This file is indexed.

/usr/include/poissondistr.h is in libalglib-dev 2.6.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
/*************************************************************************
Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier

Contributors:
    * Sergey Bochkanov (ALGLIB project). Translation from C to
      pseudocode.

See subroutines comments for additional copyrights.

>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the 
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses

>>> END OF LICENSE >>>
*************************************************************************/

#ifndef _poissondistr_h
#define _poissondistr_h

#include "ap.h"
#include "ialglib.h"

#include "gammafunc.h"
#include "normaldistr.h"
#include "igammaf.h"


/*************************************************************************
Poisson distribution

Returns the sum of the first k+1 terms of the Poisson
distribution:

  k         j
  --   -m  m
  >   e    --
  --       j!
 j=0

The terms are not summed directly; instead the incomplete
gamma integral is employed, according to the relation

y = pdtr( k, m ) = igamc( k+1, m ).

The arguments must both be positive.
ACCURACY:

See incomplete gamma function

Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
*************************************************************************/
double poissondistribution(int k, double m);


/*************************************************************************
Complemented Poisson distribution

Returns the sum of the terms k+1 to infinity of the Poisson
distribution:

 inf.       j
  --   -m  m
  >   e    --
  --       j!
 j=k+1

The terms are not summed directly; instead the incomplete
gamma integral is employed, according to the formula

y = pdtrc( k, m ) = igam( k+1, m ).

The arguments must both be positive.

ACCURACY:

See incomplete gamma function

Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
*************************************************************************/
double poissoncdistribution(int k, double m);


/*************************************************************************
Inverse Poisson distribution

Finds the Poisson variable x such that the integral
from 0 to x of the Poisson density is equal to the
given probability y.

This is accomplished using the inverse gamma integral
function and the relation

   m = igami( k+1, y ).

ACCURACY:

See inverse incomplete gamma function

Cephes Math Library Release 2.8:  June, 2000
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
*************************************************************************/
double invpoissondistribution(int k, double y);


#endif