/usr/include/ssolve.h is in libalglib-dev 2.6.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 | /*************************************************************************
Copyright (c) 1992-2007 The University of Tennessee. All rights reserved.
Contributors:
* Sergey Bochkanov (ALGLIB project). Translation from FORTRAN to
pseudocode.
See subroutines comments for additional copyrights.
>>> SOURCE LICENSE >>>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation (www.fsf.org); either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
A copy of the GNU General Public License is available at
http://www.fsf.org/licensing/licenses
>>> END OF LICENSE >>>
*************************************************************************/
#ifndef _ssolve_h
#define _ssolve_h
#include "ap.h"
#include "ialglib.h"
#include "ldlt.h"
/*************************************************************************
Solving a system of linear equations with a system matrix given by its
LDLT decomposition
The algorithm solves systems with a square matrix only.
Input parameters:
A - LDLT decomposition of the matrix (the result of the
SMatrixLDLT subroutine).
Pivots - row permutation table (the result of the SMatrixLDLT subroutine).
B - right side of a system.
Array whose index ranges within [0..N-1].
N - size of matrix A.
IsUpper - points to the triangle of matrix A in which the LDLT
decomposition is stored.
If IsUpper=True, the decomposition has the form of U*D*U',
matrix U is stored in the upper triangle of matrix A (in
that case, the lower triangle isn't used and isn't changed
by the subroutine).
Similarly, if IsUpper=False, the decomposition has the form
of L*D*L' and the lower triangle stores matrix L.
Output parameters:
X - solution of a system.
Array whose index ranges within [0..N-1].
Result:
True, if the matrix is not singular. X contains the solution.
False, if the matrix is singular (the determinant of matrix D is equal
to 0). In this case, X doesn't contain a solution.
*************************************************************************/
bool smatrixldltsolve(const ap::real_2d_array& a,
const ap::integer_1d_array& pivots,
ap::real_1d_array b,
int n,
bool isupper,
ap::real_1d_array& x);
/*************************************************************************
Solving a system of linear equations with a symmetric system matrix
Input parameters:
A - system matrix (upper or lower triangle).
Array whose indexes range within [0..N-1, 0..N-1].
B - right side of a system.
Array whose index ranges within [0..N-1].
N - size of matrix A.
IsUpper - If IsUpper = True, A contains the upper triangle,
otherwise A contains the lower triangle.
Output parameters:
X - solution of a system.
Array whose index ranges within [0..N-1].
Result:
True, if the matrix is not singular. X contains the solution.
False, if the matrix is singular (the determinant of the matrix is equal
to 0). In this case, X doesn't contain a solution.
-- ALGLIB --
Copyright 2005 by Bochkanov Sergey
*************************************************************************/
bool smatrixsolve(ap::real_2d_array a,
const ap::real_1d_array& b,
int n,
bool isupper,
ap::real_1d_array& x);
bool solvesystemldlt(const ap::real_2d_array& a,
const ap::integer_1d_array& pivots,
ap::real_1d_array b,
int n,
bool isupper,
ap::real_1d_array& x);
bool solvesymmetricsystem(ap::real_2d_array a,
ap::real_1d_array b,
int n,
bool isupper,
ap::real_1d_array& x);
#endif
|