/usr/include/boost/numeric/ublas/blas.hpp is in libboost1.48-dev 1.48.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 | //
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_BLAS_
#define _BOOST_UBLAS_BLAS_
#include <boost/numeric/ublas/traits.hpp>
namespace boost { namespace numeric { namespace ublas {
/** Interface and implementation of BLAS level 1
* This includes functions which perform \b vector-vector operations.
* More information about BLAS can be found at
* <a href="http://en.wikipedia.org/wiki/BLAS">http://en.wikipedia.org/wiki/BLAS</a>
*/
namespace blas_1 {
/** 1-Norm: \f$\sum_i |x_i|\f$ (also called \f$\mathcal{L}_1\f$ or Manhattan norm)
*
* \param v a vector or vector expression
* \return the 1-Norm with type of the vector's type
*
* \tparam V type of the vector (not needed by default)
*/
template<class V>
typename type_traits<typename V::value_type>::real_type
asum (const V &v) {
return norm_1 (v);
}
/** 2-Norm: \f$\sum_i |x_i|^2\f$ (also called \f$\mathcal{L}_2\f$ or Euclidean norm)
*
* \param v a vector or vector expression
* \return the 2-Norm with type of the vector's type
*
* \tparam V type of the vector (not needed by default)
*/
template<class V>
typename type_traits<typename V::value_type>::real_type
nrm2 (const V &v) {
return norm_2 (v);
}
/** Infinite-norm: \f$\max_i |x_i|\f$ (also called \f$\mathcal{L}_\infty\f$ norm)
*
* \param v a vector or vector expression
* \return the Infinite-Norm with type of the vector's type
*
* \tparam V type of the vector (not needed by default)
*/
template<class V>
typename type_traits<typename V::value_type>::real_type
amax (const V &v) {
return norm_inf (v);
}
/** Inner product of vectors \f$v_1\f$ and \f$v_2\f$
*
* \param v1 first vector of the inner product
* \param v2 second vector of the inner product
* \return the inner product of the type of the most generic type of the 2 vectors
*
* \tparam V1 type of first vector (not needed by default)
* \tparam V2 type of second vector (not needed by default)
*/
template<class V1, class V2>
typename promote_traits<typename V1::value_type, typename V2::value_type>::promote_type
dot (const V1 &v1, const V2 &v2) {
return inner_prod (v1, v2);
}
/** Copy vector \f$v_2\f$ to \f$v_1\f$
*
* \param v1 target vector
* \param v2 source vector
* \return a reference to the target vector
*
* \tparam V1 type of first vector (not needed by default)
* \tparam V2 type of second vector (not needed by default)
*/
template<class V1, class V2>
V1 & copy (V1 &v1, const V2 &v2)
{
return v1.assign (v2);
}
/** Swap vectors \f$v_1\f$ and \f$v_2\f$
*
* \param v1 first vector
* \param v2 second vector
*
* \tparam V1 type of first vector (not needed by default)
* \tparam V2 type of second vector (not needed by default)
*/
template<class V1, class V2>
void swap (V1 &v1, V2 &v2)
{
v1.swap (v2);
}
/** scale vector \f$v\f$ with scalar \f$t\f$
*
* \param v vector to be scaled
* \param t the scalar
* \return \c t*v
*
* \tparam V type of the vector (not needed by default)
* \tparam T type of the scalar (not needed by default)
*/
template<class V, class T>
V & scal (V &v, const T &t)
{
return v *= t;
}
/** Compute \f$v_1= v_1 + t.v_2\f$
*
* \param v1 target and first vector
* \param t the scalar
* \param v2 second vector
* \return a reference to the first and target vector
*
* \tparam V1 type of the first vector (not needed by default)
* \tparam T type of the scalar (not needed by default)
* \tparam V2 type of the second vector (not needed by default)
*/
template<class V1, class T, class V2>
V1 & axpy (V1 &v1, const T &t, const V2 &v2)
{
return v1.plus_assign (t * v2);
}
/** Performs rotation of points in the plane and assign the result to the first vector
*
* Each point is defined as a pair \c v1(i) and \c v2(i), being respectively
* the \f$x\f$ and \f$y\f$ coordinates. The parameters \c t1 and \t2 are respectively
* the cosine and sine of the angle of the rotation.
* Results are not returned but directly written into \c v1.
*
* \param t1 cosine of the rotation
* \param v1 vector of \f$x\f$ values
* \param t2 sine of the rotation
* \param v2 vector of \f$y\f$ values
*
* \tparam T1 type of the cosine value (not needed by default)
* \tparam V1 type of the \f$x\f$ vector (not needed by default)
* \tparam T2 type of the sine value (not needed by default)
* \tparam V2 type of the \f$y\f$ vector (not needed by default)
*/
template<class T1, class V1, class T2, class V2>
void rot (const T1 &t1, V1 &v1, const T2 &t2, V2 &v2)
{
typedef typename promote_traits<typename V1::value_type, typename V2::value_type>::promote_type promote_type;
vector<promote_type> vt (t1 * v1 + t2 * v2);
v2.assign (- t2 * v1 + t1 * v2);
v1.assign (vt);
}
}
/** \brief Interface and implementation of BLAS level 2
* This includes functions which perform \b matrix-vector operations.
* More information about BLAS can be found at
* <a href="http://en.wikipedia.org/wiki/BLAS">http://en.wikipedia.org/wiki/BLAS</a>
*/
namespace blas_2 {
/** \brief multiply vector \c v with triangular matrix \c m
*
* \param v a vector
* \param m a triangular matrix
* \return the result of the product
*
* \tparam V type of the vector (not needed by default)
* \tparam M type of the matrix (not needed by default)
*/
template<class V, class M>
V & tmv (V &v, const M &m)
{
return v = prod (m, v);
}
/** \brief solve \f$m.x = v\f$ in place, where \c m is a triangular matrix
*
* \param v a vector
* \param m a matrix
* \param C (this parameter is not needed)
* \return a result vector from the above operation
*
* \tparam V type of the vector (not needed by default)
* \tparam M type of the matrix (not needed by default)
* \tparam C n/a
*/
template<class V, class M, class C>
V & tsv (V &v, const M &m, C)
{
return v = solve (m, v, C ());
}
/** \brief compute \f$ v_1 = t_1.v_1 + t_2.(m.v_2)\f$, a general matrix-vector product
*
* \param v1 a vector
* \param t1 a scalar
* \param t2 another scalar
* \param m a matrix
* \param v2 another vector
* \return the vector \c v1 with the result from the above operation
*
* \tparam V1 type of first vector (not needed by default)
* \tparam T1 type of first scalar (not needed by default)
* \tparam T2 type of second scalar (not needed by default)
* \tparam M type of matrix (not needed by default)
* \tparam V2 type of second vector (not needed by default)
*/
template<class V1, class T1, class T2, class M, class V2>
V1 & gmv (V1 &v1, const T1 &t1, const T2 &t2, const M &m, const V2 &v2)
{
return v1 = t1 * v1 + t2 * prod (m, v2);
}
/** \brief Rank 1 update: \f$ m = m + t.(v_1.v_2^T)\f$
*
* \param m a matrix
* \param t a scalar
* \param v1 a vector
* \param v2 another vector
* \return a matrix with the result from the above operation
*
* \tparam M type of matrix (not needed by default)
* \tparam T type of scalar (not needed by default)
* \tparam V1 type of first vector (not needed by default)
* \tparam V2type of second vector (not needed by default)
*/
template<class M, class T, class V1, class V2>
M & gr (M &m, const T &t, const V1 &v1, const V2 &v2)
{
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
return m += t * outer_prod (v1, v2);
#else
return m = m + t * outer_prod (v1, v2);
#endif
}
/** \brief symmetric rank 1 update: \f$m = m + t.(v.v^T)\f$
*
* \param m a matrix
* \param t a scalar
* \param v a vector
* \return a matrix with the result from the above operation
*
* \tparam M type of matrix (not needed by default)
* \tparam T type of scalar (not needed by default)
* \tparam V type of vector (not needed by default)
*/
template<class M, class T, class V>
M & sr (M &m, const T &t, const V &v)
{
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
return m += t * outer_prod (v, v);
#else
return m = m + t * outer_prod (v, v);
#endif
}
/** \brief hermitian rank 1 update: \f$m = m + t.(v.v^H)\f$
*
* \param m a matrix
* \param t a scalar
* \param v a vector
* \return a matrix with the result from the above operation
*
* \tparam M type of matrix (not needed by default)
* \tparam T type of scalar (not needed by default)
* \tparam V type of vector (not needed by default)
*/
template<class M, class T, class V>
M & hr (M &m, const T &t, const V &v)
{
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
return m += t * outer_prod (v, conj (v));
#else
return m = m + t * outer_prod (v, conj (v));
#endif
}
/** \brief symmetric rank 2 update: \f$ m=m+ t.(v_1.v_2^T + v_2.v_1^T)\f$
*
* \param m a matrix
* \param t a scalar
* \param v1 a vector
* \param v2 another vector
* \return a matrix with the result from the above operation
*
* \tparam M type of matrix (not needed by default)
* \tparam T type of scalar (not needed by default)
* \tparam V1 type of first vector (not needed by default)
* \tparam V2type of second vector (not needed by default)
*/
template<class M, class T, class V1, class V2>
M & sr2 (M &m, const T &t, const V1 &v1, const V2 &v2)
{
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
return m += t * (outer_prod (v1, v2) + outer_prod (v2, v1));
#else
return m = m + t * (outer_prod (v1, v2) + outer_prod (v2, v1));
#endif
}
/** \brief hermitian rank 2 update: \f$m=m+t.(v_1.v_2^H) + v_2.(t.v_1)^H)\f$
*
* \param m a matrix
* \param t a scalar
* \param v1 a vector
* \param v2 another vector
* \return a matrix with the result from the above operation
*
* \tparam M type of matrix (not needed by default)
* \tparam T type of scalar (not needed by default)
* \tparam V1 type of first vector (not needed by default)
* \tparam V2type of second vector (not needed by default)
*/
template<class M, class T, class V1, class V2>
M & hr2 (M &m, const T &t, const V1 &v1, const V2 &v2)
{
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
return m += t * outer_prod (v1, conj (v2)) + type_traits<T>::conj (t) * outer_prod (v2, conj (v1));
#else
return m = m + t * outer_prod (v1, conj (v2)) + type_traits<T>::conj (t) * outer_prod (v2, conj (v1));
#endif
}
}
/** \brief Interface and implementation of BLAS level 3
* This includes functions which perform \b matrix-matrix operations.
* More information about BLAS can be found at
* <a href="http://en.wikipedia.org/wiki/BLAS">http://en.wikipedia.org/wiki/BLAS</a>
*/
namespace blas_3 {
/** \brief triangular matrix multiplication \f$m_1=t.m_2.m_3\f$ where \f$m_2\f$ and \f$m_3\f$ are triangular
*
* \param m1 a matrix for storing result
* \param t a scalar
* \param m2 a triangular matrix
* \param m3 a triangular matrix
* \return the matrix \c m1
*
* \tparam M1 type of the result matrix (not needed by default)
* \tparam T type of the scalar (not needed by default)
* \tparam M2 type of the first triangular matrix (not needed by default)
* \tparam M3 type of the second triangular matrix (not needed by default)
*
*/
template<class M1, class T, class M2, class M3>
M1 & tmm (M1 &m1, const T &t, const M2 &m2, const M3 &m3)
{
return m1 = t * prod (m2, m3);
}
/** \brief triangular solve \f$ m_2.x = t.m_1\f$ in place, \f$m_2\f$ is a triangular matrix
*
* \param m1 a matrix
* \param t a scalar
* \param m2 a triangular matrix
* \param C (not used)
* \return the \f$m_1\f$ matrix
*
* \tparam M1 type of the first matrix (not needed by default)
* \tparam T type of the scalar (not needed by default)
* \tparam M2 type of the triangular matrix (not needed by default)
* \tparam C (n/a)
*/
template<class M1, class T, class M2, class C>
M1 & tsm (M1 &m1, const T &t, const M2 &m2, C)
{
return m1 = solve (m2, t * m1, C ());
}
/** \brief general matrix multiplication \f$m_1=t_1.m_1 + t_2.m_2.m_3\f$
*
* \param m1 first matrix
* \param t1 first scalar
* \param t2 second scalar
* \param m2 second matrix
* \param m3 third matrix
* \return the matrix \c m1
*
* \tparam M1 type of the first matrix (not needed by default)
* \tparam T1 type of the first scalar (not needed by default)
* \tparam T2 type of the second scalar (not needed by default)
* \tparam M2 type of the second matrix (not needed by default)
* \tparam M3 type of the third matrix (not needed by default)
*/
template<class M1, class T1, class T2, class M2, class M3>
M1 & gmm (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3)
{
return m1 = t1 * m1 + t2 * prod (m2, m3);
}
/** \brief symmetric rank \a k update: \f$m_1=t.m_1+t_2.(m_2.m_2^T)\f$
*
* \param m1 first matrix
* \param t1 first scalar
* \param t2 second scalar
* \param m2 second matrix
* \return matrix \c m1
*
* \tparam M1 type of the first matrix (not needed by default)
* \tparam T1 type of the first scalar (not needed by default)
* \tparam T2 type of the second scalar (not needed by default)
* \tparam M2 type of the second matrix (not needed by default)
* \todo use opb_prod()
*/
template<class M1, class T1, class T2, class M2>
M1 & srk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2)
{
return m1 = t1 * m1 + t2 * prod (m2, trans (m2));
}
/** \brief hermitian rank \a k update: \f$m_1=t.m_1+t_2.(m_2.m2^H)\f$
*
* \param m1 first matrix
* \param t1 first scalar
* \param t2 second scalar
* \param m2 second matrix
* \return matrix \c m1
*
* \tparam M1 type of the first matrix (not needed by default)
* \tparam T1 type of the first scalar (not needed by default)
* \tparam T2 type of the second scalar (not needed by default)
* \tparam M2 type of the second matrix (not needed by default)
* \todo use opb_prod()
*/
template<class M1, class T1, class T2, class M2>
M1 & hrk (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2)
{
return m1 = t1 * m1 + t2 * prod (m2, herm (m2));
}
/** \brief generalized symmetric rank \a k update: \f$m_1=t_1.m_1+t_2.(m_2.m3^T)+t_2.(m_3.m2^T)\f$
*
* \param m1 first matrix
* \param t1 first scalar
* \param t2 second scalar
* \param m2 second matrix
* \param m3 third matrix
* \return matrix \c m1
*
* \tparam M1 type of the first matrix (not needed by default)
* \tparam T1 type of the first scalar (not needed by default)
* \tparam T2 type of the second scalar (not needed by default)
* \tparam M2 type of the second matrix (not needed by default)
* \tparam M3 type of the third matrix (not needed by default)
* \todo use opb_prod()
*/
template<class M1, class T1, class T2, class M2, class M3>
M1 & sr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3)
{
return m1 = t1 * m1 + t2 * (prod (m2, trans (m3)) + prod (m3, trans (m2)));
}
/** \brief generalized hermitian rank \a k update: * \f$m_1=t_1.m_1+t_2.(m_2.m_3^H)+(m_3.(t_2.m_2)^H)\f$
*
* \param m1 first matrix
* \param t1 first scalar
* \param t2 second scalar
* \param m2 second matrix
* \param m3 third matrix
* \return matrix \c m1
*
* \tparam M1 type of the first matrix (not needed by default)
* \tparam T1 type of the first scalar (not needed by default)
* \tparam T2 type of the second scalar (not needed by default)
* \tparam M2 type of the second matrix (not needed by default)
* \tparam M3 type of the third matrix (not needed by default)
* \todo use opb_prod()
*/
template<class M1, class T1, class T2, class M2, class M3>
M1 & hr2k (M1 &m1, const T1 &t1, const T2 &t2, const M2 &m2, const M3 &m3)
{
return m1 =
t1 * m1
+ t2 * prod (m2, herm (m3))
+ type_traits<T2>::conj (t2) * prod (m3, herm (m2));
}
}
}}}
#endif
|