This file is indexed.

/usr/include/BALL/QSAR/gpModel.h is in libball1.4-dev 1.4.1+20111206-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
/* gpModel.h
 * 
 * Copyright (C) 2009 Marcel Schumann
 * 
 * This file is part of QuEasy -- A Toolbox for Automated QSAR Model
 * Construction and Validation.
 * QuEasy is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or (at
 * your option) any later version.
 * 
 * QuEasy is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 */

// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
//

#ifndef GPMODEL
#define GPMODEL

#ifndef KMODEL
#include <BALL/QSAR/kernelModel.h>
#endif

#ifndef NLMODEL
#include <BALL/QSAR/nonlinearModel.h>
#endif

namespace BALL
{
	namespace QSAR
	{	/** class for gaussian process regression */
		class BALL_EXPORT GPModel : public KernelModel
		{
			public:
				/** @name Constructors and Destructors
				 */
				//@{
				GPModel(const QSARData& q, int k_type, double p1, double p2=-1);
				
				GPModel(const QSARData& q, Vector<double>& w);
				
				/** constructor that sets KernelModel.f to s1 and KernelModel.g to s2 */
				GPModel(const QSARData& q, String s1, String s2);
				
				GPModel(const QSARData& q, const LinearModel& lm, int column);

				~GPModel();
				//@}
				
				/** @name Accessors
				 */
				//@{
				void train();
				
				Vector<double> predict(const vector<double>& substance, bool transform=1);
				
				/** calculates standart error for the last prediction as \f$ \sqrt{k(x_*,x_*)-\sum_{i=1}^n \sum_{j=1}^n k(x_*,x_i)*k(x_*,x_j)-L_{ij} } \f$*/
				double calculateStdErr();
				
				void setParameters(vector<double>& v);
				
				vector<double> getParameters() const;
				//@}
				
			private:
				/** @name Attributes
				 */
				//@{
				Matrix<double> L_;
				
				/** the last predicted substance */
				Vector<double> input_;
				
				Vector<double> K_t_;
				
				double lambda_;
				//@}
		};
	}
}

#endif // GPMODEL