This file is indexed.

/usr/include/logit.h is in libalglib-dev 2.6.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
/*************************************************************************
Copyright (c) 2008, Sergey Bochkanov (ALGLIB project).

>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the 
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses

>>> END OF LICENSE >>>
*************************************************************************/

#ifndef _logit_h
#define _logit_h

#include "ap.h"
#include "ialglib.h"

#include "descriptivestatistics.h"
#include "mlpbase.h"
#include "hblas.h"
#include "reflections.h"
#include "creflections.h"
#include "sblas.h"
#include "ablasf.h"
#include "ablas.h"
#include "ortfac.h"
#include "blas.h"
#include "rotations.h"
#include "bdsvd.h"
#include "svd.h"
#include "hqrnd.h"
#include "matgen.h"
#include "trfac.h"
#include "trlinsolve.h"
#include "safesolve.h"
#include "rcond.h"
#include "xblas.h"
#include "densesolver.h"
#include "tsort.h"
#include "bdss.h"


struct logitmodel
{
    ap::real_1d_array w;
};


struct logitmcstate
{
    bool brackt;
    bool stage1;
    int infoc;
    double dg;
    double dgm;
    double dginit;
    double dgtest;
    double dgx;
    double dgxm;
    double dgy;
    double dgym;
    double finit;
    double ftest1;
    double fm;
    double fx;
    double fxm;
    double fy;
    double fym;
    double stx;
    double sty;
    double stmin;
    double stmax;
    double width;
    double width1;
    double xtrapf;
};


/*************************************************************************
MNLReport structure contains information about training process:
* NGrad     -   number of gradient calculations
* NHess     -   number of Hessian calculations
*************************************************************************/
struct mnlreport
{
    int ngrad;
    int nhess;
};




/*************************************************************************
This subroutine trains logit model.

INPUT PARAMETERS:
    XY          -   training set, array[0..NPoints-1,0..NVars]
                    First NVars columns store values of independent
                    variables, next column stores number of class (from 0
                    to NClasses-1) which dataset element belongs to. Fractional
                    values are rounded to nearest integer.
    NPoints     -   training set size, NPoints>=1
    NVars       -   number of independent variables, NVars>=1
    NClasses    -   number of classes, NClasses>=2

OUTPUT PARAMETERS:
    Info        -   return code:
                    * -2, if there is a point with class number
                          outside of [0..NClasses-1].
                    * -1, if incorrect parameters was passed
                          (NPoints<NVars+2, NVars<1, NClasses<2).
                    *  1, if task has been solved
    LM          -   model built
    Rep         -   training report

  -- ALGLIB --
     Copyright 10.09.2008 by Bochkanov Sergey
*************************************************************************/
void mnltrainh(const ap::real_2d_array& xy,
     int npoints,
     int nvars,
     int nclasses,
     int& info,
     logitmodel& lm,
     mnlreport& rep);


/*************************************************************************
Procesing

INPUT PARAMETERS:
    LM      -   logit model, passed by non-constant reference
                (some fields of structure are used as temporaries
                when calculating model output).
    X       -   input vector,  array[0..NVars-1].

OUTPUT PARAMETERS:
    Y       -   result, array[0..NClasses-1]
                Vector of posterior probabilities for classification task.
                Subroutine does not allocate memory for this vector, it is
                responsibility of a caller to allocate it. Array  must  be
                at least [0..NClasses-1].

  -- ALGLIB --
     Copyright 10.09.2008 by Bochkanov Sergey
*************************************************************************/
void mnlprocess(logitmodel& lm,
     const ap::real_1d_array& x,
     ap::real_1d_array& y);


/*************************************************************************
Unpacks coefficients of logit model. Logit model have form:

    P(class=i) = S(i) / (S(0) + S(1) + ... +S(M-1))
          S(i) = Exp(A[i,0]*X[0] + ... + A[i,N-1]*X[N-1] + A[i,N]), when i<M-1
        S(M-1) = 1

INPUT PARAMETERS:
    LM          -   logit model in ALGLIB format

OUTPUT PARAMETERS:
    V           -   coefficients, array[0..NClasses-2,0..NVars]
    NVars       -   number of independent variables
    NClasses    -   number of classes

  -- ALGLIB --
     Copyright 10.09.2008 by Bochkanov Sergey
*************************************************************************/
void mnlunpack(const logitmodel& lm,
     ap::real_2d_array& a,
     int& nvars,
     int& nclasses);


/*************************************************************************
"Packs" coefficients and creates logit model in ALGLIB format (MNLUnpack
reversed).

INPUT PARAMETERS:
    A           -   model (see MNLUnpack)
    NVars       -   number of independent variables
    NClasses    -   number of classes

OUTPUT PARAMETERS:
    LM          -   logit model.

  -- ALGLIB --
     Copyright 10.09.2008 by Bochkanov Sergey
*************************************************************************/
void mnlpack(const ap::real_2d_array& a,
     int nvars,
     int nclasses,
     logitmodel& lm);


/*************************************************************************
Copying of LogitModel strucure

INPUT PARAMETERS:
    LM1 -   original

OUTPUT PARAMETERS:
    LM2 -   copy

  -- ALGLIB --
     Copyright 15.03.2009 by Bochkanov Sergey
*************************************************************************/
void mnlcopy(const logitmodel& lm1, logitmodel& lm2);


/*************************************************************************
Serialization of LogitModel strucure

INPUT PARAMETERS:
    LM      -   original

OUTPUT PARAMETERS:
    RA      -   array of real numbers which stores model,
                array[0..RLen-1]
    RLen    -   RA lenght

  -- ALGLIB --
     Copyright 15.03.2009 by Bochkanov Sergey
*************************************************************************/
void mnlserialize(const logitmodel& lm, ap::real_1d_array& ra, int& rlen);


/*************************************************************************
Unserialization of LogitModel strucure

INPUT PARAMETERS:
    RA      -   real array which stores model

OUTPUT PARAMETERS:
    LM      -   restored model

  -- ALGLIB --
     Copyright 15.03.2009 by Bochkanov Sergey
*************************************************************************/
void mnlunserialize(const ap::real_1d_array& ra, logitmodel& lm);


/*************************************************************************
Average cross-entropy (in bits per element) on the test set

INPUT PARAMETERS:
    LM      -   logit model
    XY      -   test set
    NPoints -   test set size

RESULT:
    CrossEntropy/(NPoints*ln(2)).

  -- ALGLIB --
     Copyright 10.09.2008 by Bochkanov Sergey
*************************************************************************/
double mnlavgce(logitmodel& lm, const ap::real_2d_array& xy, int npoints);


/*************************************************************************
Relative classification error on the test set

INPUT PARAMETERS:
    LM      -   logit model
    XY      -   test set
    NPoints -   test set size

RESULT:
    percent of incorrectly classified cases.

  -- ALGLIB --
     Copyright 10.09.2008 by Bochkanov Sergey
*************************************************************************/
double mnlrelclserror(logitmodel& lm,
     const ap::real_2d_array& xy,
     int npoints);


/*************************************************************************
RMS error on the test set

INPUT PARAMETERS:
    LM      -   logit model
    XY      -   test set
    NPoints -   test set size

RESULT:
    root mean square error (error when estimating posterior probabilities).

  -- ALGLIB --
     Copyright 30.08.2008 by Bochkanov Sergey
*************************************************************************/
double mnlrmserror(logitmodel& lm, const ap::real_2d_array& xy, int npoints);


/*************************************************************************
Average error on the test set

INPUT PARAMETERS:
    LM      -   logit model
    XY      -   test set
    NPoints -   test set size

RESULT:
    average error (error when estimating posterior probabilities).

  -- ALGLIB --
     Copyright 30.08.2008 by Bochkanov Sergey
*************************************************************************/
double mnlavgerror(logitmodel& lm, const ap::real_2d_array& xy, int npoints);


/*************************************************************************
Average relative error on the test set

INPUT PARAMETERS:
    LM      -   logit model
    XY      -   test set
    NPoints -   test set size

RESULT:
    average relative error (error when estimating posterior probabilities).

  -- ALGLIB --
     Copyright 30.08.2008 by Bochkanov Sergey
*************************************************************************/
double mnlavgrelerror(logitmodel& lm, const ap::real_2d_array& xy, int ssize);


/*************************************************************************
Classification error on test set = MNLRelClsError*NPoints

  -- ALGLIB --
     Copyright 10.09.2008 by Bochkanov Sergey
*************************************************************************/
int mnlclserror(logitmodel& lm, const ap::real_2d_array& xy, int npoints);


#endif