/usr/include/poissondistr.h is in libalglib-dev 2.6.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 | /*************************************************************************
Cephes Math Library Release 2.8: June, 2000
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
Contributors:
* Sergey Bochkanov (ALGLIB project). Translation from C to
pseudocode.
See subroutines comments for additional copyrights.
>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses
>>> END OF LICENSE >>>
*************************************************************************/
#ifndef _poissondistr_h
#define _poissondistr_h
#include "ap.h"
#include "ialglib.h"
#include "gammafunc.h"
#include "normaldistr.h"
#include "igammaf.h"
/*************************************************************************
Poisson distribution
Returns the sum of the first k+1 terms of the Poisson
distribution:
k j
-- -m m
> e --
-- j!
j=0
The terms are not summed directly; instead the incomplete
gamma integral is employed, according to the relation
y = pdtr( k, m ) = igamc( k+1, m ).
The arguments must both be positive.
ACCURACY:
See incomplete gamma function
Cephes Math Library Release 2.8: June, 2000
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
*************************************************************************/
double poissondistribution(int k, double m);
/*************************************************************************
Complemented Poisson distribution
Returns the sum of the terms k+1 to infinity of the Poisson
distribution:
inf. j
-- -m m
> e --
-- j!
j=k+1
The terms are not summed directly; instead the incomplete
gamma integral is employed, according to the formula
y = pdtrc( k, m ) = igam( k+1, m ).
The arguments must both be positive.
ACCURACY:
See incomplete gamma function
Cephes Math Library Release 2.8: June, 2000
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
*************************************************************************/
double poissoncdistribution(int k, double m);
/*************************************************************************
Inverse Poisson distribution
Finds the Poisson variable x such that the integral
from 0 to x of the Poisson density is equal to the
given probability y.
This is accomplished using the inverse gamma integral
function and the relation
m = igami( k+1, y ).
ACCURACY:
See inverse incomplete gamma function
Cephes Math Library Release 2.8: June, 2000
Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
*************************************************************************/
double invpoissondistribution(int k, double y);
#endif
|