This file is indexed.

/usr/include/polint.h is in libalglib-dev 2.6.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
/*************************************************************************
Copyright (c) 2006-2009, Sergey Bochkanov (ALGLIB project).

>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses

>>> END OF LICENSE >>>
*************************************************************************/

#ifndef _polint_h
#define _polint_h

#include "ap.h"
#include "ialglib.h"

#include "tsort.h"
#include "ratinterpolation.h"
#include "blas.h"
#include "reflections.h"
#include "creflections.h"
#include "hqrnd.h"
#include "matgen.h"
#include "ablasf.h"
#include "ablas.h"
#include "trfac.h"
#include "trlinsolve.h"
#include "safesolve.h"
#include "rcond.h"
#include "matinv.h"
#include "hblas.h"
#include "sblas.h"
#include "ortfac.h"
#include "rotations.h"
#include "bdsvd.h"
#include "svd.h"
#include "xblas.h"
#include "densesolver.h"
#include "linmin.h"
#include "minlbfgs.h"
#include "minlm.h"
#include "lsfit.h"
#include "ratint.h"
#include "apserv.h"


/*************************************************************************
Polynomial fitting report:
    TaskRCond       reciprocal of task's condition number
    RMSError        RMS error
    AvgError        average error
    AvgRelError     average relative error (for non-zero Y[I])
    MaxError        maximum error
*************************************************************************/
struct polynomialfitreport
{
    double taskrcond;
    double rmserror;
    double avgerror;
    double avgrelerror;
    double maxerror;
};




/*************************************************************************
Lagrange intepolant: generation of the model on the general grid.
This function has O(N^2) complexity.

INPUT PARAMETERS:
    X   -   abscissas, array[0..N-1]
    Y   -   function values, array[0..N-1]
    N   -   number of points, N>=1

OIYTPUT PARAMETERS
    P   -   barycentric model which represents Lagrange interpolant
            (see ratint unit info and BarycentricCalc() description for
            more information).

  -- ALGLIB --
     Copyright 02.12.2009 by Bochkanov Sergey
*************************************************************************/
void polynomialbuild(const ap::real_1d_array& x,
     const ap::real_1d_array& y,
     int n,
     barycentricinterpolant& p);


/*************************************************************************
Lagrange intepolant: generation of the model on equidistant grid.
This function has O(N) complexity.

INPUT PARAMETERS:
    A   -   left boundary of [A,B]
    B   -   right boundary of [A,B]
    Y   -   function values at the nodes, array[0..N-1]
    N   -   number of points, N>=1
            for N=1 a constant model is constructed.

OIYTPUT PARAMETERS
    P   -   barycentric model which represents Lagrange interpolant
            (see ratint unit info and BarycentricCalc() description for
            more information).

  -- ALGLIB --
     Copyright 03.12.2009 by Bochkanov Sergey
*************************************************************************/
void polynomialbuildeqdist(double a,
     double b,
     const ap::real_1d_array& y,
     int n,
     barycentricinterpolant& p);


/*************************************************************************
Lagrange intepolant on Chebyshev grid (first kind).
This function has O(N) complexity.

INPUT PARAMETERS:
    A   -   left boundary of [A,B]
    B   -   right boundary of [A,B]
    Y   -   function values at the nodes, array[0..N-1],
            Y[I] = Y(0.5*(B+A) + 0.5*(B-A)*Cos(PI*(2*i+1)/(2*n)))
    N   -   number of points, N>=1
            for N=1 a constant model is constructed.

OIYTPUT PARAMETERS
    P   -   barycentric model which represents Lagrange interpolant
            (see ratint unit info and BarycentricCalc() description for
            more information).

  -- ALGLIB --
     Copyright 03.12.2009 by Bochkanov Sergey
*************************************************************************/
void polynomialbuildcheb1(double a,
     double b,
     const ap::real_1d_array& y,
     int n,
     barycentricinterpolant& p);


/*************************************************************************
Lagrange intepolant on Chebyshev grid (second kind).
This function has O(N) complexity.

INPUT PARAMETERS:
    A   -   left boundary of [A,B]
    B   -   right boundary of [A,B]
    Y   -   function values at the nodes, array[0..N-1],
            Y[I] = Y(0.5*(B+A) + 0.5*(B-A)*Cos(PI*i/(n-1)))
    N   -   number of points, N>=1
            for N=1 a constant model is constructed.

OIYTPUT PARAMETERS
    P   -   barycentric model which represents Lagrange interpolant
            (see ratint unit info and BarycentricCalc() description for
            more information).

  -- ALGLIB --
     Copyright 03.12.2009 by Bochkanov Sergey
*************************************************************************/
void polynomialbuildcheb2(double a,
     double b,
     const ap::real_1d_array& y,
     int n,
     barycentricinterpolant& p);


/*************************************************************************
Fast equidistant polynomial interpolation function with O(N) complexity

INPUT PARAMETERS:
    A   -   left boundary of [A,B]
    B   -   right boundary of [A,B]
    F   -   function values, array[0..N-1]
    N   -   number of points on equidistant grid, N>=1
            for N=1 a constant model is constructed.
    T   -   position where P(x) is calculated

RESULT
    value of the Lagrange interpolant at T
    
IMPORTANT
    this function provides fast interface which is not overflow-safe
    nor it is very precise.
    the best option is to use  PolynomialBuildEqDist()/BarycentricCalc()
    subroutines unless you are pretty sure that your data will not result
    in overflow.

  -- ALGLIB --
     Copyright 02.12.2009 by Bochkanov Sergey
*************************************************************************/
double polynomialcalceqdist(double a,
     double b,
     const ap::real_1d_array& f,
     int n,
     double t);


/*************************************************************************
Fast polynomial interpolation function on Chebyshev points (first kind)
with O(N) complexity.

INPUT PARAMETERS:
    A   -   left boundary of [A,B]
    B   -   right boundary of [A,B]
    F   -   function values, array[0..N-1]
    N   -   number of points on Chebyshev grid (first kind),
            X[i] = 0.5*(B+A) + 0.5*(B-A)*Cos(PI*(2*i+1)/(2*n))
            for N=1 a constant model is constructed.
    T   -   position where P(x) is calculated

RESULT
    value of the Lagrange interpolant at T

IMPORTANT
    this function provides fast interface which is not overflow-safe
    nor it is very precise.
    the best option is to use  PolIntBuildCheb1()/BarycentricCalc()
    subroutines unless you are pretty sure that your data will not result
    in overflow.

  -- ALGLIB --
     Copyright 02.12.2009 by Bochkanov Sergey
*************************************************************************/
double polynomialcalccheb1(double a,
     double b,
     const ap::real_1d_array& f,
     int n,
     double t);


/*************************************************************************
Fast polynomial interpolation function on Chebyshev points (second kind)
with O(N) complexity.

INPUT PARAMETERS:
    A   -   left boundary of [A,B]
    B   -   right boundary of [A,B]
    F   -   function values, array[0..N-1]
    N   -   number of points on Chebyshev grid (second kind),
            X[i] = 0.5*(B+A) + 0.5*(B-A)*Cos(PI*i/(n-1))
            for N=1 a constant model is constructed.
    T   -   position where P(x) is calculated

RESULT
    value of the Lagrange interpolant at T

IMPORTANT
    this function provides fast interface which is not overflow-safe
    nor it is very precise.
    the best option is to use PolIntBuildCheb2()/BarycentricCalc()
    subroutines unless you are pretty sure that your data will not result
    in overflow.

  -- ALGLIB --
     Copyright 02.12.2009 by Bochkanov Sergey
*************************************************************************/
double polynomialcalccheb2(double a,
     double b,
     const ap::real_1d_array& f,
     int n,
     double t);


/*************************************************************************
Least squares fitting by polynomial.

This subroutine is "lightweight" alternative for more complex and feature-
rich PolynomialFitWC().  See  PolynomialFitWC() for more information about
subroutine parameters (we don't duplicate it here because of length)

  -- ALGLIB PROJECT --
     Copyright 12.10.2009 by Bochkanov Sergey
*************************************************************************/
void polynomialfit(const ap::real_1d_array& x,
     const ap::real_1d_array& y,
     int n,
     int m,
     int& info,
     barycentricinterpolant& p,
     polynomialfitreport& rep);


/*************************************************************************
Weighted  fitting  by  Chebyshev  polynomial  in  barycentric  form,  with
constraints on function values or first derivatives.

Small regularizing term is used when solving constrained tasks (to improve
stability).

Task is linear, so linear least squares solver is used. Complexity of this
computational scheme is O(N*M^2), mostly dominated by least squares solver

SEE ALSO:
    PolynomialFit()

INPUT PARAMETERS:
    X   -   points, array[0..N-1].
    Y   -   function values, array[0..N-1].
    W   -   weights, array[0..N-1]
            Each summand in square  sum  of  approximation deviations from
            given  values  is  multiplied  by  the square of corresponding
            weight. Fill it by 1's if you don't  want  to  solve  weighted
            task.
    N   -   number of points, N>0.
    XC  -   points where polynomial values/derivatives are constrained,
            array[0..K-1].
    YC  -   values of constraints, array[0..K-1]
    DC  -   array[0..K-1], types of constraints:
            * DC[i]=0   means that P(XC[i])=YC[i]
            * DC[i]=1   means that P'(XC[i])=YC[i]
            SEE BELOW FOR IMPORTANT INFORMATION ON CONSTRAINTS
    K   -   number of constraints, 0<=K<M.
            K=0 means no constraints (XC/YC/DC are not used in such cases)
    M   -   number of basis functions (= polynomial_degree + 1), M>=1

OUTPUT PARAMETERS:
    Info-   same format as in LSFitLinearW() subroutine:
            * Info>0    task is solved
            * Info<=0   an error occured:
                        -4 means inconvergence of internal SVD
                        -3 means inconsistent constraints
                        -1 means another errors in parameters passed
                           (N<=0, for example)
    P   -   interpolant in barycentric form.
    Rep -   report, same format as in LSFitLinearW() subroutine.
            Following fields are set:
            * RMSError      rms error on the (X,Y).
            * AvgError      average error on the (X,Y).
            * AvgRelError   average relative error on the non-zero Y
            * MaxError      maximum error
                            NON-WEIGHTED ERRORS ARE CALCULATED

IMPORTANT:
    this subroitine doesn't calculate task's condition number for K<>0.

SETTING CONSTRAINTS - DANGERS AND OPPORTUNITIES:

Setting constraints can lead  to undesired  results,  like ill-conditioned
behavior, or inconsistency being detected. From the other side,  it allows
us to improve quality of the fit. Here we summarize  our  experience  with
constrained regression splines:
* even simple constraints can be inconsistent, see  Wikipedia  article  on
  this subject: http://en.wikipedia.org/wiki/Birkhoff_interpolation
* the  greater  is  M (given  fixed  constraints),  the  more chances that
  constraints will be consistent
* in the general case, consistency of constraints is NOT GUARANTEED.
* in the one special cases, however, we can  guarantee  consistency.  This
  case  is:  M>1  and constraints on the function values (NOT DERIVATIVES)

Our final recommendation is to use constraints  WHEN  AND  ONLY  when  you
can't solve your task without them. Anything beyond  special  cases  given
above is not guaranteed and may result in inconsistency.

  -- ALGLIB PROJECT --
     Copyright 10.12.2009 by Bochkanov Sergey
*************************************************************************/
void polynomialfitwc(ap::real_1d_array x,
     ap::real_1d_array y,
     const ap::real_1d_array& w,
     int n,
     ap::real_1d_array xc,
     ap::real_1d_array yc,
     const ap::integer_1d_array& dc,
     int k,
     int m,
     int& info,
     barycentricinterpolant& p,
     polynomialfitreport& rep);


#endif