This file is indexed.

/usr/include/BALL/QSAR/libsvmModel.h is in libball1.4-dev 1.4.1+20111206-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
/* libsvmModel.h
 * 
 * Copyright (C) 2009 Marcel Schumann
 * 
 * This file is part of QuEasy -- A Toolbox for Automated QSAR Model
 * Construction and Validation.
 * QuEasy is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or (at
 * your option) any later version.
 * 
 * QuEasy is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 */

// -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
//

#ifndef LIBSVMMODELH
#define LIBSVMMODELH

#ifndef SVRMODEL
#include <BALL/QSAR/svrModel.h>
#endif

#include <fstream>
#include <svm.h>


namespace BALL
{
	namespace QSAR
	{
		class BALL_EXPORT LibsvmModel : public SVRModel
		{
			public:
				/** @name Constructors and Destructors
				 */
				//@{
				LibsvmModel(const QSARData& q, int k_type, double p1, double p2=-1);

				virtual ~LibsvmModel();
				//@}
				
				
				/** @name Accessors
				 */
				//@{				
				void train();
				
				//RowVector predict(const vector<double>& substance, bool transform=1);
				
				void setParameters(vector<double>& v);
				
				virtual vector<double> getParameters() const;
				//@}
				
				
			private:

				// part of libsvm; unfortunately defined in svm.C instead of svm.h, so that we need this hack ...
				struct svm_model
				{
					svm_parameter param;	// parameter
					int nr_class;		// number of classes, = 2 in regression/one class svm
					int l;			// total #SV
					svm_node **SV;		// SVs (SV[l])
					double **sv_coef;	// coefficients for SVs in decision functions (sv_coef[k-1][l])
					double *rho;		// constants in decision functions (rho[k*(k-1)/2])
					double *probA;          // pariwise probability information
					double *probB;

					// for classification only
					int *label;		// label of each class (label[k])
					int *nSV;		// number of SVs for each class (nSV[k])
					// nSV[0] + nSV[1] + ... + nSV[k-1] = l
					// XXX
					int free_sv;		// 1 if svm_model is created by svm_load_model
									// 0 if svm_model is created by svm_train
				};
				
				struct svm_problem* createProblem(int response_id);
				
				void createParameters();
				
				struct svm_model* svm_train_result_;
				
				struct svm_parameter parameters_;
				
				struct svm_node* x_space_;
				
				/** determines whether nu-SVR is to be used; else eps-SVR is applied */
				bool use_nu_;
				
				/** determines whether the libsvm shrinking heuristics is to be used */
				bool use_shrinking_;
				
				double nu_;
				double p_;
				double eps_;
				double C_;
				
				
		};
	}
}



#endif // LIBSVMMODELH