/usr/include/normaldistr.h is in libalglib-dev 2.6.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 | /*************************************************************************
Cephes Math Library Release 2.8: June, 2000
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
Contributors:
* Sergey Bochkanov (ALGLIB project). Translation from C to
pseudocode.
See subroutines comments for additional copyrights.
>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses
>>> END OF LICENSE >>>
*************************************************************************/
#ifndef _normaldistr_h
#define _normaldistr_h
#include "ap.h"
#include "ialglib.h"
/*************************************************************************
Error function
The integral is
x
-
2 | | 2
erf(x) = -------- | exp( - t ) dt.
sqrt(pi) | |
-
0
For 0 <= |x| < 1, erf(x) = x * P4(x**2)/Q5(x**2); otherwise
erf(x) = 1 - erfc(x).
ACCURACY:
Relative error:
arithmetic domain # trials peak rms
IEEE 0,1 30000 3.7e-16 1.0e-16
Cephes Math Library Release 2.8: June, 2000
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
*************************************************************************/
double erf(double x);
/*************************************************************************
Complementary error function
1 - erf(x) =
inf.
-
2 | | 2
erfc(x) = -------- | exp( - t ) dt
sqrt(pi) | |
-
x
For small x, erfc(x) = 1 - erf(x); otherwise rational
approximations are computed.
ACCURACY:
Relative error:
arithmetic domain # trials peak rms
IEEE 0,26.6417 30000 5.7e-14 1.5e-14
Cephes Math Library Release 2.8: June, 2000
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
*************************************************************************/
double erfc(double x);
/*************************************************************************
Normal distribution function
Returns the area under the Gaussian probability density
function, integrated from minus infinity to x:
x
-
1 | | 2
ndtr(x) = --------- | exp( - t /2 ) dt
sqrt(2pi) | |
-
-inf.
= ( 1 + erf(z) ) / 2
= erfc(z) / 2
where z = x/sqrt(2). Computation is via the functions
erf and erfc.
ACCURACY:
Relative error:
arithmetic domain # trials peak rms
IEEE -13,0 30000 3.4e-14 6.7e-15
Cephes Math Library Release 2.8: June, 2000
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
*************************************************************************/
double normaldistribution(double x);
/*************************************************************************
Inverse of the error function
Cephes Math Library Release 2.8: June, 2000
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
*************************************************************************/
double inverf(double e);
/*************************************************************************
Inverse of Normal distribution function
Returns the argument, x, for which the area under the
Gaussian probability density function (integrated from
minus infinity to x) is equal to y.
For small arguments 0 < y < exp(-2), the program computes
z = sqrt( -2.0 * log(y) ); then the approximation is
x = z - log(z)/z - (1/z) P(1/z) / Q(1/z).
There are two rational functions P/Q, one for 0 < y < exp(-32)
and the other for y up to exp(-2). For larger arguments,
w = y - 0.5, and x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).
ACCURACY:
Relative error:
arithmetic domain # trials peak rms
IEEE 0.125, 1 20000 7.2e-16 1.3e-16
IEEE 3e-308, 0.135 50000 4.6e-16 9.8e-17
Cephes Math Library Release 2.8: June, 2000
Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier
*************************************************************************/
double invnormaldistribution(double y0);
#endif
|