/usr/include/BALL/STRUCTURE/numericalSAS.h is in libball1.4-dev 1.4.1+20111206-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 | // -*- Mode: C++; tab-width: 2; -*-
// vi: set ts=2:
//
#ifndef BALL_STRUCTURE_NUMERICALSAS_H
#define BALL_STRUCTURE_NUMERICALSAS_H
#ifndef BALL_COMMON_H
# include <BALL/common.h>
#endif
#ifndef BALL_DATATYPE_OPTIONS_H
# include <BALL/DATATYPE/options.h>
#endif
#ifndef BALL_MATHS_SURFACE_H
# include <BALL/MATHS/surface.h>
#endif
#ifndef BALL_MATHS_VECTOR3_H
# include <BALL/MATHS/vector3.h>
#endif
namespace BALL
{
class Atom;
class AtomContainer;
template <typename Key, typename T>
class HashMap;
class TriangulatedSphere;
/** @name Fast Numerical Calculation of Solvent Accessible Surface Area.
These functions are loosely based on the algorithm by Eisenhaber, Lijnzaad, Argos,
Sander, and Scharf ("The Double Cubic Lattice Method: Efficient Approaches to
numerical Integration of Surface Area and Volume and to Dot Surface Contouring
of Molecular Assemblies", J. Comput. Chem. (1995), <b> 15 </b>, 273-284)
and Eisenhaber and Argos ("Improved Strategy in Analytic Surface Calculation
for Molecular Systems: Handling of Singularities and Computational Efficiency"
J. Comput. Chem. (1993), <b> 14 </b>, 1272-1280).
\ingroup Surface
@{
*/
class BALL_EXPORT NumericalSAS
{
public:
/** @name Constant Definitions
*/
//@{
/** Option names
*/
struct BALL_EXPORT Option
{
/** This flag decides whether total area and area per atom will
* be computed (default = true).
*/
static const String COMPUTE_AREA;
/** This flag decides whether total volume and volume per atom will
* be computed (default = true).
*/
static const String COMPUTE_VOLUME;
/** This flag decides whether surface points and normals will be
* explicitly computed and stored in the class (default = false).
*
* Please note that the normals will not have unit length, but will
* be scaled according such that the sum over all normal lengths yields
* the surface area.
*/
static const String COMPUTE_SURFACE;
/** This flag decides whether surface points and normals per atom
* will be explicitly computed and stored in the class
* (default = false).
*
* Please note that the normals will not have unit length, but will
* be scaled according such that the sum over all normal lengths yields
* the surface area.
*/
static const String COMPUTE_SURFACE_PER_ATOM;
/** This flag decides whether a vector of (atom center, surface) per atom
* will be explicitly computed and stored in the class (default = false).
*
* Please note that the normals will not have unit length, but will
* be scaled according such that the sum over all normal lengths yields
* the surface area.
*/
static const String COMPUTE_SURFACE_MAP;
/** The number of point samples per sphere. Please note that this
* number is a lower limit, since sampling is performed through
* icosahedron or dodecahedron refinement that cannot produce
* arbitrary point numbers.
*/
static const String NUMBER_OF_POINTS;
/** The radius of the spherical probe used for the SAS definition.
*/
static const String PROBE_RADIUS;
};
/** Default values for NumericalSAS options.
*/
struct BALL_EXPORT Default
{
/** This flag decides whether total area and area per atom will
* be computed (default = true).
*/
static const bool COMPUTE_AREA;
/** This flag decides whether total volume and volume per atom will
* be computed (default = true).
*/
static const bool COMPUTE_VOLUME;
/** This flag decides whether surface points and normals will be
* explicitly computed and stored in the class (default = false).
*/
static const bool COMPUTE_SURFACE;
/** This flag decides whether surface points and normals per atom
* will be explicitly computed and stored in the class
* (default = false).
*/
static const bool COMPUTE_SURFACE_PER_ATOM;
/** This flag decides whether a vector of (atom center, surface) per atom
* will be explicitly computed and stored in the class (default = false).
*/
static const bool COMPUTE_SURFACE_MAP;
/** Default number of point samples per sphere (400). Please note
* that this number is a lower limit, since sampling is performed
* through icosahedron or dodecahedron refinement that cannot
* produce arbitrary point numbers. (@see Option::NUMBER_OF_POINTS)
*/
static const Size NUMBER_OF_POINTS;
/** Default radius of the spherical probe used for the SAS
* definition (1.5 \AA). (@see Option::PROBE_RADIUS)
*/
static const float PROBE_RADIUS;
};
//@}
/** @name Constructors and Destructors. **/
//@{
BALL_CREATE(NumericalSAS)
/** Default Constructor.
*/
NumericalSAS();
/** Detailed Constructor.
*/
NumericalSAS(const Options& options);
/** Destructor.
*/
~NumericalSAS();
//@}
/** @name Accessors. **/
//@{
void operator() (const AtomContainer& fragment);
/** Returns the total area of the fragment.
*
* This function only returns sensible values after a call
* to operator() and only if area computation has not been
* disabled through the options.
*/
float getTotalArea() const {return total_area_;}
/** Returns the area per atom of the fragment.
*
* This function only returns sensible values after a call
* to operator() and only if area computation has not been
* disabled through the options.
*/
HashMap<const Atom*, float>& getAtomAreas() {return atom_areas_;}
/** Returns the area per atom of the fragment, const version.
*
* This function only returns sensible values after a call
* to operator() and only if area computation has not been
* disabled through the options.
*/
const HashMap<const Atom*, float>& getAtomAreas() const {return atom_areas_;}
/** Returns the total volume of the fragment.
*
* This function only returns sensible values after a call
* to operator() and only if volume computation has not been
* disabled through the options.
*/
float getTotalVolume() const {return total_volume_;}
/** Returns the volume per atom of the fragment.
*
* This function only returns sensible values after a call
* to operator() and only if volume computation has not been
* disabled through the options.
*/
HashMap<const Atom*, float>& getAtomVolumes() {return atom_volumes_;}
/** Returns the volume per atom of the fragment, const version.
*
* This function only returns sensible values after a call
* to operator() and only if volume computation has not been
* disabled through the options.
*/
const HashMap<const Atom*, float>& getAtomVolumes() const {return atom_volumes_;}
/** Returns the solvent accessible surface as a collection of points and normals.
*
* This function only returns sensible values after a call
* to operator() and only if surface computation has not been
* disabled through the options.
*/
Surface& getSurface() {return surface_;}
/** Returns the solvent accessible surface as a collection of points and normals, const version.
*
* This function only returns sensible values after a call
* to operator() and only if surface computation has not been
* disabled through the options.
*/
const Surface& getSurface() const {return surface_;}
/** Returns the solvent accessible surface as a collection of points and normals per atom.
*
* This function only returns sensible values after a call
* to operator() and only if surface computation per atom has not been
* disabled through the options.
*/
HashMap<const Atom*, Surface>& getSurfacePerAtom() {return atom_surfaces_;}
/** Returns the solvent accessible surface as a collection of points and normals per atom, const version.
*
* This function only returns sensible values after a call
* to operator() and only if surface computation per atom has not been
* disabled through the options.
*/
const HashMap<const Atom*, Surface>& getSurfacePerAtom() const {return atom_surfaces_;}
/** Returns the solvent accessible surface as a collection of points and normals per atom center.
*
* This function only returns sensible values after a call
* to operator() and only if surface computation per atom center has not been
* disabled through the options.
*/
std::vector< std::pair<Vector3, Surface> >& getSurfaceMap() {return atom_surface_map_;}
/** Returns the solvent accessible surface as a collection of points and normals per atom center, const version.
*
* This function only returns sensible values after a call
* to operator() and only if surface computation per atom center has not been
* disabled through the options.
*/
const std::vector< std::pair<Vector3, Surface> >& getSurfaceMap() const {return atom_surface_map_;}
//@}
/** Options.
*/
Options options;
protected:
/** Set values from options. */
void setDefaultOptions_();
/** Precompute the sphere tesselation for the requested
* number of points.
*/
Size computeSphereTesselation_(TriangulatedSphere& result, int num_points);
/// the AtomContainer we are bound to
AtomContainer const* fragment_;
/// mapping of atom to SAS area
HashMap<Atom const*, float> atom_areas_;
/// total solvent accessible area of the fragment
float total_area_;
/// mapping of atom to SAS volume
HashMap<Atom const*, float> atom_volumes_;
/// total solvent accessible volume of the fragment
float total_volume_;
/// the SAS as a surface
Surface surface_;
/// mapping of atom to surface
HashMap<Atom const*, Surface> atom_surfaces_;
/// vector of (atom center, surface)
std::vector< std::pair<Vector3, Surface> > atom_surface_map_;
};
/** @} */
} // namespace BALL
#endif // BALL_STRUCTURE_NUMERICALSAS_H
|