/usr/share/ada/adainclude/asis/a4g-mapping.adb is in libasis2010-dev 2010-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 | ------------------------------------------------------------------------------
-- --
-- ASIS-for-GNAT IMPLEMENTATION COMPONENTS --
-- --
-- A 4 G . M A P P I N G --
-- --
-- B o d y --
-- --
-- Copyright (C) 1995-2010, Free Software Foundation, Inc. --
-- --
-- ASIS-for-GNAT is free software; you can redistribute it and/or modify it --
-- under terms of the GNU General Public License as published by the Free --
-- Software Foundation; either version 2, or (at your option) any later --
-- version. ASIS-for-GNAT is distributed in the hope that it will be use- --
-- ful, but WITHOUT ANY WARRANTY; without even the implied warranty of MER- --
-- CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General --
-- Public License for more details. You should have received a copy of the --
-- GNU General Public License distributed with ASIS-for-GNAT; see file --
-- COPYING. If not, write to the Free Software Foundation, 51 Franklin --
-- Street, Fifth Floor, Boston, MA 02110-1301, USA. --
-- --
-- --
-- --
-- --
-- --
-- --
-- --
-- --
-- --
-- ASIS-for-GNAT was originally developed by the ASIS-for-GNAT team at the --
-- Software Engineering Laboratory of the Swiss Federal Institute of --
-- Technology (LGL-EPFL) in Lausanne, Switzerland, in cooperation with the --
-- Scientific Research Computer Center of Moscow State University (SRCC --
-- MSU), Russia, with funding partially provided by grants from the Swiss --
-- National Science Foundation and the Swiss Academy of Engineering --
-- Sciences. ASIS-for-GNAT is now maintained by AdaCore --
-- (http://www.adacore.com). --
-- --
------------------------------------------------------------------------------
with Ada.Characters.Handling; use Ada.Characters.Handling;
with Asis; use Asis;
with Asis.Compilation_Units; use Asis.Compilation_Units;
with Asis.Elements; use Asis.Elements;
with Asis.Set_Get; use Asis.Set_Get;
with A4G.A_Debug; use A4G.A_Debug;
with A4G.A_Opt;
with A4G.A_Output; use A4G.A_Output;
with A4G.A_Sem; use A4G.A_Sem;
with A4G.A_Sinput; use A4G.A_Sinput;
with A4G.Asis_Tables; use A4G.Asis_Tables;
with A4G.Contt; use A4G.Contt;
with A4G.Norm; use A4G.Norm;
with A4G.Vcheck; use A4G.Vcheck;
with Atree; use Atree;
with Einfo; use Einfo;
with Elists; use Elists;
with Namet; use Namet;
with Nlists; use Nlists;
with Output; use Output;
with Snames; use Snames;
with Stand; use Stand;
with Uintp; use Uintp;
with Urealp; use Urealp;
package body A4G.Mapping is
-------------------------------------------
-- Tree nodes onto ASIS Elements Mapping --
-------------------------------------------
-- The kernel of the mapping from tree nodes onto ASIS Elements is
-- determining the ASIS kind of the Element which should be built on top
-- of a given node. We are computing the Element position in the internal
-- flat classification, that is, the corresponding value of
-- Internal_Element_Kinds (which is further referred simply as Element
-- kind in this unit).
--
-- Mapping of tree nodes onto Element kinds is implemented as two-level
-- switching based on look-up tables. Both look-up tables are one-dimension
-- arrays indexed by Node_Kind type).
--
-- The first table has Internal_Element_Kinds as its component type. It
-- defines the mapping of Node_Kind values onto Internal_Element_Kinds
-- values as pairs index_value -> component_value, the semantics of this
-- mapping depends on the component value in the following way:
--
-- Component value First switch mapping semantics
--
-- A_Xxx, where A_Xxx corresponds - Element which should be based on
-- to some position in the original any node having the corresponding
-- ASIS element classification Node_Kind will always be of A_Xxx
-- hierarchy (such as An_Identifier) ASIS kind, no more computation
-- of Element kind is needed
--
-- Non_Trivial_Mapping - Elements which can be built on
-- nodes having the corresponding
-- Node_Kind may have different ASIS
-- kinds, therefore a special function
-- computing the ASIS kind should be
-- used, this function is defined by
-- the second look-up table
--
-- No_Mapping - no ASIS Element kind corresponds to
-- nodes of the corresponding
-- Node_Kind in the framework of the
-- given node-to-Element mapping
--
-- Not_Implemented_Mapping - this value was used during the
-- development phase and now it is
-- kept as the value for 'others'
-- choice in the initialization
-- aggregate just in case if a new
-- value appear in Node_Kind type
--
-- No_Mapping does not mean, that for a given Node_Kind value no Element
-- can be created at all, it means, that automatic Element kind
-- determination is impossible for these nodes because of any reason.
--
-- Both No_Mapping and Not_Implemented_Mapping mapping items, when chosen.
-- resulted in raising the ASIS_Failed exception. The reason because of
-- which we keep Not_Implemented_Mapping value after finishing the
-- development stage is to catch possible changes in Node_Kind definition.
-- No_Mapping means that for sure there is no mapping for a given Node_Kind
-- value, and Not_Implemented_Mapping means that processing of the given
-- Node_Kind value is missed in the existing code.
--
-- The second look-up table defines functions to be used to compute
-- Element kind for those Node_Kind values for which the first table
-- defines Non_Trivial_Mapping. All these functions are supposed to be
-- called for nodes of the Node_Kind from the corresponding mapping item
-- defined by the second table, it is erroneous to call them for other
-- nodes.
--
-- The structure, documentation and naming policy for look-up tables
-- implementing note-to-Element mapping are based on the GNAT Sinfo
-- package, and, in particular, on the Sinfo.Node_Kind type definition.
-- Rather old version of the spec of Sinfo is used, so some deviations
-- with the latest version may be possible
------------------------------------------------------
-- Tree nodes lists onto ASIS Element lists Mapping --
------------------------------------------------------
-- ASIS Element lists are built from tree node lists: when constructing an
-- ASIS Element_List value, the corresponding routine goes trough the
-- corresponding tree node list, checks which nodes should be used as a
-- basis for ASIS Elements to be placed in the result Element_List, and
-- which should not, and then calls node-to-Element conversion function
-- for the selected nodes. Therefore, two main components of node list to
-- Element list mapping are filters for the nodes in the argument node
-- list and node-to-Element mapping
-----------------------
-- Local subprograms --
-----------------------
procedure Normalize_Name (Capitalized : Boolean := False);
-- This procedure "normalizes" a name stored in Namet.Name_Buffer by
-- capitalizing its firs letter and all the letters following underscores
-- (if any). If Capitalized is set ON, all the letters are converted to
-- upper case, this is used for some defining names from Standard (such as
-- ASCII)
function Is_Protected_Procedure_Call (N : Node_Id) return Boolean;
-- In case if N is of N_Entry_Call_Statement, it checks if this is a call
-- to a protected subprogram (if it is, the corresponding ASIS Element
-- should be classified as A_Procedure_Call_Statement, but not as
-- An_Entry_Call_Statement
function Is_Stub_To_Body_Instanse_Replacement
(N : Node_Id)
return Boolean;
-- Checks if the node corresponds to the body which replaces the body stub
-- within the instance. The reason why we need this is that Sloc
-- field is not set to point into the instance copy if the source for
-- such node, so the ordinary Is_From_Instance check does not work
-- for this node (see 8930-001)
function Is_Config_Pragma (N : Node_Id) return Boolean;
-- Checks if N represents a configuration pragma
--------------------------------------------------------------
-- Subprograms for the second Note-to-Element Look-Up Table --
--------------------------------------------------------------
procedure No_Mapping (Node : Node_Id);
function Not_Implemented_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
procedure Not_Implemented_Mapping (Source_Node_Kind : Node_Kind);
-- These three subprograms raise ASIS_Failed with the appropriate
-- Diagnosis string
pragma No_Return (Not_Implemented_Mapping);
pragma No_Return (No_Mapping);
-- Individual mapping components:
function N_Pragma_Mapping (Node : Node_Id) return Internal_Element_Kinds;
function N_Defining_Identifier_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Defining_Operator_Symbol_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Expanded_Name_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Identifier_Mapping
(Node : Node_Id)
return Internal_Element_Kinds renames N_Expanded_Name_Mapping;
function N_In_Mapping (Node : Node_Id) return Internal_Element_Kinds;
function N_Not_In_Mapping (Node : Node_Id) return Internal_Element_Kinds;
function N_Attribute_Reference_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Function_Call_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Range_Mapping (Node : Node_Id) return Internal_Element_Kinds;
function N_Allocator_Mapping (Node : Node_Id) return Internal_Element_Kinds;
function N_Aggregate_Mapping (Node : Node_Id) return Internal_Element_Kinds;
-- |A2005 start
function N_Incomplete_Type_Declaration_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
-- |A2005 end
function N_Subtype_Indication_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Object_Declaration_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Access_Function_Definition_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Access_Procedure_Definition_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Subprogram_Body_Stub_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Subprogram_Body_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Subprogram_Declaration_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Generic_Subprogram_Declaration_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Constrained_Array_Definition_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Unconstrained_Array_Definition_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Subprogram_Renaming_Declaration_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Loop_Statement_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Requeue_Statement_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Abstract_Subprogram_Declaration_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Accept_Alternative_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
-- --|A2005 start
function N_Access_Definition_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
-- --|A2005 end
function N_Access_To_Object_Definition_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Component_Association_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Derived_Type_Definition_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Delay_Alternative_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Formal_Package_Declaration_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Formal_Private_Type_Definition_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Formal_Subprogram_Declaration_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Index_Or_Discriminant_Constraint_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Number_Declaration_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Procedure_Call_Statement_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Range_Constraint_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Record_Definition_Mapping
(Node : Node_Id)
return Internal_Element_Kinds;
function N_Terminate_Alternative_Mapping
(Node : Node_Id)
return Internal_Element_Kinds renames N_Accept_Alternative_Mapping;
-----------------------------------------
-- Node lists to Element lists filters --
-----------------------------------------
function May_Be_Included (Node : Node_Id) return Boolean;
-- Top-level filter for selecting nodes from a node list to be used to
-- create ASIS Elements which are members of some ASIS Element List.
function Ordinary_Inclusion_Condition (Node : Node_Id) return Boolean;
-- Defines the general condition for a separate node list member to be
-- used to construct an Element to be returned by some ASIS query. This
-- function does not make the final decision, because the node may be
-- duplicated, and this is checked in the May_Be_Included function
procedure Skip_Normalized_Declarations (Node : in out Node_Id);
-- This procedure is applied in case when the compiler normalizes a
-- multi-identifier declaration (or multi-name with clause) in a set of
-- equivalent one-identifier (one-name) declarations (clauses). It is
-- intended to be called for Node representing the first declaration
-- (clause) in this normalized sequence, and it resets its parameter
-- to point to the last declaration (clause) in this sequence
-----------------------------------------
-- Node-to-Element First Look-Up Table --
-----------------------------------------
Node_To_Element_Kind_Mapping_First_Switch :
constant array (Node_Kind) of Internal_Element_Kinds := (
N_Unused_At_Start => No_Mapping,
N_At_Clause => An_At_Clause,
N_Component_Clause => A_Component_Clause,
N_Enumeration_Representation_Clause => An_Enumeration_Representation_Clause,
N_Mod_Clause => No_Mapping,
N_Record_Representation_Clause => A_Record_Representation_Clause,
N_Attribute_Definition_Clause => An_Attribute_Definition_Clause,
N_Empty => No_Mapping,
N_Error => No_Mapping,
N_Pragma => Non_Trivial_Mapping,
N_Pragma_Argument_Association => A_Pragma_Argument_Association,
N_Defining_Character_Literal => A_Defining_Character_Literal,
N_Defining_Identifier => Non_Trivial_Mapping,
N_Defining_Operator_Symbol => Non_Trivial_Mapping,
N_Expanded_Name => Non_Trivial_Mapping,
N_Identifier => Non_Trivial_Mapping,
N_Character_Literal => A_Character_Literal,
N_Operator_Symbol => Non_Trivial_Mapping,
N_Op_Add => A_Function_Call,
N_Op_And => A_Function_Call,
N_And_Then => An_And_Then_Short_Circuit,
N_Op_Concat => A_Function_Call,
N_Op_Divide => A_Function_Call,
N_Op_Eq => A_Function_Call,
N_Op_Expon => A_Function_Call,
N_Op_Ge => A_Function_Call,
N_Op_Gt => A_Function_Call,
N_In => Non_Trivial_Mapping,
N_Op_Le => A_Function_Call,
N_Op_Lt => A_Function_Call,
N_Op_Mod => A_Function_Call,
N_Op_Multiply => A_Function_Call,
N_Op_Ne => A_Function_Call,
N_Not_In => Non_Trivial_Mapping,
N_Op_Or => A_Function_Call,
N_Or_Else => An_Or_Else_Short_Circuit,
N_Op_Rem => A_Function_Call,
N_Op_Subtract => A_Function_Call,
N_Op_Xor => A_Function_Call,
N_Op_Abs => A_Function_Call,
N_Op_Minus => A_Function_Call,
N_Op_Not => A_Function_Call,
N_Op_Plus => A_Function_Call,
N_Attribute_Reference => Non_Trivial_Mapping,
N_Conditional_Expression => A_Conditional_Expression,
N_Explicit_Dereference => An_Explicit_Dereference,
N_Function_Call => Non_Trivial_Mapping,
N_Indexed_Component => An_Indexed_Component,
N_Integer_Literal => An_Integer_Literal,
N_Null => A_Null_Literal,
N_Procedure_Call_Statement => Non_Trivial_Mapping,
N_Qualified_Expression => A_Qualified_Expression,
N_Raise_Constraint_Error => No_Mapping,
N_Range => Non_Trivial_Mapping,
N_Real_Literal => A_Real_Literal,
N_Selected_Component => A_Selected_Component,
N_Type_Conversion => A_Type_Conversion,
N_Allocator => Non_Trivial_Mapping,
N_Aggregate => Non_Trivial_Mapping,
N_Extension_Aggregate => An_Extension_Aggregate,
N_Slice => A_Slice,
N_String_Literal => A_String_Literal,
N_Subtype_Indication => Non_Trivial_Mapping,
N_Component_Declaration => A_Component_Declaration,
N_Entry_Body => An_Entry_Body_Declaration,
N_Entry_Declaration => An_Entry_Declaration,
N_Entry_Index_Specification => An_Entry_Index_Specification,
N_Formal_Object_Declaration => A_Formal_Object_Declaration,
N_Formal_Type_Declaration => A_Formal_Type_Declaration,
N_Freeze_Entity => No_Mapping,
N_Full_Type_Declaration => An_Ordinary_Type_Declaration,
-- --|A2005 start
-- N_Incomplete_Type_Declaration => An_Incomplete_Type_Declaration,
N_Incomplete_Type_Declaration => Non_Trivial_Mapping,
-- --|A2005 end
N_Loop_Parameter_Specification => A_Loop_Parameter_Specification,
N_Object_Declaration => Non_Trivial_Mapping,
N_Private_Extension_Declaration => A_Private_Extension_Declaration,
N_Private_Type_Declaration => A_Private_Type_Declaration,
N_Subtype_Declaration => A_Subtype_Declaration,
N_Protected_Type_Declaration => A_Protected_Type_Declaration,
N_Accept_Statement => An_Accept_Statement,
N_Function_Specification => No_Mapping,
N_Procedure_Specification => No_Mapping,
N_Access_Function_Definition => Non_Trivial_Mapping,
N_Access_Procedure_Definition => Non_Trivial_Mapping,
N_Task_Type_Declaration => A_Task_Type_Declaration,
N_Package_Body_Stub => A_Package_Body_Stub,
N_Protected_Body_Stub => A_Protected_Body_Stub,
N_Subprogram_Body_Stub => Non_Trivial_Mapping,
N_Task_Body_Stub => A_Task_Body_Stub,
N_Function_Instantiation => A_Function_Instantiation,
N_Package_Instantiation => A_Package_Instantiation,
N_Procedure_Instantiation => A_Procedure_Instantiation,
N_Package_Body => A_Package_Body_Declaration,
N_Subprogram_Body => Non_Trivial_Mapping,
N_Implicit_Label_Declaration => No_Mapping,
N_Package_Declaration => A_Package_Declaration,
N_Single_Task_Declaration => A_Single_Task_Declaration,
N_Subprogram_Declaration => Non_Trivial_Mapping,
N_Task_Body => A_Task_Body_Declaration,
N_Use_Package_Clause => A_Use_Package_Clause,
N_Generic_Package_Declaration => A_Generic_Package_Declaration,
N_Generic_Subprogram_Declaration => Non_Trivial_Mapping,
N_Constrained_Array_Definition => Non_Trivial_Mapping,
N_Unconstrained_Array_Definition => Non_Trivial_Mapping,
N_Exception_Renaming_Declaration => An_Exception_Renaming_Declaration,
N_Object_Renaming_Declaration => An_Object_Renaming_Declaration,
N_Package_Renaming_Declaration => A_Package_Renaming_Declaration,
N_Subprogram_Renaming_Declaration => Non_Trivial_Mapping,
N_Generic_Function_Renaming_Declaration =>
A_Generic_Function_Renaming_Declaration,
N_Generic_Package_Renaming_Declaration =>
A_Generic_Package_Renaming_Declaration,
N_Generic_Procedure_Renaming_Declaration =>
A_Generic_Procedure_Renaming_Declaration,
N_Abort_Statement => An_Abort_Statement,
N_Assignment_Statement => An_Assignment_Statement,
N_Block_Statement => A_Block_Statement,
N_Case_Statement => A_Case_Statement,
N_Code_Statement => A_Code_Statement,
N_Delay_Relative_Statement => A_Delay_Relative_Statement,
N_Delay_Until_Statement => A_Delay_Until_Statement,
N_Entry_Call_Statement => An_Entry_Call_Statement,
N_Exit_Statement => An_Exit_Statement,
N_Free_Statement => No_Mapping,
N_Goto_Statement => A_Goto_Statement,
N_If_Statement => An_If_Statement,
N_Loop_Statement => Non_Trivial_Mapping,
N_Null_Statement => A_Null_Statement,
N_Raise_Statement => A_Raise_Statement,
N_Requeue_Statement => Non_Trivial_Mapping,
N_Return_Statement => A_Return_Statement,
N_Extended_Return_Statement => An_Extended_Return_Statement,
N_Abortable_Part => A_Then_Abort_Path,
N_Abstract_Subprogram_Declaration => Non_Trivial_Mapping,
N_Accept_Alternative => Non_Trivial_Mapping,
-- --|A2005 start
N_Access_Definition => Non_Trivial_Mapping,
-- --|A2005 end
N_Access_To_Object_Definition => Non_Trivial_Mapping,
N_Asynchronous_Select => An_Asynchronous_Select_Statement,
N_Case_Statement_Alternative => A_Case_Path,
N_Compilation_Unit => No_Mapping,
N_Component_Association => Non_Trivial_Mapping,
N_Component_Definition => A_Component_Definition,
N_Conditional_Entry_Call => A_Conditional_Entry_Call_Statement,
N_Derived_Type_Definition => Non_Trivial_Mapping,
N_Decimal_Fixed_Point_Definition => A_Decimal_Fixed_Point_Definition,
N_Defining_Program_Unit_Name => A_Defining_Expanded_Name,
N_Delay_Alternative => Non_Trivial_Mapping,
N_Delta_Constraint => A_Delta_Constraint,
N_Digits_Constraint => A_Digits_Constraint,
N_Discriminant_Association => A_Discriminant_Association,
N_Discriminant_Specification => A_Discriminant_Specification,
N_Elsif_Part => An_Elsif_Path,
N_Enumeration_Type_Definition => An_Enumeration_Type_Definition,
N_Entry_Call_Alternative => A_Select_Path,
N_Exception_Declaration => An_Exception_Declaration,
N_Exception_Handler => An_Exception_Handler,
N_Floating_Point_Definition => A_Floating_Point_Definition,
N_Formal_Decimal_Fixed_Point_Definition =>
A_Formal_Decimal_Fixed_Point_Definition,
N_Formal_Derived_Type_Definition => A_Formal_Derived_Type_Definition,
N_Formal_Discrete_Type_Definition => A_Formal_Discrete_Type_Definition,
N_Formal_Floating_Point_Definition => A_Formal_Floating_Point_Definition,
N_Formal_Modular_Type_Definition => A_Formal_Modular_Type_Definition,
N_Formal_Ordinary_Fixed_Point_Definition =>
A_Formal_Ordinary_Fixed_Point_Definition,
N_Formal_Package_Declaration => Non_Trivial_Mapping,
N_Formal_Private_Type_Definition => Non_Trivial_Mapping,
N_Formal_Signed_Integer_Type_Definition =>
A_Formal_Signed_Integer_Type_Definition,
N_Formal_Subprogram_Declaration => Non_Trivial_Mapping,
N_Generic_Association => A_Generic_Association,
N_Index_Or_Discriminant_Constraint => Non_Trivial_Mapping,
N_Label => No_Mapping,
N_Modular_Type_Definition => A_Modular_Type_Definition,
N_Number_Declaration => Non_Trivial_Mapping,
N_Ordinary_Fixed_Point_Definition => An_Ordinary_Fixed_Point_Definition,
N_Others_Choice => An_Others_Choice,
N_Package_Specification => No_Mapping,
N_Parameter_Association => A_Parameter_Association,
N_Parameter_Specification => A_Parameter_Specification,
N_Protected_Body => A_Protected_Body_Declaration,
N_Protected_Definition => A_Protected_Definition,
N_Range_Constraint => Non_Trivial_Mapping,
N_Real_Range_Specification => A_Simple_Expression_Range,
N_Record_Definition => Non_Trivial_Mapping,
N_Selective_Accept => A_Selective_Accept_Statement,
N_Signed_Integer_Type_Definition => A_Signed_Integer_Type_Definition,
N_Single_Protected_Declaration => A_Single_Protected_Declaration,
N_Subunit => No_Mapping,
N_Task_Definition => A_Task_Definition,
N_Terminate_Alternative => Non_Trivial_Mapping,
N_Timed_Entry_Call => A_Timed_Entry_Call_Statement,
N_Triggering_Alternative => A_Select_Path,
N_Use_Type_Clause => A_Use_Type_Clause,
N_Variant => A_Variant,
N_Variant_Part => A_Variant_Part,
N_With_Clause => A_With_Clause,
N_Unused_At_End => No_Mapping,
others => Not_Implemented_Mapping);
------------------------------------------
-- Node-to-Element Second Look-Up Table --
------------------------------------------
type Mapping_Item is access function (Node : Node_Id)
return Internal_Element_Kinds;
Node_To_Element_Kind_Mapping_Second_Switch :
constant array (Node_Kind) of Mapping_Item := (
N_Pragma => N_Pragma_Mapping'Access,
N_Defining_Identifier => N_Defining_Identifier_Mapping'Access,
N_Defining_Operator_Symbol => N_Defining_Operator_Symbol_Mapping'Access,
N_Expanded_Name => N_Expanded_Name_Mapping'Access,
N_Identifier => N_Identifier_Mapping'Access,
N_Operator_Symbol => N_Operator_Symbol_Mapping'Access,
N_In => N_In_Mapping'Access,
N_Not_In => N_Not_In_Mapping'Access,
N_Attribute_Reference => N_Attribute_Reference_Mapping'Access,
N_Function_Call => N_Function_Call_Mapping'Access,
N_Range => N_Range_Mapping'Access,
N_Allocator => N_Allocator_Mapping'Access,
N_Aggregate => N_Aggregate_Mapping'Access,
N_Subtype_Indication => N_Subtype_Indication_Mapping'Access,
-- --|A2005 start
-- N_Incomplete_Type_Declaration => An_Incomplete_Type_Declaration,
N_Incomplete_Type_Declaration =>
N_Incomplete_Type_Declaration_Mapping'Access,
-- --|A2005 end
N_Object_Declaration => N_Object_Declaration_Mapping'Access,
N_Access_Function_Definition =>
N_Access_Function_Definition_Mapping'Access,
N_Access_Procedure_Definition =>
N_Access_Procedure_Definition_Mapping'Access,
N_Subprogram_Body_Stub => N_Subprogram_Body_Stub_Mapping'Access,
N_Subprogram_Body => N_Subprogram_Body_Mapping'Access,
N_Subprogram_Declaration => N_Subprogram_Declaration_Mapping'Access,
N_Generic_Subprogram_Declaration =>
N_Generic_Subprogram_Declaration_Mapping'Access,
N_Constrained_Array_Definition =>
N_Constrained_Array_Definition_Mapping'Access,
N_Unconstrained_Array_Definition =>
N_Unconstrained_Array_Definition_Mapping'Access,
N_Subprogram_Renaming_Declaration =>
N_Subprogram_Renaming_Declaration_Mapping'Access,
N_Loop_Statement => N_Loop_Statement_Mapping'Access,
N_Requeue_Statement => N_Requeue_Statement_Mapping'Access,
N_Abstract_Subprogram_Declaration =>
N_Abstract_Subprogram_Declaration_Mapping'Access,
N_Accept_Alternative => N_Accept_Alternative_Mapping'Access,
-- --|A2005 start
N_Access_Definition => N_Access_Definition_Mapping'Access,
-- --|A2005 end
N_Access_To_Object_Definition =>
N_Access_To_Object_Definition_Mapping'Access,
N_Component_Association => N_Component_Association_Mapping'Access,
N_Derived_Type_Definition => N_Derived_Type_Definition_Mapping'Access,
N_Delay_Alternative => N_Delay_Alternative_Mapping'Access,
N_Formal_Package_Declaration =>
N_Formal_Package_Declaration_Mapping'Access,
N_Formal_Private_Type_Definition =>
N_Formal_Private_Type_Definition_Mapping'Access,
N_Formal_Subprogram_Declaration =>
N_Formal_Subprogram_Declaration_Mapping'Access,
N_Index_Or_Discriminant_Constraint =>
N_Index_Or_Discriminant_Constraint_Mapping'Access,
N_Number_Declaration => N_Number_Declaration_Mapping'Access,
N_Range_Constraint => N_Range_Constraint_Mapping'Access,
N_Record_Definition => N_Record_Definition_Mapping'Access,
N_Terminate_Alternative => N_Terminate_Alternative_Mapping'Access,
N_Procedure_Call_Statement => N_Procedure_Call_Statement_Mapping'Access,
others => Not_Implemented_Mapping'Access);
----------------------------------------------------
-- Node List to Element List Filter Look-Up Table --
----------------------------------------------------
-- The following look-up table defines the first, very rough filter for
-- selecting node list elements to be used as a basis for ASIS Element
-- list components: it defines which Node_Kind values could never be used
-- for creating Elements in Element List (for them False is set in the
-- table)
May_Be_Included_Switch : constant array (Node_Kind) of Boolean := (
N_Unused_At_Start => False,
N_Freeze_Entity => False,
N_Implicit_Label_Declaration => False,
N_Label => False,
others => True);
--------------------------------
-- Asis_Internal_Element_Kind --
--------------------------------
function Asis_Internal_Element_Kind
(Node : Node_Id)
return Internal_Element_Kinds
is
Mapping_Case : Internal_Element_Kinds;
Source_Node_Kind : Node_Kind;
begin -- two-level switching only!
Source_Node_Kind := Nkind (Node);
Mapping_Case := Node_To_Element_Kind_Mapping_First_Switch
(Source_Node_Kind);
case Mapping_Case is
when Non_Trivial_Mapping =>
return Node_To_Element_Kind_Mapping_Second_Switch
(Source_Node_Kind) (Node);
when Not_Implemented_Mapping =>
Not_Implemented_Mapping (Source_Node_Kind);
when No_Mapping =>
No_Mapping (Node);
when others => -- all trivial cases!
return Mapping_Case;
end case;
end Asis_Internal_Element_Kind;
--------------------------------------
-- Defining_Id_List_From_Normalized --
--------------------------------------
function Defining_Id_List_From_Normalized
(N : Node_Id;
From_Declaration : Asis.Element)
return Asis.Defining_Name_List
is
Res_Max_Len : constant Natural :=
Natural (List_Length (List_Containing (N)));
-- to avoid two loops through the list of declarations/specifications,
-- we use the rough estimation of the length of the result
-- Defining_Name_List - it cannot contain more elements that the
-- number of nodes in the tree node list containing (normalized)
-- declarations
Res_Act_Len : Natural := 1;
-- the actual number of defining identifiers in the normalized
-- declaration
Result_List : Defining_Name_List (1 .. Res_Max_Len);
Decl_Node : Node_Id := N;
Decl_Nkind : constant Node_Kind := Nkind (Decl_Node);
Def_Id_Node : Node_Id;
begin
Def_Id_Node := Defining_Identifier (Decl_Node);
Result_List (Res_Act_Len) :=
Node_To_Element_New (Node => Def_Id_Node,
Starting_Element => From_Declaration,
Internal_Kind => A_Defining_Identifier);
while More_Ids (Decl_Node) loop
Decl_Node := Next (Decl_Node);
while Nkind (Decl_Node) /= Decl_Nkind loop
-- some implicit subtype declarations may be inserted by
-- the compiler in between the normalized declarations, so:
Decl_Node := Next (Decl_Node);
end loop;
Def_Id_Node := Defining_Identifier (Decl_Node);
Res_Act_Len := Res_Act_Len + 1;
Result_List (Res_Act_Len) :=
Node_To_Element_New (Node => Def_Id_Node,
Starting_Element => From_Declaration,
Internal_Kind => A_Defining_Identifier);
end loop;
return Result_List (1 .. Res_Act_Len);
end Defining_Id_List_From_Normalized;
------------------------------------------
-- Discrete_Choice_Node_To_Element_List --
------------------------------------------
function Discrete_Choice_Node_To_Element_List
(Choice_List : List_Id;
Starting_Element : Asis.Element)
return Asis.Element_List
is
Result_List : Asis.Element_List
(1 .. ASIS_Integer (List_Length (Choice_List)));
-- List_Length (Choice_List) cannot be 0 for the DISCRETE_CHOICE_LIST!
Current_Node : Node_Id;
Current_Original_Node : Node_Id;
Element_Already_Composed : Boolean;
Result_Kind : Internal_Element_Kinds;
begin
Current_Node := First (Choice_List);
-- first list element to process cannot be Empty!
Current_Original_Node := Original_Node (Current_Node);
for I in 1 .. ASIS_Integer (List_Length (Choice_List)) loop
Element_Already_Composed := False;
if Paren_Count (Current_Original_Node) > 0 then
-- Corner but legal case of discrete choice like
--
-- when (1) =>
--
-- or
--
-- When (A.B.C) =>
Result_Kind := Not_An_Element;
else
case Nkind (Current_Original_Node) is
-- DISCRETE_CHOICE_LIST ::= DISCRETE_CHOICE {| DISCRETE_CHOICE}
-- DISCRETE_CHOICE ::= EXPRESSION | DISCRETE_RANGE | others
when N_Others_Choice => -- DISCRETE_CHOICE ::= ... | others
Result_Kind := An_Others_Choice;
-- DISCRETE_CHOICE ::= ... | DISCRETE_RANGE | ...
-- DISCRETE_RANGE ::= discrete_SUBTYPE_INDICATION | RANGE
when N_Subtype_Indication =>
-- DISCRETE_RANGE ::= discrete_SUBTYPE_INDICATION | ...
--
-- The problem is that GNAT reduces the subtype_indication
-- having NO constraint directly to subtype_mark
-- (-> N_Identifier, N_Expanded_Name). May be, it is a
-- pathological case, but it can also be represented by
-- ...'Base construction (-> N_Attribute_Reference)
Result_Kind := A_Discrete_Subtype_Indication;
when N_Identifier =>
if Ekind (Entity (Current_Original_Node)) in Discrete_Kind then
-- discrete subtype mark!!
Result_Kind := A_Discrete_Subtype_Indication;
elsif Ekind (Entity (Current_Original_Node)) =
E_Enumeration_Literal
then
Result_Kind := An_Enumeration_Literal;
else
Result_Kind := An_Identifier;
end if;
when N_Expanded_Name =>
if Ekind (Entity (Current_Original_Node)) in Discrete_Kind then
-- discrete subtype mark!!
Result_Kind := A_Discrete_Subtype_Indication;
else
-- expression
Result_Kind := A_Selected_Component;
end if;
-- DISCRETE_RANGE ::= ... | RANGE
-- RANGE ::=
-- RANGE_ATTRIBUTE_REFERENCE
-- | SIMPLE_EXPRESSION .. SIMPLE_EXPRESSION
when N_Range =>
-- RANGE ::= ...
-- | SIMPLE_EXPRESSION .. SIMPLE_EXPRESSION
Result_Kind := A_Discrete_Simple_Expression_Range;
when N_Attribute_Reference =>
-- RANGE ::= RANGE_ATTRIBUTE_REFERENCE | ...
-- Sinfo.ads:
-- A range attribute designator is represented
-- in the tree using the normal N_Attribute_Reference
-- node.
-- But if the tree corresponds to the compilable Compilation
-- Unit, the RANGE_ATTRIBUTE_REFERENCE is the only construct
-- which could be in this position --W_R_O_N_G !!! T'Base!!!
if Attribute_Name (Current_Original_Node) = Name_Range then
Result_Kind := A_Discrete_Range_Attribute_Reference;
else
-- attribute denoting a type/subtype or yielding a value:
Result_List (I) := Node_To_Element_New (
Node => Current_Node,
Starting_Element => Starting_Element);
Element_Already_Composed := True;
end if;
-- DISCRETE_CHOICE ::= EXPRESSION | ...
when others =>
-- In the tree corresponding to the compilable Compilation
-- Unit the only possibility in the others choice is the
-- EXPRESSION as the DISCRETE_CHOICE.
Result_List (I) := Node_To_Element_New (
Node => Current_Node,
Starting_Element => Starting_Element);
Element_Already_Composed := True;
end case;
end if;
if not Element_Already_Composed then
Result_List (I) := Node_To_Element_New (
Node => Current_Node,
Internal_Kind => Result_Kind,
Starting_Element => Starting_Element);
end if;
Current_Node := Next (Current_Node);
Current_Original_Node := Original_Node (Current_Node);
end loop;
return Result_List;
end Discrete_Choice_Node_To_Element_List;
----------------------
-- Is_Config_Pragma --
----------------------
function Is_Config_Pragma (N : Node_Id) return Boolean is
begin
return True
and then Nkind (N) = N_Pragma
and then Pragma_Name (N) in
First_Pragma_Name .. Last_Configuration_Pragma_Name;
end Is_Config_Pragma;
-------------------------------
-- Is_GNAT_Attribute_Routine --
-------------------------------
function Is_GNAT_Attribute_Routine (N : Node_Id) return Boolean is
Attribute_Chars : Name_Id;
Result : Boolean := False;
begin
Attribute_Chars := Attribute_Name (N);
if Attribute_Chars = Name_Asm_Input or else
Attribute_Chars = Name_Asm_Output or else
Attribute_Chars = Name_Enum_Rep or else
Attribute_Chars = Name_Fixed_Value or else
Attribute_Chars = Name_Integer_Value
then
Result := True;
end if;
return Result;
end Is_GNAT_Attribute_Routine;
-------------------------------------------
-- Is_Rewritten_Function_Prefix_Notation --
-------------------------------------------
function Is_Rewritten_Function_Prefix_Notation
(N : Node_Id)
return Boolean
is
Result : Boolean := False;
begin
if Nkind (N) = N_Function_Call
and then
Is_Rewrite_Substitution (N)
and then
Nkind (Original_Node (N)) not in N_Op
and then
Present (Parameter_Associations (N))
and then
not Is_Empty_List (Parameter_Associations (N))
and then
Sloc (First (Parameter_Associations (N))) < Sloc (Sinfo.Name (N))
then
Result := True;
end if;
return Result;
end Is_Rewritten_Function_Prefix_Notation;
------------------------------------------------------
-- Is_Rewritten_Impl_Deref_Function_Prefix_Notation --
------------------------------------------------------
function Is_Rewritten_Impl_Deref_Function_Prefix_Notation
(N : Node_Id)
return Boolean
is
Result : Boolean := False;
begin
if Nkind (N) = N_Function_Call
and then
Present (Parameter_Associations (N))
and then
not Is_Empty_List (Parameter_Associations (N))
and then
Sloc (First (Parameter_Associations (N))) < Sloc (Sinfo.Name (N))
then
Result := True;
end if;
return Result;
end Is_Rewritten_Impl_Deref_Function_Prefix_Notation;
-----------------------------------
-- Get_Next_Configuration_Pragma --
-----------------------------------
function Get_Next_Configuration_Pragma (N : Node_Id) return Node_Id is
Result : Node_Id := N;
begin
while not (Is_Config_Pragma (Result) or else
No (Result))
loop
Result := Next (Result);
end loop;
return Result;
end Get_Next_Configuration_Pragma;
----------------------------
-- Is_Not_Duplicated_Decl --
----------------------------
function Is_Not_Duplicated_Decl (Node : Node_Id) return Boolean is
Prev_List_Elem : Node_Id;
begin
-- the idea is to check if the previous list member (and we are
-- sure that Node itself is a list member) to be included
-- in the list is the rewritten tree structure representing
-- just the same Ada construct
--
-- If we change Prev_Non_Pragma to Next_Non_Pragma, then this
-- function will return False for the first, but not for the second
-- of the two duplicated declarations
if not (Nkind (Node) = N_Full_Type_Declaration or else
Nkind (Node) = N_Private_Type_Declaration or else
Nkind (Node) = N_Subtype_Declaration)
then
return True;
-- as far as we know for now, the problem of duplicated
-- declaration exists only for type declarations
end if;
Prev_List_Elem := Prev_Non_Pragma (Node);
while Present (Prev_List_Elem) loop
if Ordinary_Inclusion_Condition (Prev_List_Elem)
and then
(Nkind (Prev_List_Elem) = N_Full_Type_Declaration or else
Nkind (Prev_List_Elem) = N_Subtype_Declaration)
and then
Chars (Defining_Identifier (Prev_List_Elem)) =
Chars (Defining_Identifier (Node))
then
return False;
end if;
Prev_List_Elem := Prev_Non_Pragma (Prev_List_Elem);
end loop;
return True;
end Is_Not_Duplicated_Decl;
---------------------------------
-- Is_Protected_Procedure_Call --
---------------------------------
function Is_Protected_Procedure_Call (N : Node_Id) return Boolean is
Result : Boolean := False;
Tmp_Node : Node_Id;
begin
Tmp_Node := Sinfo.Name (N);
if Nkind (Tmp_Node) = N_Indexed_Component then
-- Call to an entry from an entry family,
Tmp_Node := Prefix (Tmp_Node);
end if;
if Nkind (Tmp_Node) = N_Selected_Component then
Tmp_Node := Selector_Name (Tmp_Node);
end if;
Tmp_Node := Entity (Tmp_Node);
Result := Ekind (Tmp_Node) = E_Procedure;
return Result;
end Is_Protected_Procedure_Call;
------------------
-- Is_Statement --
------------------
function Is_Statement (N : Node_Id) return Boolean is
Arg_Kind : constant Node_Kind := Nkind (N);
begin
return Arg_Kind in N_Statement_Other_Than_Procedure_Call or else
Arg_Kind = N_Procedure_Call_Statement;
end Is_Statement;
------------------------------------------
-- Is_Stub_To_Body_Instanse_Replacement --
------------------------------------------
function Is_Stub_To_Body_Instanse_Replacement
(N : Node_Id)
return Boolean
is
Arg_Kind : constant Node_Kind := Nkind (N);
Result : Boolean := False;
begin
if Arg_Kind in N_Proper_Body and then
Was_Originally_Stub (N)
then
case Arg_Kind is
when N_Subprogram_Body =>
Result := Is_From_Instance (Sinfo.Specification (N));
when N_Package_Body =>
Result := Is_From_Instance (Sinfo.Defining_Unit_Name (N));
when others =>
Result := Is_From_Instance (Sinfo.Defining_Identifier (N));
end case;
end if;
return Result;
end Is_Stub_To_Body_Instanse_Replacement;
---------------------
-- May_Be_Included --
---------------------
function May_Be_Included (Node : Node_Id) return Boolean is
begin
return Ordinary_Inclusion_Condition (Node) and then
Is_Not_Duplicated_Decl (Node);
end May_Be_Included;
-----------------------------------------------
-- N_Abstract_Subprogram_Declaration_Mapping --
-----------------------------------------------
function N_Abstract_Subprogram_Declaration_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
begin
-- Two Internal_Element_Kinds values may be possible:
-- A_Procedure_Declaration
-- A_Function_Declaration
if Nkind (Specification (Node)) = N_Function_Specification then
return A_Function_Declaration;
else
return A_Procedure_Declaration;
end if;
end N_Abstract_Subprogram_Declaration_Mapping;
----------------------------------
-- N_Accept_Alternative_Mapping --
----------------------------------
function N_Accept_Alternative_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
begin
-- Two Internal_Element_Kinds values may be possible:
-- A_Select_Path
-- An_Or_Path
if No (Prev (Node)) then
return A_Select_Path;
else
return An_Or_Path;
end if;
end N_Accept_Alternative_Mapping;
------------------------------------------
-- N_Access_Function_Definition_Mapping --
------------------------------------------
function N_Access_Function_Definition_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
begin
-- Four Internal_Element_Kinds values may be possible:
--
-- An_Access_To_Function
-- An_Access_To_Protected_Function
--
-- A_Formal_Access_To_Function
-- A_Formal_Access_To_Protected_Function
if Nkind (Parent (Node)) = N_Formal_Type_Declaration then
if Protected_Present (Node) then
return A_Formal_Access_To_Protected_Function;
else
return A_Formal_Access_To_Function;
end if;
else
if Protected_Present (Node) then
return An_Access_To_Protected_Function;
else
return An_Access_To_Function;
end if;
end if;
end N_Access_Function_Definition_Mapping;
-------------------------------------------
-- N_Access_Procedure_Definition_Mapping --
-------------------------------------------
function N_Access_Procedure_Definition_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
begin
-- Four Internal_Element_Kinds values may be possible:
--
-- An_Access_To_Procedure
-- An_Access_To_Protected_Procedure
--
-- A_Formal_Access_To_Procedure
-- A_Formal_Access_To_Protected_Procedure
if Nkind (Parent (Node)) = N_Formal_Type_Declaration then
if Protected_Present (Node) then
return A_Formal_Access_To_Protected_Procedure;
else
return A_Formal_Access_To_Procedure;
end if;
else
if Protected_Present (Node) then
return An_Access_To_Protected_Procedure;
else
return An_Access_To_Procedure;
end if;
end if;
end N_Access_Procedure_Definition_Mapping;
-- --|A2005 start
---------------------------------
-- N_Access_Definition_Mapping --
---------------------------------
function N_Access_Definition_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
Result : Internal_Element_Kinds := Not_An_Element;
Tmp : constant Node_Id :=
Sinfo.Access_To_Subprogram_Definition (Node);
begin
case Nkind (Tmp) is
when N_Empty =>
if Constant_Present (Node) then
Result := An_Anonymous_Access_To_Constant;
else
Result := An_Anonymous_Access_To_Variable;
end if;
when N_Access_Function_Definition =>
if Protected_Present (Tmp) then
Result := An_Anonymous_Access_To_Protected_Function;
else
Result := An_Anonymous_Access_To_Function;
end if;
when N_Access_Procedure_Definition =>
if Protected_Present (Tmp) then
Result := An_Anonymous_Access_To_Protected_Procedure;
else
Result := An_Anonymous_Access_To_Procedure;
end if;
when others =>
pragma Assert (False);
null;
end case;
return Result;
end N_Access_Definition_Mapping;
-- --|A2005 end
-------------------------------------------
-- N_Access_To_Object_Definition_Mapping --
-------------------------------------------
function N_Access_To_Object_Definition_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
begin
-- Six Internal_Element_Kinds values may be possible:
--
-- A_Pool_Specific_Access_To_Variable
-- An_Access_To_Variable
-- An_Access_To_Constant
--
-- A_Formal_Pool_Specific_Access_To_Variable
-- A_Formal_Access_To_Variable
-- A_Formal_Access_To_Constant
if Nkind (Parent (Node)) = N_Formal_Type_Declaration then
if All_Present (Node) then
return A_Formal_Access_To_Variable;
elsif Constant_Present (Node) then
return A_Formal_Access_To_Constant;
else
return A_Formal_Pool_Specific_Access_To_Variable;
end if;
else
if All_Present (Node) then
return An_Access_To_Variable;
elsif Constant_Present (Node) then
return An_Access_To_Constant;
else
return A_Pool_Specific_Access_To_Variable;
end if;
end if;
end N_Access_To_Object_Definition_Mapping;
-------------------------
-- N_Aggregate_Mapping --
-------------------------
function N_Aggregate_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
Aggregate_Type : Node_Id := Etype (Node);
begin
-- Three Internal_Element_Kinds values may be possible:
-- A_Record_Aggregate
-- A_Positional_Array_Aggregate
-- A_Named_Array_Aggregate
-- the following fragment is a result of the current setting
-- of Etype field in the tree, see open problems #77
-- for multi-dimensional array aggregates, Etype field for
-- inner aggregates is set to Empty!!
if Present (Aggregate_Type) and then
Ekind (Aggregate_Type) in Private_Kind and then
not (Ekind (Aggregate_Type) in Array_Kind or else
Ekind (Aggregate_Type) in Record_Kind)
then
-- we need a full view of the type!
Aggregate_Type := Full_View (Aggregate_Type);
end if;
-- Special case:
if No (Aggregate_Type)
and then
Nkind (Parent (Node)) = N_Pragma_Argument_Association
then
return A_Record_Aggregate;
end if;
if Present (Aggregate_Type) and then
Ekind (Aggregate_Type) in Record_Kind
then
return A_Record_Aggregate;
else
if Present (Expressions (Node)) then
return A_Positional_Array_Aggregate;
else
return A_Named_Array_Aggregate;
end if;
end if;
end N_Aggregate_Mapping;
-------------------------
-- N_Allocator_Mapping --
-------------------------
function N_Allocator_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
begin
-- Two Internal_Element_Kinds values may be possible:
-- An_Allocation_From_Subtype
-- An_Allocation_From_Qualified_Expression
if Nkind (Sinfo.Expression (Node)) = N_Qualified_Expression then
return An_Allocation_From_Qualified_Expression;
else
return An_Allocation_From_Subtype;
end if;
end N_Allocator_Mapping;
-----------------------------------
-- N_Attribute_Reference_Mapping --
-----------------------------------
function N_Attribute_Reference_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
Context_Kind : constant Node_Kind := Nkind (Parent_Node);
Attribute_Chars : constant Name_Id := Attribute_Name (Node);
begin
-- The following Internal_Element_Kinds values may be possible:
--
-- For range attribute reference:
--
-- A_Discrete_Range_Attribute_Reference_As_Subtype_Definition
-- A_Discrete_Range_Attribute_Reference
-- A_Range_Attribute_Reference
--
-- For attribute reference corresponding to the attributes which are
-- functions
--
-- Adjacent
-- Ceiling
-- Compose
-- Copy_Sign
-- Exponent
-- Floor
-- Fraction
-- Image
-- Input
-- Leading_Part
-- Machine
-- Max
-- Min
-- Model
-- Pos
-- Pred
-- Remainder
-- Round
-- Rounding
-- Scaling
-- Succ
-- Truncation
-- Unbiased_Rounding
-- Val
-- Value
-- Wide_Image
-- Wide_Value
-- |A2005 start
--
-- Ada 2005 attributes that are functions:
--
-- Machine_Rounding
-- Mod
-- Wide_Wide_Image
-- |A2005 end
--
-- plus GNAT-specific attributes:
-- Enum_Rep
-- Fixed_Value
-- Integer_Value
-- Result
--
-- the Element of A_Function_Call Internal_Element_Kinds value should be
-- created, and the determination of the prefix kind should further be
-- done by hand (function Asis_Expressions.Prefix)
--
-- For attribute reference corresponding to the attributes which are
-- procedures
--
-- Output
-- Read
-- Write
--
-- the Element of A_Procedure_Call_Statement kind should be created
--
-- For attributes returning types:
-- Base
-- Class
-- the Element of A_Type_Conversion should be created if the node is
-- rewritten into N_Type_Conversion node. But this is done by the
-- Node_To_Element function (together with setting the Special_Case
-- Element field, which is then taken into account by functions
-- decomposing A_Type_Conversion Element.
if Attribute_Chars = Name_Range then
-- processing the range attribute reference
-- range attribute reference is the part of the RANGE
-- Syntax Cross Reference extraction for RANGE:
--
-- range
-- discrete_range 3.6.1
-- discrete_choice 3.8.1
-- discrete_choice_list 3.8.1
-- array_component_association 4.3.3
-- named_array_aggregate 4.3.3
-- case_statement_alternative 5.4
-- variant 3.8.1
-- index_constraint 3.6.1
-- slice 4.1.2
-- discrete_subtype_definition 3.6
-- constrained_array_definition 3.6
-- entry_declaration 9.5.2
-- entry_index_specification 9.5.2
-- loop_parameter_specification 5.5
-- range_constraint 3.5
-- delta_constraint J.3
-- digits_constraint 3.5.9
-- scalar_constraint 3.2.2
-- relation 4.4
case Context_Kind is -- should be reorganized when complete
when
-- discrete_range
N_Component_Association
| N_Case_Statement_Alternative
| N_Variant
| N_Index_Or_Discriminant_Constraint
| N_Slice
=>
return A_Discrete_Range_Attribute_Reference;
when -- discrete_subtype_definition
N_Constrained_Array_Definition
| N_Entry_Index_Specification
| N_Loop_Parameter_Specification
| N_Entry_Declaration
=>
return A_Discrete_Range_Attribute_Reference_As_Subtype_Definition;
when N_Range_Constraint => -- range_constraint ???
return A_Range_Attribute_Reference;
when N_In -- relation
| N_Not_In
=>
return A_Range_Attribute_Reference;
when others => -- impossible cases:
raise Internal_Implementation_Error;
end case;
elsif -- language-defined attributes which are functions:
Attribute_Chars = Name_Adjacent or else
Attribute_Chars = Name_Ceiling or else
Attribute_Chars = Name_Compose or else
Attribute_Chars = Name_Copy_Sign or else
Attribute_Chars = Name_Exponent or else
Attribute_Chars = Name_Floor or else
Attribute_Chars = Name_Fraction or else
Attribute_Chars = Name_Image or else
Attribute_Chars = Name_Input or else
Attribute_Chars = Name_Leading_Part or else
Attribute_Chars = Name_Machine or else
Attribute_Chars = Name_Max or else
Attribute_Chars = Name_Min or else
Attribute_Chars = Name_Model or else
Attribute_Chars = Name_Pos or else
Attribute_Chars = Name_Pred or else
Attribute_Chars = Name_Remainder or else
Attribute_Chars = Name_Round or else
Attribute_Chars = Name_Rounding or else
Attribute_Chars = Name_Scaling or else
Attribute_Chars = Name_Succ or else
Attribute_Chars = Name_Truncation or else
Attribute_Chars = Name_Unbiased_Rounding or else
Attribute_Chars = Name_Val or else
Attribute_Chars = Name_Value or else
Attribute_Chars = Name_Wide_Image or else
Attribute_Chars = Name_Wide_Value or else
-- |A2005 start
-- Ada 2005 attributes that are functions:
Attribute_Chars = Name_Machine_Rounding or else
Attribute_Chars = Name_Mod or else
Attribute_Chars = Name_Wide_Wide_Image or else
Attribute_Chars = Name_Wide_Wide_Value or else
-- |A2005 end
-- Implementation Dependent Attributes-Functions:
Attribute_Chars = Name_Asm_Input or else
Attribute_Chars = Name_Asm_Output or else
Attribute_Chars = Name_Enum_Rep or else
Attribute_Chars = Name_Fixed_Value or else
Attribute_Chars = Name_Integer_Value
then
return A_Function_Call;
elsif -- language-defined attributes which are procedures:
Attribute_Chars = Name_Output or else
Attribute_Chars = Name_Read or else
Attribute_Chars = Name_Write
then
return A_Procedure_Call_Statement;
-- language-defined attributes:
elsif Attribute_Chars = Name_Access then
return An_Access_Attribute;
elsif Attribute_Chars = Name_Address then
return An_Address_Attribute;
elsif Attribute_Chars = Name_Aft then
return An_Aft_Attribute;
elsif Attribute_Chars = Name_Alignment then
return An_Alignment_Attribute;
elsif Attribute_Chars = Name_Base then
return A_Base_Attribute;
elsif Attribute_Chars = Name_Bit_Order then
return A_Bit_Order_Attribute;
elsif Attribute_Chars = Name_Body_Version then
return A_Body_Version_Attribute;
elsif Attribute_Chars = Name_Callable then
return A_Callable_Attribute;
elsif Attribute_Chars = Name_Caller then
return A_Caller_Attribute;
elsif Attribute_Chars = Name_Class then
return A_Class_Attribute;
elsif Attribute_Chars = Name_Component_Size then
return A_Component_Size_Attribute;
elsif Attribute_Chars = Name_Constrained then
return A_Constrained_Attribute;
elsif Attribute_Chars = Name_Count then
return A_Count_Attribute;
elsif Attribute_Chars = Name_Definite then
return A_Definite_Attribute;
elsif Attribute_Chars = Name_Delta then
return A_Delta_Attribute;
elsif Attribute_Chars = Name_Denorm then
return A_Denorm_Attribute;
elsif Attribute_Chars = Name_Digits then
return A_Digits_Attribute;
elsif Attribute_Chars = Name_External_Tag then
return An_External_Tag_Attribute;
elsif Attribute_Chars = Name_First then
return A_First_Attribute;
elsif Attribute_Chars = Name_First_Bit then
return A_First_Bit_Attribute;
elsif Attribute_Chars = Name_Fore then
return A_Fore_Attribute;
elsif Attribute_Chars = Name_Identity then
return An_Identity_Attribute;
elsif Attribute_Chars = Name_Last then
return A_Last_Attribute;
elsif Attribute_Chars = Name_Last_Bit then
return A_Last_Bit_Attribute;
elsif Attribute_Chars = Name_Length then
return A_Length_Attribute;
elsif Attribute_Chars = Name_Machine_Emax then
return A_Machine_Emax_Attribute;
elsif Attribute_Chars = Name_Machine_Emin then
return A_Machine_Emin_Attribute;
elsif Attribute_Chars = Name_Machine_Mantissa then
return A_Machine_Mantissa_Attribute;
elsif Attribute_Chars = Name_Machine_Overflows then
return A_Machine_Overflows_Attribute;
elsif Attribute_Chars = Name_Machine_Radix then
return A_Machine_Radix_Attribute;
elsif Attribute_Chars = Name_Machine_Rounds then
return A_Machine_Rounds_Attribute;
elsif Attribute_Chars = Name_Max_Size_In_Storage_Elements then
return A_Max_Size_In_Storage_Elements_Attribute;
elsif Attribute_Chars = Name_Model_Emin then
return A_Model_Emin_Attribute;
elsif Attribute_Chars = Name_Model_Epsilon then
return A_Model_Epsilon_Attribute;
elsif Attribute_Chars = Name_Model_Mantissa then
return A_Model_Mantissa_Attribute;
elsif Attribute_Chars = Name_Model_Small then
return A_Model_Small_Attribute;
elsif Attribute_Chars = Name_Modulus then
return A_Modulus_Attribute;
elsif Attribute_Chars = Name_Partition_ID then
return A_Partition_ID_Attribute;
elsif Attribute_Chars = Name_Position then
return A_Position_Attribute;
elsif Attribute_Chars = Name_Range then -- this alternative
return A_Range_Attribute; -- never works!
elsif Attribute_Chars = Name_Safe_First then
return A_Safe_First_Attribute;
elsif Attribute_Chars = Name_Safe_Last then
return A_Safe_Last_Attribute;
elsif Attribute_Chars = Name_Scale then
return A_Scale_Attribute;
elsif Attribute_Chars = Name_Signed_Zeros then
return A_Signed_Zeros_Attribute;
elsif Attribute_Chars = Name_Size then
return A_Size_Attribute;
elsif Attribute_Chars = Name_Small then
return A_Small_Attribute;
elsif Attribute_Chars = Name_Storage_Pool then
return A_Storage_Pool_Attribute;
elsif Attribute_Chars = Name_Storage_Size then
return A_Storage_Size_Attribute;
elsif Attribute_Chars = Name_Tag then
return A_Tag_Attribute;
elsif Attribute_Chars = Name_Terminated then
return A_Terminated_Attribute;
elsif Attribute_Chars = Name_Unchecked_Access then
return An_Unchecked_Access_Attribute;
elsif Attribute_Chars = Name_Valid then
return A_Valid_Attribute;
elsif Attribute_Chars = Name_Version then
return A_Version_Attribute;
elsif Attribute_Chars = Name_Wide_Width then
return A_Wide_Width_Attribute;
elsif Attribute_Chars = Name_Width then
return A_Width_Attribute;
-- New Ada 2005 attributes.
elsif Attribute_Chars = Name_Priority then
return A_Priority_Attribute;
elsif Attribute_Chars = Name_Stream_Size then
return A_Stream_Size_Attribute;
elsif Attribute_Chars = Name_Wide_Wide_Width then
return A_Wide_Wide_Width_Attribute;
-- Implementation Dependent Attributes:
elsif Attribute_Chars = Name_Abort_Signal or else
Attribute_Chars = Name_Address_Size or else
Attribute_Chars = Name_Asm_Input or else
Attribute_Chars = Name_Asm_Output or else
Attribute_Chars = Name_AST_Entry or else -- VMS
Attribute_Chars = Name_Bit or else
Attribute_Chars = Name_Bit_Position or else
Attribute_Chars = Name_Code_Address or else
Attribute_Chars = Name_Default_Bit_Order or else
Attribute_Chars = Name_Elaborated or else
Attribute_Chars = Name_Emax or else -- Ada 83
Attribute_Chars = Name_Enum_Rep or else
Attribute_Chars = Name_Epsilon or else -- Ada 83
Attribute_Chars = Name_Fixed_Value or else
Attribute_Chars = Name_Has_Discriminants or else
Attribute_Chars = Name_Img or else
Attribute_Chars = Name_Integer_Value or else
Attribute_Chars = Name_Large or else -- Ada 83
Attribute_Chars = Name_Machine_Size or else
Attribute_Chars = Name_Mantissa or else -- Ada 83
Attribute_Chars = Name_Maximum_Alignment or else
Attribute_Chars = Name_Mechanism_Code or else
Attribute_Chars = Name_Null_Parameter or else
Attribute_Chars = Name_Object_Size or else
Attribute_Chars = Name_Old or else
Attribute_Chars = Name_Passed_By_Reference or else
Attribute_Chars = Name_Range_Length or else
Attribute_Chars = Name_Result or else
Attribute_Chars = Name_Safe_Emax or else -- Ada 83
Attribute_Chars = Name_Safe_Large or else -- Ada 83
Attribute_Chars = Name_Safe_Small or else -- Ada 83
Attribute_Chars = Name_Storage_Unit or else
Attribute_Chars = Name_To_Address or else
Attribute_Chars = Name_Type_Class or else
Attribute_Chars = Name_UET_Address or else
Attribute_Chars = Name_Universal_Literal_String or else
Attribute_Chars = Name_Unrestricted_Access or else
Attribute_Chars = Name_VADS_Size or else
Attribute_Chars = Name_Value_Size or else
Attribute_Chars = Name_Wchar_T_Size or else
Attribute_Chars = Name_Word_Size or else
Attribute_Chars = Name_Elab_Body or else
Attribute_Chars = Name_Elab_Spec
then
return An_Implementation_Defined_Attribute;
else
return An_Unknown_Attribute;
end if;
end N_Attribute_Reference_Mapping;
-------------------------------------
-- N_Component_Association_Mapping --
-------------------------------------
function N_Component_Association_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
begin
-- Special cases first:
if Nkind (Parent (Parent (Node))) =
N_Enumeration_Representation_Clause
then
return An_Array_Component_Association;
end if;
if Nkind (Parent (Parent (Node))) =
N_Pragma_Argument_Association
then
return A_Record_Component_Association;
end if;
-- Regular case:
if Nkind (Parent (Parent (Node))) = N_Enumeration_Representation_Clause
or else
Ekind (Etype (Parent (Node))) in Array_Kind
then
return An_Array_Component_Association;
else
return A_Record_Component_Association;
end if;
end N_Component_Association_Mapping;
--------------------------------------------
-- N_Constrained_Array_Definition_Mapping --
--------------------------------------------
function N_Constrained_Array_Definition_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
begin
-- Two Internal_Element_Kinds values may be possible:
-- A_Constrained_Array_Definition
-- A_Formal_Constrained_Array_Definition
if Nkind (Parent (Node)) = N_Formal_Type_Declaration then
return A_Formal_Constrained_Array_Definition;
else
return A_Constrained_Array_Definition;
end if;
end N_Constrained_Array_Definition_Mapping;
-----------------------------------
-- N_Defining_Identifier_Mapping --
-----------------------------------
function N_Defining_Identifier_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
Template_Node : Node_Id := Empty;
begin
-- Several Internal_Element_Kinds values may be possible for automatic
-- Internal Kind Determination:
--
-- A_Defining_Identifier
-- A_Defining_Enumeration_Literal
-- Internal Defining Name kinds, this happens for the extended
-- code of the function instantiation in case if the instance
-- defines an operator symbol - in this case the defining name of
-- the extended function spec and body is represented by
-- N_Defining_Identifier node.
--
-- Some other Internal_Element_Kinds values could be set "by-hand",
-- for example:
--
-- An_Enumeration_Literal_Specification
if Sloc (Node) > Standard_Location and then
Get_Character (Sloc (Node)) = '"'
then
Template_Node := Parent (Parent (Node));
if Pass_Generic_Actual (Template_Node) then
-- This is the case of subprogram renaming that passes an actual
-- for a formal operator funstion
Template_Node := Corresponding_Formal_Spec (Template_Node);
else
-- This is the case of expanded generic subprogram having a
-- defining operator symbol, it comes as the defining name from
-- the corresponding instance, but is represented by
-- N_Defining_Identifier node in the expanded code. We just
-- go to the defining name from the instance and call
-- N_Defining_Operator_Symbol_Mapping for it
Template_Node := Parent (Template_Node);
if Nkind (Template_Node) = N_Package_Specification then
Template_Node := Parent (Template_Node);
end if;
Template_Node := Next (Template_Node);
if Nkind (Template_Node) = N_Package_Body then
-- skipping the body of wrapper package for extended subprogram
-- body
Template_Node := Next (Template_Node);
end if;
Template_Node := Defining_Unit_Name (Template_Node);
end if;
pragma Assert (Nkind (Template_Node) = N_Defining_Operator_Symbol);
return N_Defining_Operator_Symbol_Mapping (Template_Node);
else
if Nkind (Parent (Node)) = N_Enumeration_Type_Definition then
return A_Defining_Enumeration_Literal;
else
return A_Defining_Identifier;
end if;
end if;
end N_Defining_Identifier_Mapping;
----------------------------------------
-- N_Defining_Operator_Symbol_Mapping --
----------------------------------------
function N_Defining_Operator_Symbol_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
Operator_Chars : constant Name_Id := Chars (Node);
Parameter_Number : Nat range 1 .. 2;
-- see the GNAT components Namet.ads and Snames.ads
-- N_Operator_Symbol_Mapping uses just the same approach,
-- (except computing the Parameter_Number value)
-- so if there is any error in it, then both functions contain it
begin
-- The following Internal_Element_Kinds values may be possible:
--
-- A_Defining_And_Operator, -- and
-- A_Defining_Or_Operator, -- or
-- A_Defining_Xor_Operator, -- xor
-- A_Defining_Equal_Operator, -- =
-- A_Defining_Not_Equal_Operator, -- /=
-- A_Defining_Less_Than_Operator, -- <
-- A_Defining_Less_Than_Or_Equal_Operator, -- <=
-- A_Defining_Greater_Than_Operator, -- >
-- A_Defining_Greater_Than_Or_Equal_Operator, -- >=
-- A_Defining_Plus_Operator, -- +
-- A_Defining_Minus_Operator, -- -
-- A_Defining_Concatenate_Operator, -- &
-- A_Defining_Unary_Plus_Operator, -- +
-- A_Defining_Unary_Minus_Operator, -- -
-- A_Defining_Multiply_Operator, -- *
-- A_Defining_Divide_Operator, -- /
-- A_Defining_Mod_Operator, -- mod
-- A_Defining_Rem_Operator, -- rem
-- A_Defining_Exponentiate_Operator, -- **
-- A_Defining_Abs_Operator, -- abs
-- A_Defining_Not_Operator, -- not
if Operator_Chars = Name_Op_And then
return A_Defining_And_Operator;
elsif Operator_Chars = Name_Op_Or then
return A_Defining_Or_Operator;
elsif Operator_Chars = Name_Op_Xor then
return A_Defining_Xor_Operator;
elsif Operator_Chars = Name_Op_Eq then
return A_Defining_Equal_Operator;
elsif Operator_Chars = Name_Op_Ne then
return A_Defining_Not_Equal_Operator;
elsif Operator_Chars = Name_Op_Lt then
return A_Defining_Less_Than_Operator;
elsif Operator_Chars = Name_Op_Le then
return A_Defining_Less_Than_Or_Equal_Operator;
elsif Operator_Chars = Name_Op_Gt then
return A_Defining_Greater_Than_Operator;
elsif Operator_Chars = Name_Op_Ge then
return A_Defining_Greater_Than_Or_Equal_Operator;
elsif Operator_Chars = Name_Op_Concat then
return A_Defining_Concatenate_Operator;
elsif Operator_Chars = Name_Op_Multiply then
return A_Defining_Multiply_Operator;
elsif Operator_Chars = Name_Op_Divide then
return A_Defining_Divide_Operator;
elsif Operator_Chars = Name_Op_Mod then
return A_Defining_Mod_Operator;
elsif Operator_Chars = Name_Op_Rem then
return A_Defining_Rem_Operator;
elsif Operator_Chars = Name_Op_Expon then
return A_Defining_Exponentiate_Operator;
elsif Operator_Chars = Name_Op_Abs then
return A_Defining_Abs_Operator;
elsif Operator_Chars = Name_Op_Not then
return A_Defining_Not_Operator;
else
-- for + and - operator signs binary and unary cases
-- should be distinguished
if Nkind (Parent_Node) = N_Function_Instantiation then
-- we have to compute the number of parameters
-- from the declaration of the corresponding generic
-- function
Parent_Node := Parent (Entity (Sinfo.Name (Parent_Node)));
if Nkind (Parent_Node) = N_Defining_Program_Unit_Name then
Parent_Node := Parent (Parent_Node);
end if;
end if;
Parameter_Number :=
List_Length (Parameter_Specifications (Parent_Node));
if Operator_Chars = Name_Op_Add then
if Parameter_Number = 1 then
return A_Defining_Unary_Plus_Operator;
else
return A_Defining_Plus_Operator;
end if;
else -- Operator_Chars = "-"
if Parameter_Number = 1 then
return A_Defining_Unary_Minus_Operator;
else
return A_Defining_Minus_Operator;
end if;
end if;
end if;
end N_Defining_Operator_Symbol_Mapping;
---------------------------------
-- N_Delay_Alternative_Mapping --
---------------------------------
function N_Delay_Alternative_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
begin
-- Two Internal_Element_Kinds values may be possible:
-- A_Select_Path
-- An_Or_Path
if Is_List_Member (Node) then
-- a delay alternative in a selective accept statement,
-- processing is the same as for N_Accept_Alternative
return N_Accept_Alternative_Mapping (Node);
else
-- a relay alternative in a timed entry call
return An_Or_Path;
end if;
end N_Delay_Alternative_Mapping;
---------------------------------------
-- N_Derived_Type_Definition_Mapping --
---------------------------------------
function N_Derived_Type_Definition_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
Result : Internal_Element_Kinds := A_Derived_Type_Definition;
begin
-- Two Internal_Element_Kinds values may be possible:
-- A_Derived_Type_Definition
-- A_Derived_Record_Extension_Definition
-- --|A2005 start
-- Plus the following values for Ada 2005:
-- An_Ordinary_Interface
-- A_Limited_Interface
-- A_Task_Interface
-- A_Protected_Interface
-- A_Synchronized_Interface
-- --|A2005 end
-- Implementation revised for Ada 2005
if Interface_Present (Node) then
if Limited_Present (Node) then
Result := A_Limited_Interface;
elsif Task_Present (Node) then
Result := A_Task_Interface;
elsif Protected_Present (Node) then
Result := A_Protected_Interface;
elsif Synchronized_Present (Node) then
Result := A_Synchronized_Interface;
else
Result := An_Ordinary_Interface;
end if;
elsif Present (Record_Extension_Part (Node)) then
Result := A_Derived_Record_Extension_Definition;
end if;
return Result;
-- --|A2005 end
end N_Derived_Type_Definition_Mapping;
-----------------------------
-- N_Expanded_Name_Mapping --
-----------------------------
function N_Expanded_Name_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
Context : constant Node_Id := Parent_Node;
Context_Kind : constant Node_Kind := Nkind (Context);
Temp_Node : Node_Id;
begin
-- The following Internal_Element_Kinds values may be possible:
--
-- A_Subtype_Indication
-- A_Discrete_Subtype_Indication_As_Subtype_Definition
-- A_Discrete_Subtype_Indication
-- A_Selected_Component
-- An_Identifier (we use this rourine for An_Identifier node as well)
-- A_Function_Call (F in F.X)
-- An_Attribute_Reference
case Context_Kind is
-- special cases should be reorganized when complete ???
when N_Object_Declaration =>
if Node = Object_Definition (Context) then
return A_Subtype_Indication;
else
-- an initializing expression in an object declaration
goto Expr;
end if;
when N_Derived_Type_Definition
| N_Access_To_Object_Definition
=>
-- --|A2005 start
if Is_List_Member (Node) then
-- The node represents an interface name from some interface
-- list
if Nkind (Node) = N_Expanded_Name then
return A_Selected_Component;
else
return An_Identifier;
end if;
else
return A_Subtype_Indication;
end if;
-- --|A2005 end
when N_Constrained_Array_Definition |
N_Entry_Declaration =>
return A_Discrete_Subtype_Indication_As_Subtype_Definition;
when N_Unconstrained_Array_Definition =>
if Is_List_Member (Node) then
-- this for sure means, that node represents one of index
-- subtype definitions
-- CODE SHARING WITH N_IDENTIFIER MAPPING ITEM :-[#]
if Nkind (Node) = N_Expanded_Name then
return A_Selected_Component;
else
return An_Identifier;
end if;
else
-- this is a component definition!
return A_Component_Definition;
end if;
when N_Index_Or_Discriminant_Constraint =>
if Asis_Internal_Element_Kind (Context) =
An_Index_Constraint
then
return A_Discrete_Subtype_Indication;
end if;
when N_Slice =>
-- A.B(C.D) <- Context
-- / \
-- Prefix Discrete_Range
if Node = Sinfo.Discrete_Range (Context) then
return A_Discrete_Subtype_Indication;
end if;
-- when N_??? => should be implemented
when N_Selected_Component =>
-- This corresponds to a special case: F.A, where F is
-- a function call
Temp_Node := Prefix (Context);
if Is_Rewrite_Substitution (Temp_Node) and then
Nkind (Temp_Node) = N_Function_Call and then
Original_Node (Temp_Node) = Node
then
return A_Function_Call;
end if;
when N_Parameter_Specification =>
-- See FA13-008. In case if we have an implicit "/="
-- declaration, and in the corresponding explicit "="
-- declaration parameter type is defined by a 'Class attribute,
-- in the parameter specification of "/=" the front-end uses
-- the reference to the internal type entity node
if Nkind (Node) = N_Identifier
and then
not Comes_From_Source (Node)
and then
Ekind (Entity (Node)) = E_Class_Wide_Type
then
return A_Class_Attribute;
end if;
when others =>
null;
end case;
-- general case, the following if statement is necessary because
-- of sharing of this code between N_Expanded_Name and N_Identifier
-- mapping items.
-- IS THIS CODE SHARING A REALLY GOOD THING???
<<Expr>> -- here we are analyzing the "ordinary" expression
if Nkind (Node) = N_Expanded_Name then
return A_Selected_Component;
elsif Context_Kind /= N_Defining_Program_Unit_Name then
if (Nkind (Node) in N_Has_Entity
or else
Nkind (Node) = N_Attribute_Definition_Clause)
and then
Present (Entity (Node))
and then
Ekind (Entity (Node)) = E_Enumeration_Literal
then
return An_Enumeration_Literal;
else
return An_Identifier;
end if;
else
return An_Identifier;
end if;
end N_Expanded_Name_Mapping;
------------------------------------------
-- N_Formal_Package_Declaration_Mapping --
------------------------------------------
function N_Formal_Package_Declaration_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
begin
-- Two Internal_Element_Kinds values may be possible:
-- A_Formal_Package_Declaration,
-- A_Formal_Package_Declaration_With_Box
if Box_Present (Node) then
return A_Formal_Package_Declaration_With_Box;
else
return A_Formal_Package_Declaration;
end if;
end N_Formal_Package_Declaration_Mapping;
----------------------------------------------
-- N_Formal_Private_Type_Definition_Mapping --
----------------------------------------------
function N_Formal_Private_Type_Definition_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
begin
-- Two Internal_Element_Kinds values may be possible:
-- A_Formal_Private_Type_Definition
-- A_Formal_Tagged_Private_Type_Definition
if Tagged_Present (Node) then
return A_Formal_Tagged_Private_Type_Definition;
else
return A_Formal_Private_Type_Definition;
end if;
end N_Formal_Private_Type_Definition_Mapping;
---------------------------------------------
-- N_Formal_Subprogram_Declaration_Mapping --
---------------------------------------------
function N_Formal_Subprogram_Declaration_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
begin
-- Two Internal_Element_Kinds values may be possible:
-- A_Formal_Procedure_Declaration
-- A_Formal_Function_Declaration.
if Nkind (Specification (Node)) = N_Function_Specification then
return A_Formal_Function_Declaration;
else
return A_Formal_Procedure_Declaration;
end if;
end N_Formal_Subprogram_Declaration_Mapping;
-----------------------------
-- N_Function_Call_Mapping --
-----------------------------
function N_Function_Call_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
Called_Name : Node_Id;
Called_Function : Node_Id := Empty;
Result : Internal_Element_Kinds := A_Function_Call;
begin
-- Three Internal_Element_Kinds values may be possible:
-- A_Function_Call (usual situation)
-- A_Selected_Component
-- An_Enumeration_Literal
-- The last two cases correspond to a reference to an overloaded
-- enumeration literal (either qualified or direct)
if No (Parameter_Associations (Node)) then
Called_Name := Sinfo.Name (Node);
if Nkind (Called_Name) in N_Has_Entity then
Called_Function := Entity (Called_Name);
end if;
if Nkind (Parent (Called_Function)) =
N_Enumeration_Type_Definition
then
if Nkind (Called_Name) = N_Selected_Component or else -- ???
Nkind (Called_Name) = N_Expanded_Name
then
Result := A_Selected_Component;
elsif Nkind (Called_Name) = N_Identifier then
Result := An_Enumeration_Literal;
end if;
end if;
end if;
return Result;
end N_Function_Call_Mapping;
----------------------------------------------
-- N_Generic_Subprogram_Declaration_Mapping --
----------------------------------------------
function N_Generic_Subprogram_Declaration_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
begin
-- Two Internal_Element_Kinds values may be possible:
-- A_Generic_Procedure_Declaration and A_Generic_Function_Declaration
if Nkind (Specification (Node)) = N_Function_Specification then
return A_Generic_Function_Declaration;
else
return A_Generic_Procedure_Declaration;
end if;
end N_Generic_Subprogram_Declaration_Mapping;
------------------
-- N_In_Mapping --
------------------
function N_In_Mapping (Node : Node_Id) return Internal_Element_Kinds is
Result : Internal_Element_Kinds := An_In_Type_Membership_Test;
begin
-- Two Internal_Element_Kinds values may be possible:
-- An_In_Range_Membership_Test
-- An_In_Type_Membership_Test
case Nkind (Right_Opnd (Node)) is
when N_Identifier |
N_Expanded_Name =>
null;
when N_Attribute_Reference =>
if Attribute_Name (Right_Opnd (Node)) = Name_Range then
Result := An_In_Range_Membership_Test;
end if;
when others =>
Result := An_In_Range_Membership_Test;
end case;
return Result;
end N_In_Mapping;
-- |A2005 start
-------------------------------------------
-- N_Incomplete_Type_Declaration_Mapping --
-------------------------------------------
function N_Incomplete_Type_Declaration_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
Result : Internal_Element_Kinds := An_Incomplete_Type_Declaration;
begin
if A4G.A_Opt.ASIS_2005_Mode
and then
Tagged_Present (Node)
then
Result := A_Tagged_Incomplete_Type_Declaration;
end if;
return Result;
end N_Incomplete_Type_Declaration_Mapping;
-- |A2005 end
------------------------------------------------
-- N_Index_Or_Discriminant_Constraint_Mapping --
------------------------------------------------
function N_Index_Or_Discriminant_Constraint_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
First_Item : Node_Id;
-- the first element in the list of discrete ranges or discriminant
-- associations, this element is the only one used to determine the kind
-- of the constraint being analyzed
First_Item_Kind : Node_Kind;
Type_Entity : Node_Id;
-- Needed in case when we can not make the decision using the syntax
-- information only. Represents the type or subtype entity to which the
-- constraint is applied
begin
-- Two Internal_Element_Kinds values may be possible:
-- An_Index_Constraint
-- A_Discriminant_Constraint
First_Item := First (Constraints (Node));
First_Item_Kind := Nkind (First_Item);
-- analyzing the syntax structure of First_Item:
if First_Item_Kind = N_Discriminant_Association then
return A_Discriminant_Constraint;
elsif First_Item_Kind = N_Subtype_Indication or else
First_Item_Kind = N_Range
then
return An_Index_Constraint;
elsif First_Item_Kind = N_Attribute_Reference then
-- analyzing the attribute designator:
if Attribute_Name (First_Item) = Name_Range then
return An_Index_Constraint;
else
return A_Discriminant_Constraint;
end if;
elsif not (First_Item_Kind = N_Identifier or else
First_Item_Kind = N_Expanded_Name)
then
-- First_Item is an expression and it could not be interpreted as a
-- subtype_mark from a discrete_subtype_indication, so what we have
-- in this case is:
return A_Discriminant_Constraint;
end if;
-- First_Item is of N_Identifier or N_Expanded_Name kind, and it may be
-- either an expression in index constraint or a subtype mark in a
-- discriminant constraint. In this case it is easier to analyze the
-- type to which the constraint is applied, but not the constraint
-- itself.
Type_Entity := Entity (Sinfo.Subtype_Mark (Parent (Node)));
while Ekind (Type_Entity) in Access_Kind loop
Type_Entity := Directly_Designated_Type (Type_Entity);
end loop;
if Has_Discriminants (Type_Entity) then
return A_Discriminant_Constraint;
else
return An_Index_Constraint;
end if;
end N_Index_Or_Discriminant_Constraint_Mapping;
------------------------------
-- N_Loop_Statement_Mapping --
------------------------------
function N_Loop_Statement_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
Iteration : Node_Id;
begin
-- Three Internal_Element_Kinds values may be possible:
-- A_Loop_Statement,
-- A_While_Loop_Statement,
-- A_For_Loop_Statement,
Iteration := Iteration_Scheme (Node);
if Present (Iteration) then
if Present (Condition (Iteration)) then
return A_While_Loop_Statement;
else
return A_For_Loop_Statement;
end if;
else
return A_Loop_Statement;
end if;
end N_Loop_Statement_Mapping;
----------------------
-- N_Not_In_Mapping --
----------------------
function N_Not_In_Mapping (Node : Node_Id) return Internal_Element_Kinds is
Result : Internal_Element_Kinds := A_Not_In_Type_Membership_Test;
begin
-- Two Internal_Element_Kinds values may be possible:
-- A_Not_In_Range_Membership_Test
-- A_Not_In_Type_Membership_Test
case Nkind (Right_Opnd (Node)) is
when N_Identifier |
N_Expanded_Name =>
null;
when N_Attribute_Reference =>
if Attribute_Name (Right_Opnd (Node)) = Name_Range then
Result := A_Not_In_Range_Membership_Test;
end if;
when others =>
Result := A_Not_In_Range_Membership_Test;
end case;
return Result;
end N_Not_In_Mapping;
----------------------------------
-- N_Number_Declaration_Mapping --
----------------------------------
function N_Number_Declaration_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
begin
-- Two Internal_Element_Kinds values may be possible:
-- An_Integer_Number_Declaration
-- A_Real_Number_Declaration
if Ekind (Defining_Identifier (Node)) = E_Named_Integer then
return An_Integer_Number_Declaration;
else
return A_Real_Number_Declaration;
end if;
end N_Number_Declaration_Mapping;
----------------------------------
-- N_Object_Declaration_Mapping --
----------------------------------
function N_Object_Declaration_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
Result : Internal_Element_Kinds;
begin
-- Three Internal_Element_Kinds values may be possible:
-- A_Variable_Declaration,
-- A_Constant_Declaration,
-- A_Deferred_Constant_Declaration.
-- |A2005 start
-- A_Return_Object_Declaration
-- |A2005 end
if Nkind (Parent (Node)) = N_Extended_Return_Statement then
Result := A_Return_Object_Declaration;
elsif not Constant_Present (Node) then
Result := A_Variable_Declaration;
elsif Present (Sinfo.Expression (Node)) then
Result := A_Constant_Declaration;
else
Result := A_Deferred_Constant_Declaration;
end if;
return Result;
end N_Object_Declaration_Mapping;
-------------------------------
-- N_Operator_Symbol_Mapping --
-------------------------------
function N_Operator_Symbol_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
Tmp : Node_Id;
Operator_Chars : constant Name_Id := Chars (Node);
Parameter_Number : Nat range 1 .. 2;
-- see the GNAT components Namet.ads and Snames.ads
-- N_Defining_Operator_Symbol_Mapping uses just the same approach,
-- so if there is any error in it, then both functions contain it
begin
-- The following Internal_Element_Kinds values may be possible:
--
-- A_And_Operator, -- and
-- A_Or_Operator, -- or
-- A_Xor_Operator, -- xor
-- A_Equal_Operator, -- =
-- A_Not_Equal_Operator, -- /=
-- A_Less_Than_Operator, -- <
-- A_Less_Than_Or_Equal_Operator, -- <=
-- A_Greater_Than_Operator, -- >
-- A_Greater_Than_Or_Equal_Operator, -- >=
-- A_Plus_Operator, -- +
-- A_Minus_Operator, -- -
-- A_Concatenate_Operator, -- &
-- A_Unary_Plus_Operator, -- +
-- A_Unary_Minus_Operator, -- -
-- A_Multiply_Operator, -- *
-- A_Divide_Operator, -- /
-- A_Mod_Operator, -- mod
-- A_Rem_Operator, -- rem
-- A_Exponentiate_Operator, -- **
-- A_Abs_Operator, -- abs
-- A_Not_Operator, -- not
if Operator_Chars = Name_Op_And then
return An_And_Operator;
elsif Operator_Chars = Name_Op_Or then
return An_Or_Operator;
elsif Operator_Chars = Name_Op_Xor then
return An_Xor_Operator;
elsif Operator_Chars = Name_Op_Eq then
return An_Equal_Operator;
elsif Operator_Chars = Name_Op_Ne then
return A_Not_Equal_Operator;
elsif Operator_Chars = Name_Op_Lt then
return A_Less_Than_Operator;
elsif Operator_Chars = Name_Op_Le then
return A_Less_Than_Or_Equal_Operator;
elsif Operator_Chars = Name_Op_Gt then
return A_Greater_Than_Operator;
elsif Operator_Chars = Name_Op_Ge then
return A_Greater_Than_Or_Equal_Operator;
elsif Operator_Chars = Name_Op_Concat then
return A_Concatenate_Operator;
elsif Operator_Chars = Name_Op_Multiply then
return A_Multiply_Operator;
elsif Operator_Chars = Name_Op_Divide then
return A_Divide_Operator;
elsif Operator_Chars = Name_Op_Mod then
return A_Mod_Operator;
elsif Operator_Chars = Name_Op_Rem then
return A_Rem_Operator;
elsif Operator_Chars = Name_Op_Expon then
return An_Exponentiate_Operator;
elsif Operator_Chars = Name_Op_Abs then
return An_Abs_Operator;
elsif Operator_Chars = Name_Op_Not then
return A_Not_Operator;
else
-- for + and - operator signs binary and unary cases
-- should be distinguished
-- A simple case - we have an entity:
if Present (Entity (Node)) then
Tmp := Entity (Node);
if First_Entity (Tmp) = Last_Entity (Tmp) then
Parameter_Number := 1;
else
Parameter_Number := 2;
end if;
else
Parent_Node := Parent (Node);
if Nkind (Parent_Node) = N_Integer_Literal or else
Nkind (Parent_Node) = N_Real_Literal
then
-- Static expression of the form "+"(1, 2) rewritten into
-- a literal value
Parent_Node := Original_Node (Parent_Node);
end if;
-- we have to do this assignment also here, because this
-- function may be called outside Node_To_Element
-- convertors
-- because of the possible tree rewriting, the parent node
-- may be either of N_Function_Call or of N_Op_Xxx type)
-- it can be also of N_Formal_Subprogram_Declaration kind,
-- or even of N_Expanded_Name kind,
while Nkind (Parent_Node) = N_Expanded_Name loop
Parent_Node := Parent (Parent_Node);
if Nkind (Parent_Node) = N_Integer_Literal or else
Nkind (Parent_Node) = N_Real_Literal
then
-- Static expression of the form
-- Prefix_Name."+"(1, 2)
-- rewritten into a literal value
Parent_Node := Original_Node (Parent_Node);
end if;
end loop;
if Nkind (Parent_Node) = N_Op_Plus or else
Nkind (Parent_Node) = N_Op_Minus
then
Parameter_Number := 1;
elsif Nkind (Parent_Node) = N_Op_Add or else
Nkind (Parent_Node) = N_Op_Subtract
then
Parameter_Number := 2;
elsif Nkind (Parent_Node) = N_Function_Call then
Parameter_Number :=
List_Length (Parameter_Associations (Parent_Node));
elsif Nkind (Parent_Node) = N_Subprogram_Renaming_Declaration
or else
Nkind (Parent_Node) in N_Formal_Subprogram_Declaration
then
Parameter_Number := List_Length
(Parameter_Specifications (Specification (Parent_Node)));
elsif Nkind (Parent_Node) = N_Indexed_Component then
Parameter_Number := List_Length
(Sinfo.Expressions (Parent_Node));
elsif Nkind (Parent_Node) = N_Pragma_Argument_Association then
-- this is for pragma inline ("+");
Parameter_Number := 2;
-- this choice is somewhat arbitrary :)
elsif Nkind (Parent_Node) = N_Generic_Association then
Tmp := Defining_Gen_Parameter (Node);
Parameter_Number := List_Length
(Parameter_Specifications (Parent (Tmp)));
else
-- Impossible case
raise Internal_Implementation_Error;
end if;
end if;
if Operator_Chars = Name_Op_Add then
if Parameter_Number = 1 then
return A_Unary_Plus_Operator;
else
return A_Plus_Operator;
end if;
else -- Operator_Chars = "-"
if Parameter_Number = 1 then
return A_Unary_Minus_Operator;
else
return A_Minus_Operator;
end if;
end if;
end if;
end N_Operator_Symbol_Mapping;
----------------------
-- N_Pragma_Mapping --
----------------------
function N_Pragma_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
Pragma_Chars : constant Name_Id := Pragma_Name (Node);
begin
-- Language-Defined Pragmas --
if Pragma_Chars = Name_All_Calls_Remote then
return An_All_Calls_Remote_Pragma; -- I.2.3(6)
elsif Pragma_Chars = Name_Asynchronous then
return An_Asynchronous_Pragma; -- I.4.1(3)
elsif Pragma_Chars = Name_Atomic then
return An_Atomic_Pragma; -- G.5(3)
elsif Pragma_Chars = Name_Atomic_Components then
return An_Atomic_Components_Pragma; -- G.5(3)
elsif Pragma_Chars = Name_Attach_Handler then
return An_Attach_Handler_Pragma; -- G.3.1(3)
elsif Pragma_Chars = Name_Controlled then
return A_Controlled_Pragma; -- 13.11.3(3), B(12)
elsif Pragma_Chars = Name_Convention then
return A_Convention_Pragma; -- B(16), M.1(5)
elsif Pragma_Chars = Name_Discard_Names then
return A_Discard_Names_Pragma; -- C.5(2)
elsif Pragma_Chars = Name_Elaborate then
return An_Elaborate_Pragma; -- 10.2.1(20)
elsif Pragma_Chars = Name_Elaborate_All then
return An_Elaborate_All_Pragma; -- 10.2.1(19), B(8)
elsif Pragma_Chars = Name_Elaborate_Body then
return An_Elaborate_Body_Pragma; -- 10.2.1(21), B(9)
elsif Pragma_Chars = Name_Export then
return An_Export_Pragma; -- B(15), M.1(5)
elsif Pragma_Chars = Name_Import then
return An_Import_Pragma; -- B(14), M.1(5)
elsif Pragma_Chars = Name_Inline then
return An_Inline_Pragma; -- 6.3.2(4), B(5)
elsif Pragma_Chars = Name_Inspection_Point then
return An_Inspection_Point_Pragma; -- L.2.2(2)
elsif Pragma_Chars = Name_Interrupt_Handler then
return An_Interrupt_Handler_Pragma; -- G.3.1(2)
elsif Pragma_Chars = Name_Interrupt_Priority then
return An_Interrupt_Priority_Pragma; -- H.1(4)
elsif Pragma_Chars = Name_Linker_Options then
return A_Linker_Options_Pragma; -- B.1(8)
elsif Pragma_Chars = Snames.Name_List then
return A_List_Pragma; -- 2.8(18), B(2)
elsif Pragma_Chars = Name_Locking_Policy then
return A_Locking_Policy_Pragma; -- H.3(3)
elsif Pragma_Chars = Name_Normalize_Scalars then
return A_Normalize_Scalars_Pragma; -- L.1.1(2)
elsif Pragma_Chars = Name_Optimize then
return An_Optimize_Pragma; -- 2.8(18), B(4)
elsif Pragma_Chars = Name_Pack then
return A_Pack_Pragma; -- 13.2(2), B(11)
elsif Pragma_Chars = Name_Page then
return A_Page_Pragma; -- 2.8(18), B(3)
elsif Pragma_Chars = Name_Preelaborate then
return A_Preelaborate_Pragma; -- 10.2.1(3), B(6)
elsif Pragma_Chars = Name_Priority then
return A_Priority_Pragma; -- H.1(3)
elsif Pragma_Chars = Name_Pure then
return A_Pure_Pragma; -- 10.2.1(13), B(7)
elsif Pragma_Chars = Name_Queuing_Policy then
return A_Queuing_Policy_Pragma; -- H.4(3)
elsif Pragma_Chars = Name_Remote_Call_Interface then
return A_Remote_Call_Interface_Pragma; -- I.2.3(4)
elsif Pragma_Chars = Name_Remote_Types then
return A_Remote_Types_Pragma; -- I.2.2(4)
elsif Pragma_Chars = Name_Restrictions then
return A_Restrictions_Pragma; -- 13.12(2), B(13)
elsif Pragma_Chars = Name_Reviewable then
return A_Reviewable_Pragma; -- L.2.1(2)
elsif Pragma_Chars = Name_Shared_Passive then
return A_Shared_Passive_Pragma; -- I.2.1(4)
elsif Pragma_Chars = Name_Storage_Size then
-- the same name entry as for 'Storage_Size attribute!
return A_Storage_Size_Pragma; -- 13.3(62)
elsif Pragma_Chars = Name_Suppress then
return A_Suppress_Pragma; -- 11.5(4), B(10)
elsif Pragma_Chars = Name_Task_Dispatching_Policy then
return A_Task_Dispatching_Policy_Pragma; -- H.2.2(2)
elsif Pragma_Chars = Name_Volatile then
return A_Volatile_Pragma; -- G.5(3)
elsif Pragma_Chars = Name_Volatile_Components then
return A_Volatile_Components_Pragma; -- G.5(3)
-- --|A2005 start
-- New Ada 2005 pragmas. To be alphabetically ordered later
elsif Pragma_Chars = Name_Assert then
return An_Assert_Pragma;
elsif Pragma_Chars = Name_Assertion_Policy then
return An_Assertion_Policy_Pragma;
elsif Pragma_Chars = Name_Detect_Blocking then
return A_Detect_Blocking_Pragma;
elsif Pragma_Chars = Name_No_Return then
return A_No_Return_Pragma;
-- A_Partition_Elaboration_Policy_Pragma - not implemented yet!
elsif Pragma_Chars = Name_Preelaborable_Initialization then
return A_Preelaborable_Initialization_Pragma;
elsif Pragma_Chars = Name_Priority_Specific_Dispatching then
return A_Priority_Specific_Dispatching_Pragma;
elsif Pragma_Chars = Name_Profile then
return A_Profile_Pragma;
elsif Pragma_Chars = Name_Relative_Deadline then
return A_Relative_Deadline_Pragma;
elsif Pragma_Chars = Name_Unchecked_Union then
return An_Unchecked_Union_Pragma;
elsif Pragma_Chars = Name_Unsuppress then
return An_Unsuppress_Pragma;
-- --|A2005 end
-- Implementation(GNAT)-Defined Pragmas --
elsif Pragma_Chars in First_Pragma_Name .. Last_Pragma_Name then
-- We have already checked for all the standard pragma names, so
-- all the rest known as pragma name should be GNAT-specific pragmas.
return An_Implementation_Defined_Pragma; -- Vendor Appendix M
else
return An_Unknown_Pragma; -- Unknown to the compiler.
end if;
end N_Pragma_Mapping;
----------------------------------------
-- N_Procedure_Call_Statement_Mapping --
----------------------------------------
function N_Procedure_Call_Statement_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
Parent_N : Node_Id := Parent (Parent (Node));
Result : Internal_Element_Kinds := A_Procedure_Call_Statement;
begin
-- The only special case we have to process is a procedure call that is
-- an argument of a pragma Debug. To sarisfy the Ada syntax, we have to
-- classify it as A_Function_Call (see G330-002).
if Nkind (Parent_N) = N_Block_Statement
and then
not Comes_From_Source (Parent_N)
then
Parent_N := Parent (Parent_N);
if Nkind (Parent_N) = N_If_Statement
and then
Nkind (Original_Node (Parent_N)) = N_Pragma
and then
Pragma_Name (Original_Node (Parent_N)) = Name_Debug
then
Result := A_Function_Call;
end if;
end if;
return Result;
end N_Procedure_Call_Statement_Mapping;
--------------------------------
-- N_Range_Constraint_Mapping --
--------------------------------
function N_Range_Constraint_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
begin
-- Two Internal_Element_Kinds values may be possible:
-- A_Range_Attribute_Reference
-- A_Simple_Expression_Range
if Nkind (Original_Node (Range_Expression (Node))) = N_Range then
return A_Simple_Expression_Range;
else
return A_Range_Attribute_Reference;
end if;
end N_Range_Constraint_Mapping;
---------------------
-- N_Range_Mapping --
---------------------
function N_Range_Mapping (Node : Node_Id) return Internal_Element_Kinds is
Context_Kind : constant Node_Kind := Nkind (Original_Node (Parent_Node));
begin
-- The following Internal_Element_Kinds values may be possible:
-- A_Discrete_Simple_Expression_Range_As_Subtype_Definition
-- A_Discrete_Simple_Expression_Range
-- ???
-- Other values should be added during constructing the
-- full implementation
case Context_Kind is
when N_Constrained_Array_Definition
| N_Entry_Declaration =>
return A_Discrete_Simple_Expression_Range_As_Subtype_Definition;
when N_Index_Or_Discriminant_Constraint |
N_Slice |
N_Case_Statement_Alternative |
N_Component_Association
=>
return A_Discrete_Simple_Expression_Range;
when others => -- not implemented cases (???)
Not_Implemented_Mapping (Nkind (Node));
end case;
end N_Range_Mapping;
---------------------------------
-- N_Record_Definition_Mapping --
---------------------------------
function N_Record_Definition_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
Result : Internal_Element_Kinds := A_Record_Type_Definition;
Is_Formal : constant Boolean :=
Nkind (Original_Node (Parent (Node))) = N_Formal_Type_Declaration;
begin
-- Two Internal_Element_Kinds values may be possible (Ada 95):
-- A_Record_Type_Definition
-- A_Tagged_Record_Type_Definition
-- --|A2005 start
-- Plus the following values for Ada 2005:
--
-- An_Ordinary_Interface
-- A_Limited_Interface
-- A_Task_Interface
-- A_Protected_Interface
-- A_Synchronized_Interface
--
-- A_Formal_Ordinary_Interface
-- A_Formal_Limited_Interface
-- A_Formal_Task_Interface
-- A_Formal_Protected_Interface
-- A_Formal_Synchronized_Interface
-- --|A2005 end
-- Implementation revised for Ada 2005
if Interface_Present (Node) then
if Limited_Present (Node) then
if Is_Formal then
Result := A_Formal_Limited_Interface;
else
Result := A_Limited_Interface;
end if;
elsif Task_Present (Node) then
if Is_Formal then
Result := A_Formal_Task_Interface;
else
Result := A_Task_Interface;
end if;
elsif Protected_Present (Node) then
if Is_Formal then
Result := A_Formal_Protected_Interface;
else
Result := A_Protected_Interface;
end if;
elsif Synchronized_Present (Node) then
if Is_Formal then
Result := A_Formal_Synchronized_Interface;
else
Result := A_Synchronized_Interface;
end if;
else
if Is_Formal then
Result := A_Formal_Ordinary_Interface;
else
Result := An_Ordinary_Interface;
end if;
end if;
elsif Tagged_Present (Node) then
Result := A_Tagged_Record_Type_Definition;
end if;
return Result;
-- --|A2005 end
end N_Record_Definition_Mapping;
---------------------------------
-- N_Requeue_Statement_Mapping --
---------------------------------
function N_Requeue_Statement_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
begin
-- Two Internal_Element_Kinds values may be possible:
-- A_Requeue_Statement
-- A_Requeue_Statement_With_Abort
if Abort_Present (Node) then
return A_Requeue_Statement_With_Abort;
else
return A_Requeue_Statement;
end if;
end N_Requeue_Statement_Mapping;
-------------------------------
-- N_Subprogram_Body_Mapping --
-------------------------------
function N_Subprogram_Body_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
begin
-- Two Internal_Element_Kinds values may be possible:
-- A_Procedure_Body_Declaration and A_Function_Body_Declaration
if Nkind (Specification (Node)) = N_Function_Specification then
return A_Function_Body_Declaration;
else
return A_Procedure_Body_Declaration;
end if;
end N_Subprogram_Body_Mapping;
------------------------------------
-- N_Subprogram_Body_Stub_Mapping --
------------------------------------
function N_Subprogram_Body_Stub_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
begin
-- Two Internal_Element_Kinds values may be possible:
-- A_Procedure_Body_Stub and A_Function_Body_Stub,
if Nkind (Specification (Node)) = N_Function_Specification then
return A_Function_Body_Stub;
else
return A_Procedure_Body_Stub;
end if;
end N_Subprogram_Body_Stub_Mapping;
--------------------------------------
-- N_Subprogram_Declaration_Mapping --
--------------------------------------
function N_Subprogram_Declaration_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
begin
-- Two Internal_Element_Kinds values may be possible:
-- A_Procedure_Declaration
-- A_Function_Declaration
if Nkind (Specification (Node)) = N_Function_Specification then
return A_Function_Declaration;
-- --|A2005 start
elsif Null_Present (Specification (Node)) then
return A_Null_Procedure_Declaration;
-- --|A2005 end
else
return A_Procedure_Declaration;
end if;
end N_Subprogram_Declaration_Mapping;
-----------------------------------------------
-- N_Subprogram_Renaming_Declaration_Mapping --
-----------------------------------------------
function N_Subprogram_Renaming_Declaration_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
begin
-- Two Internal_Element_Kinds values may be possible:
-- A_Procedure_Renaming_Declaration and A_Function_Renaming_Declaration
if Nkind (Specification (Node)) = N_Function_Specification then
return A_Function_Renaming_Declaration;
else
return A_Procedure_Renaming_Declaration;
end if;
end N_Subprogram_Renaming_Declaration_Mapping;
----------------------------------
-- N_Subtype_Indication_Mapping --
----------------------------------
function N_Subtype_Indication_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
begin
-- The following Internal_Element_Kinds values may be possible:
-- A_Discrete_Subtype_Indication_As_Subtype_Definition
-- A_Discrete_Subtype_Indication
-- A_Subtype_Indication
case Nkind (Parent_Node) is
when N_Constrained_Array_Definition =>
if Is_List_Member (Node) then
return A_Discrete_Subtype_Indication_As_Subtype_Definition;
end if;
when N_Entry_Declaration =>
return A_Discrete_Subtype_Indication_As_Subtype_Definition;
when N_Index_Or_Discriminant_Constraint |
N_Slice =>
return A_Discrete_Subtype_Indication;
when others =>
null;
end case;
return A_Subtype_Indication;
end N_Subtype_Indication_Mapping;
----------------------
-- N_To_E_List_New --
----------------------
function N_To_E_List_New
(List : List_Id;
Include_Pragmas : Boolean := False;
Starting_Element : Asis.Element := Asis.Nil_Element;
Node_Knd : Node_Kind := N_Empty;
Internal_Kind : Internal_Element_Kinds := Not_An_Element;
Special_Case : Special_Cases := Not_A_Special_Case;
Norm_Case : Normalization_Cases := Is_Not_Normalized;
In_Unit : Asis.Compilation_Unit := Asis.Nil_Compilation_Unit)
return Asis.Element_List
is
begin
Set_Element_List
(List,
Include_Pragmas,
Starting_Element,
Node_Knd,
Internal_Kind,
Special_Case,
Norm_Case,
In_Unit);
return Asis.Association_List
(Internal_Asis_Element_Table.Table
(1 .. Internal_Asis_Element_Table.Last));
end N_To_E_List_New;
----------------------------------------------
-- N_Unconstrained_Array_Definition_Mapping --
----------------------------------------------
function N_Unconstrained_Array_Definition_Mapping
(Node : Node_Id)
return Internal_Element_Kinds
is
begin
-- Two Internal_Element_Kinds values may be possible:
-- An_Unconstrained_Array_Definition
-- A_Formal_Unconstrained_Array_Definition
if Nkind (Parent (Node)) = N_Formal_Type_Declaration then
return A_Formal_Unconstrained_Array_Definition;
else
return An_Unconstrained_Array_Definition;
end if;
end N_Unconstrained_Array_Definition_Mapping;
----------------
-- No_Mapping --
----------------
procedure No_Mapping (Node : Node_Id) is
begin
-- This function should never be called!
raise Internal_Implementation_Error;
end No_Mapping;
-------------------------
-- Node_To_Element_New --
-------------------------
function Node_To_Element_New
(Node : Node_Id;
Node_Field_1 : Node_Id := Empty;
Node_Field_2 : Node_Id := Empty;
Starting_Element : Asis.Element := Asis.Nil_Element;
Internal_Kind : Internal_Element_Kinds := Not_An_Element;
Spec_Case : Special_Cases := Not_A_Special_Case;
Norm_Case : Normalization_Cases := Is_Not_Normalized;
Considering_Parent_Count : Boolean := True;
Using_Original_Node : Boolean := True;
Inherited : Boolean := False;
In_Unit : Asis.Compilation_Unit :=
Asis.Nil_Compilation_Unit)
return Asis.Element
is
R_Node : Node_Id;
Res_Node : Node_Id;
Res_Node_Field_1 : Node_Id := Empty;
Res_Node_Field_2 : Node_Id := Empty;
Res_Internal_Kind : Internal_Element_Kinds := Internal_Kind;
Res_Enclosing_Unit : Asis.Compilation_Unit;
Res_Is_Part_Of_Implicit : Boolean := False;
Res_Is_Part_Of_Inherited : Boolean := False;
Res_Is_Part_Of_Instance : Boolean := False;
Res_Spec_Case : Special_Cases := Spec_Case;
Res_Char_Code : Char_Code := 0;
Res_Parenth_Count : Nat := 0;
begin
-- first, check if Node is not Empty and return Nil_Element otherwise:
if No (Node) then
return Nil_Element;
end if;
if Using_Original_Node
and then
Is_Rewrite_Substitution (Node)
and then
not Is_Rewritten_Function_Prefix_Notation (Node)
then
-- Note that for a function call in Object.Operation notation we do
-- not use the original node at all, because the original tree
-- structure is not properly decorated and analyzed, but the
-- rewritten subtree contains all we need
Res_Node := Original_Node (Node);
if Is_Rewrite_Substitution (Res_Node) then
Res_Node := Original_Node (Res_Node);
end if;
else
Res_Node := Node;
end if;
-- setting the global Parent_Node needed for computing the kind of
-- the returned Element
Parent_Node := Parent (Node);
if not Is_Nil (Starting_Element) then
-- We need this to define the enclosing unit for the new Element
Res_Spec_Case := Special_Case (Starting_Element);
end if;
-- setting result's enclosing unit:
if Exists (In_Unit) then
-- if In_Unit is set, we take information about the result's
-- enclosing unit from it, unless we have to create a configuration
-- prarma or component thereof.
if Spec_Case = Configuration_File_Pragma then
Res_Enclosing_Unit := Get_Configuration_CU (In_Unit);
else
Res_Enclosing_Unit := In_Unit;
end if;
elsif not Is_Nil (Starting_Element) then
-- if Starting_Element is set, but In_Unit is not, we take
-- information about the result's enclosing unit from
-- Starting_Element
Res_Enclosing_Unit := Encl_Unit (Starting_Element);
else
-- we can be here only if both Starting_Element and In_Unit are
-- nor set. This is definitely an error.
raise Internal_Implementation_Error;
end if;
-- if Starting_Element is set, we "transfer" everything what is
-- possible from it to the result:
if not Is_Nil (Starting_Element) then
Res_Is_Part_Of_Implicit := Is_From_Implicit (Starting_Element);
Res_Is_Part_Of_Inherited := Is_From_Inherited (Starting_Element);
Res_Is_Part_Of_Instance := Is_From_Instance (Starting_Element);
-- Res_Spec_Case is already set!
if Present (Node_Field_1_Value (Starting_Element)) then
Res_Node_Field_1 := Node_Field_1_Value (Starting_Element);
pragma Assert (Get_Current_Tree = Encl_Tree (Starting_Element));
-- We can not use Asis.Set_Get.Node_Field_1 here, because it
-- might reset the tree.
end if;
if Present (Node_Field_2_Value (Starting_Element)) then
Res_Node_Field_2 := Node_Field_2_Value (Starting_Element);
pragma Assert (Get_Current_Tree = Encl_Tree (Starting_Element));
-- We can not use Asis.Set_Get.Node_Field_2 here, because it
-- might reset the tree.
end if;
if Internal_Kind = A_Defining_Character_Literal or else
Internal_Kind = An_Enumeration_Literal_Specification
then
-- We keep Character_Code unless the result is type definition
-- (it that case keeping Character_Code would make Is_Equal test
-- not work properly
Res_Char_Code := Character_Code (Starting_Element);
end if;
if Res_Spec_Case in Expanded_Spec then
-- We have to reset Res_Spec_Case from
-- Expanded_Package_Instantiation or
-- Expanded_Subprogram_Instantiation to Not_A_Special_Case;
-- because only (the whole) expanded generic declarations can have
-- the value of Special_Case from Expanded_Spec
Res_Spec_Case := Not_A_Special_Case;
end if;
elsif Res_Spec_Case in Expanded_Spec then
Res_Is_Part_Of_Implicit := False;
else
if Is_From_Instance (Original_Node (Node)) or else
Is_Name_Of_Expanded_Subprogram (Res_Node) or else
Part_Of_Pass_Generic_Actual (Original_Node (Node)) or else
Is_Stub_To_Body_Instanse_Replacement (Node) or else
Spec_Case = Expanded_Package_Instantiation or else
Spec_Case = Expanded_Subprogram_Instantiation
then
Res_Is_Part_Of_Instance := True;
end if;
if Inherited then
Res_Is_Part_Of_Inherited := True;
Res_Is_Part_Of_Implicit := True;
end if;
if not Comes_From_Source (Res_Node)
and then
(not Part_Of_Pass_Generic_Actual (Res_Node)
or else
Norm_Case = Is_Normalized_Defaulted_For_Box)
and then
not Is_Name_Of_Expanded_Subprogram (Res_Node)
then
Res_Is_Part_Of_Implicit := True;
end if;
end if;
-- This patch below is really terrible!!! requires revising!!!
-- ???
if Spec_Case = Expanded_Package_Instantiation or else
Spec_Case = Expanded_Subprogram_Instantiation
then
Res_Is_Part_Of_Instance := True;
end if;
-- if Spec_Case is set explicitly, we should set (or reset)
-- Res_Spec_Case from it
if Spec_Case /= Not_A_Special_Case then
Res_Spec_Case := Spec_Case;
end if;
-- computing the kind of the result and correcting Special_Case,
-- if needed
if Res_Internal_Kind = Not_An_Element then
-- Res_Internal_Kind is initialized by the value of the
-- Internal_Kind parameter. If this value differs from
-- Not_An_Element, we simply does not change it
if Parenth_Count (Res_Node, Node) > 0 and then
Considering_Parent_Count
then
-- special processing for A_Parenthesized_Expression
Res_Internal_Kind := A_Parenthesized_Expression;
Res_Parenth_Count := Parenth_Count (Res_Node, Node);
else
-- from Sinfo (spec, rev. 1.334):
---------------------------------
-- 9.5.3 Entry Call Statement --
---------------------------------
-- ENTRY_CALL_STATEMENT ::= entry_NAME [ACTUAL_PARAMETER_PART];
-- The parser may generate a procedure call for this construct. The
-- semantic pass must correct this misidentification where needed.
if Res_Node /= Node and then
((Nkind (Res_Node) = N_Procedure_Call_Statement and then
Nkind (Node) = N_Entry_Call_Statement and then
not Is_Protected_Procedure_Call (Node))
or else
(Nkind (Res_Node) = N_Explicit_Dereference and then
Nkind (Node) = N_Function_Call))
then
Res_Node := Node; -- ???
-- There is no need to keep the original structure in this
-- case, it is definitely wrong
if Nkind (Node) = N_Entry_Call_Statement then
Res_Internal_Kind := An_Entry_Call_Statement;
else
Res_Internal_Kind := A_Function_Call;
end if;
else
if (Nkind (Node) = N_Integer_Literal or else
Nkind (Node) = N_Real_Literal)
and then
((not Is_Rewrite_Substitution (Node))
or else
Nkind (Original_Node (Node)) = N_Identifier)
and then
Comes_From_Source (Node) = False
and then
Is_Static_Expression (Node)
and then
Present (Original_Entity (Node))
then
-- See BB10-002: The special case of named numbers rewritten
-- into numeric literals.
Res_Spec_Case := Rewritten_Named_Number;
Res_Internal_Kind := An_Identifier;
else
Res_Internal_Kind := Asis_Internal_Element_Kind (Res_Node);
end if;
end if;
end if;
end if;
-- and now we have to check if the Element to be returned is from the
-- Standard package, and if it is, we have to correct Res_Spec_Case:
if Res_Spec_Case = Not_A_Special_Case and then
Sloc (Res_Node) <= Standard_Location
then
if Nkind (Node) = N_Defining_Character_Literal then
Res_Spec_Case := Stand_Char_Literal;
else
Res_Spec_Case := Explicit_From_Standard;
end if;
end if;
if Res_Spec_Case = Explicit_From_Standard or else
Res_Spec_Case = Stand_Char_Literal
then
Res_Is_Part_Of_Implicit := False;
end if;
-- ??? This assignment is not necessary and has been
-- introduced to workaround a problem with the sgi n32 compiler
R_Node := Node;
if Nkind (Node) = N_Function_Call and then
(Res_Internal_Kind = A_Selected_Component or else
Res_Internal_Kind = An_Enumeration_Literal)
then
-- a reference to an overloaded enumeration literal represented as a
-- function call, we have to go one step down:
R_Node := Sinfo.Name (Node);
Res_Node := R_Node;
else
R_Node := Node;
end if;
if Present (Node_Field_1) then
Res_Node_Field_1 := Node_Field_1;
end if;
if Present (Node_Field_2) then
Res_Node_Field_2 := Node_Field_2;
end if;
return Set_Element (
Node => Res_Node,
R_Node => R_Node,
Node_Field_1 => Res_Node_Field_1,
Node_Field_2 => Res_Node_Field_2,
Encl_Unit => Res_Enclosing_Unit,
Int_Kind => Res_Internal_Kind,
Implicit => Res_Is_Part_Of_Implicit,
Inherited => Res_Is_Part_Of_Inherited,
Instance => Res_Is_Part_Of_Instance,
Spec_Case => Res_Spec_Case,
Norm_Case => Norm_Case,
Par_Count => Res_Parenth_Count,
Character_Code => Res_Char_Code);
end Node_To_Element_New;
--------------------
-- Normalize_Name --
--------------------
procedure Normalize_Name (Capitalized : Boolean := False) is
begin
if Namet.Name_Len = 0 then
return;
end if;
Namet.Name_Buffer (1) := To_Upper (Namet.Name_Buffer (1));
for I in 1 .. Namet.Name_Len - 1 loop
if Capitalized or else
Namet.Name_Buffer (I) = '_'
then
Namet.Name_Buffer (I + 1) := To_Upper (Namet.Name_Buffer (I + 1));
end if;
end loop;
end Normalize_Name;
-----------------------------
-- Normalized_Namet_String --
-----------------------------
function Normalized_Namet_String (Node : Node_Id) return String is
Capitalize : Boolean := False;
begin
Namet.Get_Name_String (Chars (Node));
if Node = Standard_ASCII or else
Node in SE (S_LC_A) .. SE (S_LC_Z) or else
Node in SE (S_NUL) .. SE (S_US) or else
Node = SE (S_DEL)
then
Capitalize := True;
end if;
Normalize_Name (Capitalize);
return Namet.Name_Buffer (1 .. Namet.Name_Len);
end Normalized_Namet_String;
-----------------------------
-- Not_Implemented_Mapping --
-----------------------------
function Not_Implemented_Mapping
(Node : Node_Id)
return Internal_Element_Kinds is
begin
Not_Implemented_Yet (Diagnosis =>
"AST Node -> Asis.Element mapping for the "
& Node_Kind'Image (Nkind (Node))
& " Node Kind value has not been implemented yet");
return Not_An_Element; -- to make the code syntactically correct;
end Not_Implemented_Mapping;
procedure Not_Implemented_Mapping (Source_Node_Kind : Node_Kind) is
begin
Not_Implemented_Yet (Diagnosis =>
"AST Node -> Asis.Element mapping for the "
& Node_Kind'Image (Source_Node_Kind)
& " Node Kind value has not been implemented yet");
end Not_Implemented_Mapping;
----------------------------------
-- Ordinary_Inclusion_Condition --
----------------------------------
function Ordinary_Inclusion_Condition (Node : Node_Id) return Boolean is
O_Node : constant Node_Id := Original_Node (Node);
Arg_Kind : constant Node_Kind := Nkind (Node);
Result : Boolean := True;
begin
if Is_Rewrite_Insertion (Node) or else
May_Be_Included_Switch (Nkind (Node)) = False or else
(Nkind (Node) = N_With_Clause
and then
Implicit_With (Node)) or else
(Nkind (Node) = N_Entry_Call_Statement
and then
Node = O_Node)
then
Result := False;
elsif not Comes_From_Source (O_Node) then
if Arg_Kind = N_Object_Renaming_Declaration then
-- For FB02-008
if (Nkind (Sinfo.Name (Node)) = N_Identifier
and then
Is_Internal_Name (Chars (Sinfo.Name (Node))))
or else
(Nkind (Sinfo.Subtype_Mark (Node)) = N_Identifier
and then
Is_Internal_Name (Chars (Sinfo.Subtype_Mark (Node))))
then
Result := False;
end if;
elsif not ((Arg_Kind = N_Object_Declaration
and then
not Is_Internal_Name (Chars (Defining_Identifier (O_Node))))
or else
Arg_Kind = N_Component_Declaration
or else
Arg_Kind = N_Discriminant_Specification
or else
Arg_Kind = N_Parameter_Specification
or else
Arg_Kind = N_Component_Association
or else
((Arg_Kind = N_Integer_Literal
or else
Arg_Kind = N_Real_Literal)
and then
Is_Static_Expression (Node))
-- This codition describes the special case of a named
-- nimber rewritten into a literal node, see BB10-002
or else
Sloc (Node) <= Standard_Location
or else
Is_Rewritten_Function_Prefix_Notation (Parent (Node))
or else
Pass_Generic_Actual (Node))
then
Result := False;
end if;
end if;
return Result;
end Ordinary_Inclusion_Condition;
-------------------
-- Parenth_Count --
-------------------
function Parenth_Count
(N : Node_Id;
Original_N : Node_Id)
return Nat
is
Result : Nat := Paren_Count (N);
begin
if Result > 0 and then
Nkind (Original_Node (Parent (Original_N))) = N_Qualified_Expression
then
Result := Result - 1;
end if;
return Result;
end Parenth_Count;
-----------------------------------------
-- Set_Concurrent_Inherited_Components --
-----------------------------------------
procedure Set_Concurrent_Inherited_Components
(Type_Def : Asis.Element;
Include_Discs : Boolean := True)
is
Type_Entity : Entity_Id;
Next_Comp_Node : Node_Id;
begin
Asis_Element_Table.Init;
Type_Entity := Defining_Identifier (Parent (R_Node (Type_Def)));
if Present (First_Entity (Type_Entity)) then
if Include_Discs then
Next_Comp_Node := First_Entity (Type_Entity);
while Ekind (Next_Comp_Node) = E_Discriminant loop
Asis_Element_Table.Append
(Node_To_Element_New
(Node => Parent (Next_Comp_Node),
Starting_Element => Type_Def));
Set_Node_Field_2
(Asis_Element_Table.Table (Asis_Element_Table.Last),
Next_Comp_Node);
-- This is needed to unify the processing of inherited
-- discriminants in Asis.Declarations.Names
Next_Comp_Node := Next_Entity (Next_Comp_Node);
end loop;
end if;
-- To set all the non-discriminant components, we have to go to the
-- definition of the root concurrent type and to traverse it to
-- grab all this components, because the (non-discrimiinant)
-- entities attached to the entity of the derived concurrent type
-- are artificial entities created for further tree expansion
while Type_Entity /= Etype (Type_Entity) loop
Type_Entity := Etype (Type_Entity);
end loop;
Type_Entity := Parent (Type_Entity);
if Nkind (Type_Entity) = N_Task_Type_Declaration then
Type_Entity := Task_Definition (Type_Entity);
else
Type_Entity := Protected_Definition (Type_Entity);
end if;
Next_Comp_Node :=
First_Non_Pragma (Visible_Declarations (Type_Entity));
while Present (Next_Comp_Node) loop
Asis_Element_Table.Append
(Node_To_Element_New
(Node => Next_Comp_Node,
Starting_Element => Type_Def));
Next_Comp_Node := Next_Non_Pragma (Next_Comp_Node);
end loop;
if Present (Private_Declarations (Type_Entity)) then
Next_Comp_Node :=
First_Non_Pragma (Private_Declarations (Type_Entity));
while Present (Next_Comp_Node) loop
Asis_Element_Table.Append
(Node_To_Element_New
(Node => Next_Comp_Node,
Starting_Element => Type_Def));
Next_Comp_Node := Next_Non_Pragma (Next_Comp_Node);
end loop;
end if;
end if;
end Set_Concurrent_Inherited_Components;
----------------------
-- Set_Element_List --
----------------------
-- At the moment, the implementation is just a copy from N_To_E_List_New
-- with changes related to building the result list in Element Table
procedure Set_Element_List
(List : List_Id;
Include_Pragmas : Boolean := False;
Starting_Element : Asis.Element := Asis.Nil_Element;
Node_Knd : Node_Kind := N_Empty;
Internal_Kind : Internal_Element_Kinds := Not_An_Element;
Special_Case : Special_Cases := Not_A_Special_Case;
Norm_Case : Normalization_Cases := Is_Not_Normalized;
In_Unit : Asis.Compilation_Unit := Asis.Nil_Compilation_Unit;
Append : Boolean := False)
is
List_El : Node_Id;
List_El_Kind : Node_Kind;
function First_List_Element (List : List_Id) return Node_Id;
-- returns the first element of List, taking into account
-- the value of Include_Pragmas
function Next_List_Element (Node : Node_Id) return Node_Id;
-- returns the first element of List, taking into account
-- the value of Include_Pragmas
procedure Skip_Pragmas (N : in out Node_Id);
-- Supposes that Is_List_Member (N). If N is of N_Pragma kind and if
-- Include_Pragmas is set OFF, moves N to the next element of the same
-- list that is not of N_Pragma kinds or set it to Empty if there is no
-- such node. We can not just use Nlists.First_Non_Pragma and
-- Nlists.Next_Non_Pragma, because they also skip N_Null_Statement
-- nodes.
------------------------
-- First_List_Element --
------------------------
function First_List_Element (List : List_Id) return Node_Id is
Result : Node_Id;
begin
Result := First (List);
Skip_Pragmas (Result);
if Is_Rewrite_Substitution (Result)
and then
Nkind (Result) = N_Loop_Statement
and then
Nkind (Original_Node (Result)) = N_Goto_Statement
then
-- This is the case when infinite loop implemented as
--
-- <<Target>> ...
-- ...
-- goto Target;
--
-- Is rewritten into N_Loop_Statement
if not Is_Empty_List (Statements (Result)) then
Result := First (Statements (Result));
end if;
end if;
return Result;
end First_List_Element;
-----------------------
-- Next_List_Element --
-----------------------
function Next_List_Element (Node : Node_Id) return Node_Id is
Tmp : Node_Id;
Result : Node_Id;
begin
Result := Next (Node);
Skip_Pragmas (Result);
if Is_Rewrite_Substitution (Result)
and then
Nkind (Result) = N_Loop_Statement
and then
Nkind (Original_Node (Result)) = N_Goto_Statement
then
-- This is the case when infinite loop implemented as
--
-- <<Target>> ...
-- ...
-- goto Target;
--
-- Is rewritten into N_Loop_Statement
if not Is_Empty_List (Statements (Result)) then
Result := First (Statements (Result));
end if;
end if;
if No (Result) then
Tmp := Parent (Node);
if Is_Rewrite_Substitution (Tmp)
and then
Nkind (Tmp) = N_Loop_Statement
and then
Nkind (Original_Node (Tmp)) = N_Goto_Statement
then
-- We have just finished traversing of the artificial loop
-- statement created for goto, so it's tome to
-- return this goto itself. Note, that we are returning the
-- rewritten N_Loop_Statement to keep list and parent
-- references
Result := Tmp;
end if;
end if;
return Result;
end Next_List_Element;
------------------
-- Skip_Pragmas --
------------------
procedure Skip_Pragmas (N : in out Node_Id) is
begin
if not Include_Pragmas then
while Present (N)
and then
Nkind (Original_Node (N)) = N_Pragma
loop
N := Next (N);
end loop;
end if;
end Skip_Pragmas;
begin
if not Append then
Internal_Asis_Element_Table.Init;
end if;
if No (List) or else Is_Empty_List (List) then
return;
end if;
List_El := First_List_Element (List);
while Present (List_El) loop
if Debug_Flag_L then
Write_Node (N => List_El,
Prefix => "Set_Element_List debug info-> ");
Write_Str ("May_Be_Included is ");
Write_Str (Boolean'Image (May_Be_Included (List_El)));
Write_Eol;
Write_Eol;
end if;
List_El_Kind := Nkind (List_El);
if May_Be_Included (List_El) and then
not ((Node_Knd /= N_Empty) and then (List_El_Kind /= Node_Knd))
then
Internal_Asis_Element_Table.Append
(Node_To_Element_New
(Starting_Element => Starting_Element,
Node => List_El,
Internal_Kind => Internal_Kind,
Spec_Case => Special_Case,
Norm_Case => Norm_Case,
In_Unit => In_Unit));
if List_El_Kind = N_Object_Declaration or else
List_El_Kind = N_Number_Declaration or else
List_El_Kind = N_Discriminant_Specification or else
List_El_Kind = N_Component_Declaration or else
List_El_Kind = N_Parameter_Specification or else
List_El_Kind = N_Exception_Declaration or else
List_El_Kind = N_Formal_Object_Declaration or else
List_El_Kind = N_With_Clause
then
Skip_Normalized_Declarations (List_El);
end if;
end if;
List_El := Next_List_Element (List_El);
end loop;
end Set_Element_List;
---------------------------------
-- Set_Inherited_Discriminants --
---------------------------------
procedure Set_Inherited_Discriminants (Type_Def : Asis.Element) is
Next_Discr_Elmt : Elmt_Id;
Next_Elem_Node : Node_Id;
begin
Next_Elem_Node := Defining_Identifier (Parent (R_Node (Type_Def)));
if Present (Stored_Constraint (Next_Elem_Node)) then
Asis_Element_Table.Init;
Next_Discr_Elmt := First_Elmt (Stored_Constraint (Next_Elem_Node));
while Present (Next_Discr_Elmt) loop
Next_Elem_Node := Parent (Entity (Node (Next_Discr_Elmt)));
Asis_Element_Table.Append
(Node_To_Element_New
(Node => Next_Elem_Node,
Internal_Kind => A_Discriminant_Specification,
Starting_Element => Type_Def));
Next_Discr_Elmt := Next_Elmt (Next_Discr_Elmt);
end loop;
end if;
end Set_Inherited_Discriminants;
------------------------------
-- Set_Inherited_Components --
------------------------------
procedure Set_Inherited_Components
(Type_Def : Asis.Element;
Include_Discs : Boolean := True)
is
Next_Comp_Node : Node_Id;
function Is_Implicit_Component (E : Entity_Id) return Boolean;
-- Checks if E is an entity representing implicit inherited
-- component
function Is_Implicit_Component (E : Entity_Id) return Boolean is
Result : Boolean := False;
begin
if Ekind (E) = E_Component then
Result :=
(E /= Original_Record_Component (E)) or else
not Comes_From_Source (Parent (E));
elsif Ekind (E) = E_Discriminant and then Include_Discs then
Result := not Is_Completely_Hidden (E);
end if;
return Result;
end Is_Implicit_Component;
begin
Asis_Element_Table.Init;
Next_Comp_Node := Defining_Identifier (Parent (R_Node (Type_Def)));
if Ekind (Next_Comp_Node) = E_Record_Subtype then
-- For subtypes we may have components depending on discriminants
-- skipped in case of static discriminant constraints
Next_Comp_Node := Etype (Next_Comp_Node);
end if;
if Present (First_Entity (Next_Comp_Node)) then
Next_Comp_Node := First_Entity (Next_Comp_Node);
while Present (Next_Comp_Node) loop
if Is_Implicit_Component (Next_Comp_Node) then
Asis_Element_Table.Append
(Node_To_Element_New
(Node => Parent (Next_Comp_Node),
Starting_Element => Type_Def));
Set_Node_Field_2
(Asis_Element_Table.Table (Asis_Element_Table.Last),
Next_Comp_Node);
Set_From_Implicit
(Asis_Element_Table.Table (Asis_Element_Table.Last), True);
Set_From_Inherited
(Asis_Element_Table.Table (Asis_Element_Table.Last), True);
end if;
Next_Comp_Node := Next_Entity (Next_Comp_Node);
end loop;
end if;
end Set_Inherited_Components;
----------------------------
-- Set_Inherited_Literals --
----------------------------
procedure Set_Inherited_Literals (Type_Def : Asis.Element) is
Next_Literal_Node : Node_Id;
Res_Etype : Entity_Id;
Encl_Type : constant Node_Id := Parent (R_Node (Type_Def));
begin
Asis_Element_Table.Init;
Next_Literal_Node := Defining_Identifier (Parent (R_Node (Type_Def)));
if Present (First_Literal (Next_Literal_Node)) then
Next_Literal_Node := First_Literal (Next_Literal_Node);
Res_Etype := Etype (Next_Literal_Node);
while Present (Next_Literal_Node) and then
Etype (Next_Literal_Node) = Res_Etype
loop
Asis_Element_Table.Append
(Node_To_Element_New
(Node => Next_Literal_Node,
Internal_Kind => An_Enumeration_Literal_Specification,
Starting_Element => Type_Def));
Set_Node_Field_1
(Asis_Element_Table.Table (Asis_Element_Table.Last),
Encl_Type);
Set_From_Implicit
(Asis_Element_Table.Table (Asis_Element_Table.Last), True);
Set_From_Inherited
(Asis_Element_Table.Table (Asis_Element_Table.Last), True);
Next_Literal_Node := Next_Entity (Next_Literal_Node);
end loop;
else
Not_Implemented_Yet
(Diagnosis =>
"Asis.Definitions.Implicit_Inherited_Declarations "
& "(derived from Standard character type)");
end if;
end Set_Inherited_Literals;
----------------------------------
-- Skip_Normalized_Declarations --
----------------------------------
procedure Skip_Normalized_Declarations (Node : in out Node_Id) is
Arg_Kind : constant Node_Kind := Nkind (Node);
begin
loop
if Arg_Kind = N_Object_Declaration or else
Arg_Kind = N_Number_Declaration or else
Arg_Kind = N_Discriminant_Specification or else
Arg_Kind = N_Component_Declaration or else
Arg_Kind = N_Parameter_Specification or else
Arg_Kind = N_Exception_Declaration or else
Arg_Kind = N_Formal_Object_Declaration
then
if More_Ids (Node) then
Node := Next (Node);
while Nkind (Node) /= Arg_Kind loop
-- some implicit subtype declarations may be inserted by
-- the compiler in between the normalized declarations, so:
Node := Next (Node);
end loop;
else
return;
end if;
else
-- Arg_Kind = N_With_Clause.
-- Note that we should skip implicit clauses that can be added by
-- front-end.
if Comes_From_Source (Node) and then Last_Name (Node) then
return;
else
Node := Next (Node);
end if;
end if;
end loop;
end Skip_Normalized_Declarations;
-------------------------------
-- Subprogram_Attribute_Kind --
-------------------------------
function Subprogram_Attribute_Kind
(Node : Node_Id)
return Internal_Element_Kinds
is
Attribute_Chars : Name_Id;
begin
Attribute_Chars := Attribute_Name (Node);
-- language-defined attributes which are functions:
if Attribute_Chars = Name_Adjacent then
return An_Adjacent_Attribute;
elsif Attribute_Chars = Name_Ceiling then
return A_Ceiling_Attribute;
elsif Attribute_Chars = Name_Compose then
return A_Compose_Attribute;
elsif Attribute_Chars = Name_Copy_Sign then
return A_Copy_Sign_Attribute;
elsif Attribute_Chars = Name_Exponent then
return An_Exponent_Attribute;
elsif Attribute_Chars = Name_Floor then
return A_Floor_Attribute;
elsif Attribute_Chars = Name_Fraction then
return A_Fraction_Attribute;
elsif Attribute_Chars = Name_Image then
return An_Image_Attribute;
elsif Attribute_Chars = Name_Input then
return An_Input_Attribute;
elsif Attribute_Chars = Name_Leading_Part then
return A_Leading_Part_Attribute;
elsif Attribute_Chars = Name_Machine then
return A_Machine_Attribute;
elsif Attribute_Chars = Name_Max then
return A_Max_Attribute;
elsif Attribute_Chars = Name_Min then
return A_Min_Attribute;
elsif Attribute_Chars = Name_Model then
return A_Model_Attribute;
elsif Attribute_Chars = Name_Pos then
return A_Pos_Attribute;
elsif Attribute_Chars = Name_Pred then
return A_Pred_Attribute;
elsif Attribute_Chars = Name_Remainder then
return A_Remainder_Attribute;
elsif Attribute_Chars = Name_Round then
return A_Round_Attribute;
elsif Attribute_Chars = Name_Rounding then
return A_Rounding_Attribute;
elsif Attribute_Chars = Name_Scaling then
return A_Scaling_Attribute;
elsif Attribute_Chars = Name_Succ then
return A_Succ_Attribute;
elsif Attribute_Chars = Name_Truncation then
return A_Truncation_Attribute;
elsif Attribute_Chars = Name_Unbiased_Rounding then
return An_Unbiased_Rounding_Attribute;
elsif Attribute_Chars = Name_Val then
return A_Val_Attribute;
elsif Attribute_Chars = Name_Value then
return A_Value_Attribute;
elsif Attribute_Chars = Name_Wide_Image then
return A_Wide_Image_Attribute;
elsif Attribute_Chars = Name_Wide_Value then
return A_Wide_Value_Attribute;
-- |A2005 start
-- Ada 2005 attributes that are functions:
elsif Attribute_Chars = Name_Machine_Rounding then
return A_Machine_Rounding_Attribute;
elsif Attribute_Chars = Name_Mod then
return A_Mod_Attribute;
elsif Attribute_Chars = Name_Wide_Wide_Image then
return A_Wide_Wide_Image_Attribute;
elsif Attribute_Chars = Name_Wide_Wide_Value then
return A_Wide_Wide_Value_Attribute;
-- |A2005 end
-- language-defined attributes which are procedures:
elsif Attribute_Chars = Name_Output then
return An_Output_Attribute;
elsif Attribute_Chars = Name_Read then
return A_Read_Attribute;
elsif Attribute_Chars = Name_Write then
return A_Write_Attribute;
-- Implementation Dependent Attributes-Functions --
elsif Attribute_Chars = Name_Asm_Input or else
Attribute_Chars = Name_Asm_Output or else
Attribute_Chars = Name_Enum_Rep or else
Attribute_Chars = Name_Fixed_Value or else
Attribute_Chars = Name_Integer_Value
then
return An_Implementation_Defined_Attribute;
else
return An_Unknown_Attribute;
end if;
end Subprogram_Attribute_Kind;
-----------------
-- Ureal_Image --
-----------------
function Ureal_Image (N : Node_Id) return String is
Result : String (1 .. 256);
Res_Len : Natural range 0 .. 256 := 0;
-- bad solution!!! ASIS needs a general-purpose String buffer
-- somewhere!!! ???
Real : constant Ureal := Realval (N);
Nom : constant Uint := Norm_Num (Real);
Den : constant Uint := Norm_Den (Real);
Dot_Outputed : Boolean := False;
begin
if UR_Is_Negative (Real) then
Res_Len := Res_Len + 1;
Result (Res_Len) := '(';
Res_Len := Res_Len + 1;
Result (Res_Len) := '-';
end if;
UI_Image (Nom, Decimal);
for I in 1 .. UI_Image_Length loop
if UI_Image_Buffer (I) = 'E' then
Res_Len := Res_Len + 1;
Result (Res_Len) := '.';
Res_Len := Res_Len + 1;
Result (Res_Len) := '0';
Res_Len := Res_Len + 1;
Result (Res_Len) := 'E';
Dot_Outputed := True;
else
Res_Len := Res_Len + 1;
Result (Res_Len) := UI_Image_Buffer (I);
end if;
end loop;
if not Dot_Outputed then
Res_Len := Res_Len + 1;
Result (Res_Len) := '.';
Res_Len := Res_Len + 1;
Result (Res_Len) := '0';
end if;
Dot_Outputed := False;
Res_Len := Res_Len + 1;
Result (Res_Len) := '/';
UI_Image (Den, Decimal);
for I in 1 .. UI_Image_Length loop
if UI_Image_Buffer (I) = 'E' then
Res_Len := Res_Len + 1;
Result (Res_Len) := '.';
Res_Len := Res_Len + 1;
Result (Res_Len) := '0';
Res_Len := Res_Len + 1;
Result (Res_Len) := 'E';
Dot_Outputed := True;
else
Res_Len := Res_Len + 1;
Result (Res_Len) := UI_Image_Buffer (I);
end if;
end loop;
if not Dot_Outputed then
Res_Len := Res_Len + 1;
Result (Res_Len) := '.';
Res_Len := Res_Len + 1;
Result (Res_Len) := '0';
end if;
if UR_Is_Negative (Real) then
Res_Len := Res_Len + 1;
Result (Res_Len) := ')';
end if;
return Result (1 .. Res_Len);
end Ureal_Image;
end A4G.Mapping;
|