This file is indexed.

/usr/include/BALL/QSAR/allModel.h is in libball1.4-dev 1.4.1+20111206-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
/* allModel.h
 * 
 * Copyright (C) 2009 Marcel Schumann
 * 
 * This file is part of QuEasy -- A Toolbox for Automated QSAR Model
 * Construction and Validation.
 * QuEasy is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or (at
 * your option) any later version.
 * 
 * QuEasy is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 */

  // -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
//

#ifndef ALLMODEL
#define ALLMODEL

#ifndef NLMODEL
#include <BALL/QSAR/nonlinearModel.h>
#endif


namespace BALL
{
	namespace QSAR 
	{

		/** class for automated lazy learning (ALL-QSAR) */
		class BALL_EXPORT ALLModel : public NonLinearModel
		{ 
			public:
				/** @name Constructors and Destructors
				 */
				//@{
				ALLModel(const QSARData& q, double kw=4);

				~ALLModel();
				//@}
				
				/** @name Accessors
				 */
				//@{
				void setKw(double kw);
				
				virtual Vector<double> predict(const vector<double>& substance, bool transform=1);
				
				/** automated lazy learning does not have a seperate training step */
				void train(){};
				
				/** Tries to find the optimal kernel width for the current data. Therefore some training data must have been read by the connected QSARData object before running this method. */
				virtual bool optimizeParameters(int d, int no_steps);
				
				/** returns the current kernel width */
				double getKw();
				
				virtual void setParameters(vector<double>& v);
				
				virtual vector<double> getParameters() const;
				
				void saveToFile(string filename);
				
				void readFromFile(string filename);
				//@}
				
				
			protected:
				
				/** @name Accessors
				 */
				//@{
				virtual void calculateWeights(BALL::Matrix<double>& dist, BALL::Vector<double>& w);
				
				/** calculates weighted BALL::Matrix<double> X^T*X  */
				void calculateXX(BALL::Vector<double>& w, BALL::Matrix<double>& res);
			
				/** calculates weighted BALL::Matrix<double> X^T*Y  */
				void calculateXY(BALL::Vector<double>& w, BALL::Matrix<double>& res);
				
				/** calculates pairwise euclidean distance between all substances of m1 and m2 and saves them to BALL::Matrix<double> output */
				void calculateEuclDistanceMatrix(BALL::Matrix<double>& m1, BALL::Matrix<double>& m2, BALL::Matrix<double>& output);
				//@}
				
				
				/** @name Attributes
				 */
				//@{
				/** kernel width */
				double kw_;
				double lambda_;
				//@}
		};
	}
}

#endif // ALLMODEL