This file is indexed.

/usr/include/normaldistr.h is in libalglib-dev 2.6.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/*************************************************************************
Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier

Contributors:
    * Sergey Bochkanov (ALGLIB project). Translation from C to
      pseudocode.

See subroutines comments for additional copyrights.

>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the 
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses

>>> END OF LICENSE >>>
*************************************************************************/

#ifndef _normaldistr_h
#define _normaldistr_h

#include "ap.h"
#include "ialglib.h"

/*************************************************************************
Error function

The integral is

                          x
                           -
                2         | |          2
  erf(x)  =  --------     |    exp( - t  ) dt.
             sqrt(pi)   | |
                         -
                          0

For 0 <= |x| < 1, erf(x) = x * P4(x**2)/Q5(x**2); otherwise
erf(x) = 1 - erfc(x).


ACCURACY:

                     Relative error:
arithmetic   domain     # trials      peak         rms
   IEEE      0,1         30000       3.7e-16     1.0e-16

Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
*************************************************************************/
double erf(double x);


/*************************************************************************
Complementary error function

 1 - erf(x) =

                          inf.
                            -
                 2         | |          2
  erfc(x)  =  --------     |    exp( - t  ) dt
              sqrt(pi)   | |
                          -
                           x


For small x, erfc(x) = 1 - erf(x); otherwise rational
approximations are computed.


ACCURACY:

                     Relative error:
arithmetic   domain     # trials      peak         rms
   IEEE      0,26.6417   30000       5.7e-14     1.5e-14

Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
*************************************************************************/
double erfc(double x);


/*************************************************************************
Normal distribution function

Returns the area under the Gaussian probability density
function, integrated from minus infinity to x:

                           x
                            -
                  1        | |          2
   ndtr(x)  = ---------    |    exp( - t /2 ) dt
              sqrt(2pi)  | |
                          -
                         -inf.

            =  ( 1 + erf(z) ) / 2
            =  erfc(z) / 2

where z = x/sqrt(2). Computation is via the functions
erf and erfc.


ACCURACY:

                     Relative error:
arithmetic   domain     # trials      peak         rms
   IEEE     -13,0        30000       3.4e-14     6.7e-15

Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
*************************************************************************/
double normaldistribution(double x);


/*************************************************************************
Inverse of the error function

Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
*************************************************************************/
double inverf(double e);


/*************************************************************************
Inverse of Normal distribution function

Returns the argument, x, for which the area under the
Gaussian probability density function (integrated from
minus infinity to x) is equal to y.


For small arguments 0 < y < exp(-2), the program computes
z = sqrt( -2.0 * log(y) );  then the approximation is
x = z - log(z)/z  - (1/z) P(1/z) / Q(1/z).
There are two rational functions P/Q, one for 0 < y < exp(-32)
and the other for y up to exp(-2).  For larger arguments,
w = y - 0.5, and  x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).

ACCURACY:

                     Relative error:
arithmetic   domain        # trials      peak         rms
   IEEE     0.125, 1        20000       7.2e-16     1.3e-16
   IEEE     3e-308, 0.135   50000       4.6e-16     9.8e-17

Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
*************************************************************************/
double invnormaldistribution(double y0);


#endif