This file is indexed.

/usr/include/ortfac.h is in libalglib-dev 2.6.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
/*************************************************************************
Copyright (c) 2005-2010 Sergey Bochkanov.

Additional copyrights:
    1992-2007 The University of Tennessee (as indicated in subroutines
    comments).

>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the 
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses

>>> END OF LICENSE >>>
*************************************************************************/

#ifndef _ortfac_h
#define _ortfac_h

#include "ap.h"
#include "ialglib.h"

#include "hblas.h"
#include "reflections.h"
#include "creflections.h"
#include "sblas.h"
#include "ablasf.h"
#include "ablas.h"


/*************************************************************************
QR decomposition of a rectangular matrix of size MxN

Input parameters:
    A   -   matrix A whose indexes range within [0..M-1, 0..N-1].
    M   -   number of rows in matrix A.
    N   -   number of columns in matrix A.

Output parameters:
    A   -   matrices Q and R in compact form (see below).
    Tau -   array of scalar factors which are used to form
            matrix Q. Array whose index ranges within [0.. Min(M-1,N-1)].

Matrix A is represented as A = QR, where Q is an orthogonal matrix of size
MxM, R - upper triangular (or upper trapezoid) matrix of size M x N.

The elements of matrix R are located on and above the main diagonal of
matrix A. The elements which are located in Tau array and below the main
diagonal of matrix A are used to form matrix Q as follows:

Matrix Q is represented as a product of elementary reflections

Q = H(0)*H(2)*...*H(k-1),

where k = min(m,n), and each H(i) is in the form

H(i) = 1 - tau * v * (v^T)

where tau is a scalar stored in Tau[I]; v - real vector,
so that v(0:i-1) = 0, v(i) = 1, v(i+1:m-1) stored in A(i+1:m-1,i).

  -- ALGLIB routine --
     17.02.2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixqr(ap::real_2d_array& a, int m, int n, ap::real_1d_array& tau);


/*************************************************************************
LQ decomposition of a rectangular matrix of size MxN

Input parameters:
    A   -   matrix A whose indexes range within [0..M-1, 0..N-1].
    M   -   number of rows in matrix A.
    N   -   number of columns in matrix A.

Output parameters:
    A   -   matrices L and Q in compact form (see below)
    Tau -   array of scalar factors which are used to form
            matrix Q. Array whose index ranges within [0..Min(M,N)-1].

Matrix A is represented as A = LQ, where Q is an orthogonal matrix of size
MxM, L - lower triangular (or lower trapezoid) matrix of size M x N.

The elements of matrix L are located on and below  the  main  diagonal  of
matrix A. The elements which are located in Tau array and above  the  main
diagonal of matrix A are used to form matrix Q as follows:

Matrix Q is represented as a product of elementary reflections

Q = H(k-1)*H(k-2)*...*H(1)*H(0),

where k = min(m,n), and each H(i) is of the form

H(i) = 1 - tau * v * (v^T)

where tau is a scalar stored in Tau[I]; v - real vector, so that v(0:i-1)=0,
v(i) = 1, v(i+1:n-1) stored in A(i,i+1:n-1).

  -- ALGLIB routine --
     17.02.2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixlq(ap::real_2d_array& a, int m, int n, ap::real_1d_array& tau);


/*************************************************************************
QR decomposition of a rectangular complex matrix of size MxN

Input parameters:
    A   -   matrix A whose indexes range within [0..M-1, 0..N-1]
    M   -   number of rows in matrix A.
    N   -   number of columns in matrix A.

Output parameters:
    A   -   matrices Q and R in compact form
    Tau -   array of scalar factors which are used to form matrix Q. Array
            whose indexes range within [0.. Min(M,N)-1]

Matrix A is represented as A = QR, where Q is an orthogonal matrix of size
MxM, R - upper triangular (or upper trapezoid) matrix of size MxN.

  -- LAPACK routine (version 3.0) --
     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
     Courant Institute, Argonne National Lab, and Rice University
     September 30, 1994
*************************************************************************/
void cmatrixqr(ap::complex_2d_array& a,
     int m,
     int n,
     ap::complex_1d_array& tau);


/*************************************************************************
LQ decomposition of a rectangular complex matrix of size MxN

Input parameters:
    A   -   matrix A whose indexes range within [0..M-1, 0..N-1]
    M   -   number of rows in matrix A.
    N   -   number of columns in matrix A.

Output parameters:
    A   -   matrices Q and L in compact form
    Tau -   array of scalar factors which are used to form matrix Q. Array
            whose indexes range within [0.. Min(M,N)-1]

Matrix A is represented as A = LQ, where Q is an orthogonal matrix of size
MxM, L - lower triangular (or lower trapezoid) matrix of size MxN.

  -- LAPACK routine (version 3.0) --
     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
     Courant Institute, Argonne National Lab, and Rice University
     September 30, 1994
*************************************************************************/
void cmatrixlq(ap::complex_2d_array& a,
     int m,
     int n,
     ap::complex_1d_array& tau);


/*************************************************************************
Partial unpacking of matrix Q from the QR decomposition of a matrix A

Input parameters:
    A       -   matrices Q and R in compact form.
                Output of RMatrixQR subroutine.
    M       -   number of rows in given matrix A. M>=0.
    N       -   number of columns in given matrix A. N>=0.
    Tau     -   scalar factors which are used to form Q.
                Output of the RMatrixQR subroutine.
    QColumns -  required number of columns of matrix Q. M>=QColumns>=0.

Output parameters:
    Q       -   first QColumns columns of matrix Q.
                Array whose indexes range within [0..M-1, 0..QColumns-1].
                If QColumns=0, the array remains unchanged.

  -- ALGLIB routine --
     17.02.2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixqrunpackq(const ap::real_2d_array& a,
     int m,
     int n,
     const ap::real_1d_array& tau,
     int qcolumns,
     ap::real_2d_array& q);


/*************************************************************************
Unpacking of matrix R from the QR decomposition of a matrix A

Input parameters:
    A       -   matrices Q and R in compact form.
                Output of RMatrixQR subroutine.
    M       -   number of rows in given matrix A. M>=0.
    N       -   number of columns in given matrix A. N>=0.

Output parameters:
    R       -   matrix R, array[0..M-1, 0..N-1].

  -- ALGLIB routine --
     17.02.2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixqrunpackr(const ap::real_2d_array& a,
     int m,
     int n,
     ap::real_2d_array& r);


/*************************************************************************
Partial unpacking of matrix Q from the LQ decomposition of a matrix A

Input parameters:
    A       -   matrices L and Q in compact form.
                Output of RMatrixLQ subroutine.
    M       -   number of rows in given matrix A. M>=0.
    N       -   number of columns in given matrix A. N>=0.
    Tau     -   scalar factors which are used to form Q.
                Output of the RMatrixLQ subroutine.
    QRows   -   required number of rows in matrix Q. N>=QRows>=0.

Output parameters:
    Q       -   first QRows rows of matrix Q. Array whose indexes range
                within [0..QRows-1, 0..N-1]. If QRows=0, the array remains
                unchanged.

  -- ALGLIB routine --
     17.02.2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixlqunpackq(const ap::real_2d_array& a,
     int m,
     int n,
     const ap::real_1d_array& tau,
     int qrows,
     ap::real_2d_array& q);


/*************************************************************************
Unpacking of matrix L from the LQ decomposition of a matrix A

Input parameters:
    A       -   matrices Q and L in compact form.
                Output of RMatrixLQ subroutine.
    M       -   number of rows in given matrix A. M>=0.
    N       -   number of columns in given matrix A. N>=0.

Output parameters:
    L       -   matrix L, array[0..M-1, 0..N-1].

  -- ALGLIB routine --
     17.02.2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixlqunpackl(const ap::real_2d_array& a,
     int m,
     int n,
     ap::real_2d_array& l);


/*************************************************************************
Partial unpacking of matrix Q from QR decomposition of a complex matrix A.

Input parameters:
    A           -   matrices Q and R in compact form.
                    Output of CMatrixQR subroutine .
    M           -   number of rows in matrix A. M>=0.
    N           -   number of columns in matrix A. N>=0.
    Tau         -   scalar factors which are used to form Q.
                    Output of CMatrixQR subroutine .
    QColumns    -   required number of columns in matrix Q. M>=QColumns>=0.

Output parameters:
    Q           -   first QColumns columns of matrix Q.
                    Array whose index ranges within [0..M-1, 0..QColumns-1].
                    If QColumns=0, array isn't changed.

  -- ALGLIB routine --
     17.02.2010
     Bochkanov Sergey
*************************************************************************/
void cmatrixqrunpackq(const ap::complex_2d_array& a,
     int m,
     int n,
     const ap::complex_1d_array& tau,
     int qcolumns,
     ap::complex_2d_array& q);


/*************************************************************************
Unpacking of matrix R from the QR decomposition of a matrix A

Input parameters:
    A       -   matrices Q and R in compact form.
                Output of CMatrixQR subroutine.
    M       -   number of rows in given matrix A. M>=0.
    N       -   number of columns in given matrix A. N>=0.

Output parameters:
    R       -   matrix R, array[0..M-1, 0..N-1].

  -- ALGLIB routine --
     17.02.2010
     Bochkanov Sergey
*************************************************************************/
void cmatrixqrunpackr(const ap::complex_2d_array& a,
     int m,
     int n,
     ap::complex_2d_array& r);


/*************************************************************************
Partial unpacking of matrix Q from LQ decomposition of a complex matrix A.

Input parameters:
    A           -   matrices Q and R in compact form.
                    Output of CMatrixLQ subroutine .
    M           -   number of rows in matrix A. M>=0.
    N           -   number of columns in matrix A. N>=0.
    Tau         -   scalar factors which are used to form Q.
                    Output of CMatrixLQ subroutine .
    QRows       -   required number of rows in matrix Q. N>=QColumns>=0.

Output parameters:
    Q           -   first QRows rows of matrix Q.
                    Array whose index ranges within [0..QRows-1, 0..N-1].
                    If QRows=0, array isn't changed.

  -- ALGLIB routine --
     17.02.2010
     Bochkanov Sergey
*************************************************************************/
void cmatrixlqunpackq(const ap::complex_2d_array& a,
     int m,
     int n,
     const ap::complex_1d_array& tau,
     int qrows,
     ap::complex_2d_array& q);


/*************************************************************************
Unpacking of matrix L from the LQ decomposition of a matrix A

Input parameters:
    A       -   matrices Q and L in compact form.
                Output of CMatrixLQ subroutine.
    M       -   number of rows in given matrix A. M>=0.
    N       -   number of columns in given matrix A. N>=0.

Output parameters:
    L       -   matrix L, array[0..M-1, 0..N-1].

  -- ALGLIB routine --
     17.02.2010
     Bochkanov Sergey
*************************************************************************/
void cmatrixlqunpackl(const ap::complex_2d_array& a,
     int m,
     int n,
     ap::complex_2d_array& l);


/*************************************************************************
Reduction of a rectangular matrix to  bidiagonal form

The algorithm reduces the rectangular matrix A to  bidiagonal form by
orthogonal transformations P and Q: A = Q*B*P.

Input parameters:
    A       -   source matrix. array[0..M-1, 0..N-1]
    M       -   number of rows in matrix A.
    N       -   number of columns in matrix A.

Output parameters:
    A       -   matrices Q, B, P in compact form (see below).
    TauQ    -   scalar factors which are used to form matrix Q.
    TauP    -   scalar factors which are used to form matrix P.

The main diagonal and one of the  secondary  diagonals  of  matrix  A  are
replaced with bidiagonal  matrix  B.  Other  elements  contain  elementary
reflections which form MxM matrix Q and NxN matrix P, respectively.

If M>=N, B is the upper  bidiagonal  MxN  matrix  and  is  stored  in  the
corresponding  elements  of  matrix  A.  Matrix  Q  is  represented  as  a
product   of   elementary   reflections   Q = H(0)*H(1)*...*H(n-1),  where
H(i) = 1-tau*v*v'. Here tau is a scalar which is stored  in  TauQ[i],  and
vector v has the following  structure:  v(0:i-1)=0, v(i)=1, v(i+1:m-1)  is
stored   in   elements   A(i+1:m-1,i).   Matrix   P  is  as  follows:  P =
G(0)*G(1)*...*G(n-2), where G(i) = 1 - tau*u*u'. Tau is stored in TauP[i],
u(0:i)=0, u(i+1)=1, u(i+2:n-1) is stored in elements A(i,i+2:n-1).

If M<N, B is the  lower  bidiagonal  MxN  matrix  and  is  stored  in  the
corresponding   elements  of  matrix  A.  Q = H(0)*H(1)*...*H(m-2),  where
H(i) = 1 - tau*v*v', tau is stored in TauQ, v(0:i)=0, v(i+1)=1, v(i+2:m-1)
is    stored    in   elements   A(i+2:m-1,i).    P = G(0)*G(1)*...*G(m-1),
G(i) = 1-tau*u*u', tau is stored in  TauP,  u(0:i-1)=0, u(i)=1, u(i+1:n-1)
is stored in A(i,i+1:n-1).

EXAMPLE:

m=6, n=5 (m > n):               m=5, n=6 (m < n):

(  d   e   u1  u1  u1 )         (  d   u1  u1  u1  u1  u1 )
(  v1  d   e   u2  u2 )         (  e   d   u2  u2  u2  u2 )
(  v1  v2  d   e   u3 )         (  v1  e   d   u3  u3  u3 )
(  v1  v2  v3  d   e  )         (  v1  v2  e   d   u4  u4 )
(  v1  v2  v3  v4  d  )         (  v1  v2  v3  e   d   u5 )
(  v1  v2  v3  v4  v5 )

Here vi and ui are vectors which form H(i) and G(i), and d and e -
are the diagonal and off-diagonal elements of matrix B.

  -- LAPACK routine (version 3.0) --
     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
     Courant Institute, Argonne National Lab, and Rice University
     September 30, 1994.
     Sergey Bochkanov, ALGLIB project, translation from FORTRAN to
     pseudocode, 2007-2010.
*************************************************************************/
void rmatrixbd(ap::real_2d_array& a,
     int m,
     int n,
     ap::real_1d_array& tauq,
     ap::real_1d_array& taup);


/*************************************************************************
Unpacking matrix Q which reduces a matrix to bidiagonal form.

Input parameters:
    QP          -   matrices Q and P in compact form.
                    Output of ToBidiagonal subroutine.
    M           -   number of rows in matrix A.
    N           -   number of columns in matrix A.
    TAUQ        -   scalar factors which are used to form Q.
                    Output of ToBidiagonal subroutine.
    QColumns    -   required number of columns in matrix Q.
                    M>=QColumns>=0.

Output parameters:
    Q           -   first QColumns columns of matrix Q.
                    Array[0..M-1, 0..QColumns-1]
                    If QColumns=0, the array is not modified.

  -- ALGLIB --
     2005-2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixbdunpackq(const ap::real_2d_array& qp,
     int m,
     int n,
     const ap::real_1d_array& tauq,
     int qcolumns,
     ap::real_2d_array& q);


/*************************************************************************
Multiplication by matrix Q which reduces matrix A to  bidiagonal form.

The algorithm allows pre- or post-multiply by Q or Q'.

Input parameters:
    QP          -   matrices Q and P in compact form.
                    Output of ToBidiagonal subroutine.
    M           -   number of rows in matrix A.
    N           -   number of columns in matrix A.
    TAUQ        -   scalar factors which are used to form Q.
                    Output of ToBidiagonal subroutine.
    Z           -   multiplied matrix.
                    array[0..ZRows-1,0..ZColumns-1]
    ZRows       -   number of rows in matrix Z. If FromTheRight=False,
                    ZRows=M, otherwise ZRows can be arbitrary.
    ZColumns    -   number of columns in matrix Z. If FromTheRight=True,
                    ZColumns=M, otherwise ZColumns can be arbitrary.
    FromTheRight -  pre- or post-multiply.
    DoTranspose -   multiply by Q or Q'.

Output parameters:
    Z           -   product of Z and Q.
                    Array[0..ZRows-1,0..ZColumns-1]
                    If ZRows=0 or ZColumns=0, the array is not modified.

  -- ALGLIB --
     2005-2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixbdmultiplybyq(const ap::real_2d_array& qp,
     int m,
     int n,
     const ap::real_1d_array& tauq,
     ap::real_2d_array& z,
     int zrows,
     int zcolumns,
     bool fromtheright,
     bool dotranspose);


/*************************************************************************
Unpacking matrix P which reduces matrix A to bidiagonal form.
The subroutine returns transposed matrix P.

Input parameters:
    QP      -   matrices Q and P in compact form.
                Output of ToBidiagonal subroutine.
    M       -   number of rows in matrix A.
    N       -   number of columns in matrix A.
    TAUP    -   scalar factors which are used to form P.
                Output of ToBidiagonal subroutine.
    PTRows  -   required number of rows of matrix P^T. N >= PTRows >= 0.

Output parameters:
    PT      -   first PTRows columns of matrix P^T
                Array[0..PTRows-1, 0..N-1]
                If PTRows=0, the array is not modified.

  -- ALGLIB --
     2005-2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixbdunpackpt(const ap::real_2d_array& qp,
     int m,
     int n,
     const ap::real_1d_array& taup,
     int ptrows,
     ap::real_2d_array& pt);


/*************************************************************************
Multiplication by matrix P which reduces matrix A to  bidiagonal form.

The algorithm allows pre- or post-multiply by P or P'.

Input parameters:
    QP          -   matrices Q and P in compact form.
                    Output of RMatrixBD subroutine.
    M           -   number of rows in matrix A.
    N           -   number of columns in matrix A.
    TAUP        -   scalar factors which are used to form P.
                    Output of RMatrixBD subroutine.
    Z           -   multiplied matrix.
                    Array whose indexes range within [0..ZRows-1,0..ZColumns-1].
    ZRows       -   number of rows in matrix Z. If FromTheRight=False,
                    ZRows=N, otherwise ZRows can be arbitrary.
    ZColumns    -   number of columns in matrix Z. If FromTheRight=True,
                    ZColumns=N, otherwise ZColumns can be arbitrary.
    FromTheRight -  pre- or post-multiply.
    DoTranspose -   multiply by P or P'.

Output parameters:
    Z - product of Z and P.
                Array whose indexes range within [0..ZRows-1,0..ZColumns-1].
                If ZRows=0 or ZColumns=0, the array is not modified.

  -- ALGLIB --
     2005-2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixbdmultiplybyp(const ap::real_2d_array& qp,
     int m,
     int n,
     const ap::real_1d_array& taup,
     ap::real_2d_array& z,
     int zrows,
     int zcolumns,
     bool fromtheright,
     bool dotranspose);


/*************************************************************************
Unpacking of the main and secondary diagonals of bidiagonal decomposition
of matrix A.

Input parameters:
    B   -   output of RMatrixBD subroutine.
    M   -   number of rows in matrix B.
    N   -   number of columns in matrix B.

Output parameters:
    IsUpper -   True, if the matrix is upper bidiagonal.
                otherwise IsUpper is False.
    D       -   the main diagonal.
                Array whose index ranges within [0..Min(M,N)-1].
    E       -   the secondary diagonal (upper or lower, depending on
                the value of IsUpper).
                Array index ranges within [0..Min(M,N)-1], the last
                element is not used.

  -- ALGLIB --
     2005-2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixbdunpackdiagonals(const ap::real_2d_array& b,
     int m,
     int n,
     bool& isupper,
     ap::real_1d_array& d,
     ap::real_1d_array& e);


/*************************************************************************
Reduction of a square matrix to  upper Hessenberg form: Q'*A*Q = H,
where Q is an orthogonal matrix, H - Hessenberg matrix.

Input parameters:
    A       -   matrix A with elements [0..N-1, 0..N-1]
    N       -   size of matrix A.

Output parameters:
    A       -   matrices Q and P in  compact form (see below).
    Tau     -   array of scalar factors which are used to form matrix Q.
                Array whose index ranges within [0..N-2]

Matrix H is located on the main diagonal, on the lower secondary  diagonal
and above the main diagonal of matrix A. The elements which are used to
form matrix Q are situated in array Tau and below the lower secondary
diagonal of matrix A as follows:

Matrix Q is represented as a product of elementary reflections

Q = H(0)*H(2)*...*H(n-2),

where each H(i) is given by

H(i) = 1 - tau * v * (v^T)

where tau is a scalar stored in Tau[I]; v - is a real vector,
so that v(0:i) = 0, v(i+1) = 1, v(i+2:n-1) stored in A(i+2:n-1,i).

  -- LAPACK routine (version 3.0) --
     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
     Courant Institute, Argonne National Lab, and Rice University
     October 31, 1992
*************************************************************************/
void rmatrixhessenberg(ap::real_2d_array& a, int n, ap::real_1d_array& tau);


/*************************************************************************
Unpacking matrix Q which reduces matrix A to upper Hessenberg form

Input parameters:
    A   -   output of RMatrixHessenberg subroutine.
    N   -   size of matrix A.
    Tau -   scalar factors which are used to form Q.
            Output of RMatrixHessenberg subroutine.

Output parameters:
    Q   -   matrix Q.
            Array whose indexes range within [0..N-1, 0..N-1].

  -- ALGLIB --
     2005-2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixhessenbergunpackq(const ap::real_2d_array& a,
     int n,
     const ap::real_1d_array& tau,
     ap::real_2d_array& q);


/*************************************************************************
Unpacking matrix H (the result of matrix A reduction to upper Hessenberg form)

Input parameters:
    A   -   output of RMatrixHessenberg subroutine.
    N   -   size of matrix A.

Output parameters:
    H   -   matrix H. Array whose indexes range within [0..N-1, 0..N-1].

  -- ALGLIB --
     2005-2010
     Bochkanov Sergey
*************************************************************************/
void rmatrixhessenbergunpackh(const ap::real_2d_array& a,
     int n,
     ap::real_2d_array& h);


/*************************************************************************
Reduction of a symmetric matrix which is given by its higher or lower
triangular part to a tridiagonal matrix using orthogonal similarity
transformation: Q'*A*Q=T.

Input parameters:
    A       -   matrix to be transformed
                array with elements [0..N-1, 0..N-1].
    N       -   size of matrix A.
    IsUpper -   storage format. If IsUpper = True, then matrix A is given
                by its upper triangle, and the lower triangle is not used
                and not modified by the algorithm, and vice versa
                if IsUpper = False.

Output parameters:
    A       -   matrices T and Q in  compact form (see lower)
    Tau     -   array of factors which are forming matrices H(i)
                array with elements [0..N-2].
    D       -   main diagonal of symmetric matrix T.
                array with elements [0..N-1].
    E       -   secondary diagonal of symmetric matrix T.
                array with elements [0..N-2].


  If IsUpper=True, the matrix Q is represented as a product of elementary
  reflectors

     Q = H(n-2) . . . H(2) H(0).

  Each H(i) has the form

     H(i) = I - tau * v * v'

  where tau is a real scalar, and v is a real vector with
  v(i+1:n-1) = 0, v(i) = 1, v(0:i-1) is stored on exit in
  A(0:i-1,i+1), and tau in TAU(i).

  If IsUpper=False, the matrix Q is represented as a product of elementary
  reflectors

     Q = H(0) H(2) . . . H(n-2).

  Each H(i) has the form

     H(i) = I - tau * v * v'

  where tau is a real scalar, and v is a real vector with
  v(0:i) = 0, v(i+1) = 1, v(i+2:n-1) is stored on exit in A(i+2:n-1,i),
  and tau in TAU(i).

  The contents of A on exit are illustrated by the following examples
  with n = 5:

  if UPLO = 'U':                       if UPLO = 'L':

    (  d   e   v1  v2  v3 )              (  d                  )
    (      d   e   v2  v3 )              (  e   d              )
    (          d   e   v3 )              (  v0  e   d          )
    (              d   e  )              (  v0  v1  e   d      )
    (                  d  )              (  v0  v1  v2  e   d  )

  where d and e denote diagonal and off-diagonal elements of T, and vi
  denotes an element of the vector defining H(i).

  -- LAPACK routine (version 3.0) --
     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
     Courant Institute, Argonne National Lab, and Rice University
     October 31, 1992
*************************************************************************/
void smatrixtd(ap::real_2d_array& a,
     int n,
     bool isupper,
     ap::real_1d_array& tau,
     ap::real_1d_array& d,
     ap::real_1d_array& e);


/*************************************************************************
Unpacking matrix Q which reduces symmetric matrix to a tridiagonal
form.

Input parameters:
    A       -   the result of a SMatrixTD subroutine
    N       -   size of matrix A.
    IsUpper -   storage format (a parameter of SMatrixTD subroutine)
    Tau     -   the result of a SMatrixTD subroutine

Output parameters:
    Q       -   transformation matrix.
                array with elements [0..N-1, 0..N-1].

  -- ALGLIB --
     Copyright 2005-2010 by Bochkanov Sergey
*************************************************************************/
void smatrixtdunpackq(const ap::real_2d_array& a,
     const int& n,
     const bool& isupper,
     const ap::real_1d_array& tau,
     ap::real_2d_array& q);


/*************************************************************************
Reduction of a Hermitian matrix which is given  by  its  higher  or  lower
triangular part to a real  tridiagonal  matrix  using  unitary  similarity
transformation: Q'*A*Q = T.

Input parameters:
    A       -   matrix to be transformed
                array with elements [0..N-1, 0..N-1].
    N       -   size of matrix A.
    IsUpper -   storage format. If IsUpper = True, then matrix A is  given
                by its upper triangle, and the lower triangle is not  used
                and not modified by the algorithm, and vice versa
                if IsUpper = False.

Output parameters:
    A       -   matrices T and Q in  compact form (see lower)
    Tau     -   array of factors which are forming matrices H(i)
                array with elements [0..N-2].
    D       -   main diagonal of real symmetric matrix T.
                array with elements [0..N-1].
    E       -   secondary diagonal of real symmetric matrix T.
                array with elements [0..N-2].


  If IsUpper=True, the matrix Q is represented as a product of elementary
  reflectors

     Q = H(n-2) . . . H(2) H(0).

  Each H(i) has the form

     H(i) = I - tau * v * v'

  where tau is a complex scalar, and v is a complex vector with
  v(i+1:n-1) = 0, v(i) = 1, v(0:i-1) is stored on exit in
  A(0:i-1,i+1), and tau in TAU(i).

  If IsUpper=False, the matrix Q is represented as a product of elementary
  reflectors

     Q = H(0) H(2) . . . H(n-2).

  Each H(i) has the form

     H(i) = I - tau * v * v'

  where tau is a complex scalar, and v is a complex vector with
  v(0:i) = 0, v(i+1) = 1, v(i+2:n-1) is stored on exit in A(i+2:n-1,i),
  and tau in TAU(i).

  The contents of A on exit are illustrated by the following examples
  with n = 5:

  if UPLO = 'U':                       if UPLO = 'L':

    (  d   e   v1  v2  v3 )              (  d                  )
    (      d   e   v2  v3 )              (  e   d              )
    (          d   e   v3 )              (  v0  e   d          )
    (              d   e  )              (  v0  v1  e   d      )
    (                  d  )              (  v0  v1  v2  e   d  )

where d and e denote diagonal and off-diagonal elements of T, and vi
denotes an element of the vector defining H(i).

  -- LAPACK routine (version 3.0) --
     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
     Courant Institute, Argonne National Lab, and Rice University
     October 31, 1992
*************************************************************************/
void hmatrixtd(ap::complex_2d_array& a,
     int n,
     bool isupper,
     ap::complex_1d_array& tau,
     ap::real_1d_array& d,
     ap::real_1d_array& e);


/*************************************************************************
Unpacking matrix Q which reduces a Hermitian matrix to a real  tridiagonal
form.

Input parameters:
    A       -   the result of a HMatrixTD subroutine
    N       -   size of matrix A.
    IsUpper -   storage format (a parameter of HMatrixTD subroutine)
    Tau     -   the result of a HMatrixTD subroutine

Output parameters:
    Q       -   transformation matrix.
                array with elements [0..N-1, 0..N-1].

  -- ALGLIB --
     Copyright 2005-2010 by Bochkanov Sergey
*************************************************************************/
void hmatrixtdunpackq(const ap::complex_2d_array& a,
     const int& n,
     const bool& isupper,
     const ap::complex_1d_array& tau,
     ap::complex_2d_array& q);


#endif