,10000     100000      2.0e-11     3.0e-12

Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
*************************************************************************/
double fcdistribution(int a, int b, double x);


/*************************************************************************
Inverse of complemented F distribution

Finds the F density argument x such that the integral
from x to infinity of the F density is equal to the
given probability p.

This is accomplished using the inverse beta integral
function and the relations

     z = incbi( df2/2, df1/2, p )
     x = df2 (1-z) / (df1 z).

Note: the following relations hold for the inverse of
the uncomplemented F distribution:

     z = incbi( df1/2, df2/2, p )
     x = df2 z / (df1 (1-z)).

ACCURACY:

Tested at random points (a,b,p).

             a,b                     Relative error:
arithmetic  domain     # trials      peak         rms
 For p between .001 and 1:
   IEEE     1,100       100000      8.3e-15     4.7e-16
   IEEE     1,10000     100000      2.1e-11     1.4e-13
 For p between 10^-6 and 10^-3:
   IEEE     1,100        50000      1.3e-12     8.4e-15
   IEEE     1,10000      50000      3.0e-12     4.8e-14

Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
*************************************************************************/
double invfdistribution(int a, int b, double y);


#endif