This file is indexed.

/usr/include/BoxLib/Thread.H is in libbox-dev 2.5-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
/*
** (c) 1996-2000 The Regents of the University of California (through
** E.O. Lawrence Berkeley National Laboratory), subject to approval by
** the U.S. Department of Energy.  Your use of this software is under
** license -- the license agreement is attached and included in the
** directory as license.txt or you may contact Berkeley Lab's Technology
** Transfer Department at TTD@lbl.gov.  NOTICE OF U.S. GOVERNMENT RIGHTS.
** The Software was developed under funding from the U.S. Government
** which consequently retains certain rights as follows: the
** U.S. Government has been granted for itself and others acting on its
** behalf a paid-up, nonexclusive, irrevocable, worldwide license in the
** Software to reproduce, prepare derivative works, and perform publicly
** and display publicly.  Beginning five (5) years after the date
** permission to assert copyright is obtained from the U.S. Department of
** Energy, and subject to any subsequent five (5) year renewals, the
** U.S. Government is granted for itself and others acting on its behalf
** a paid-up, nonexclusive, irrevocable, worldwide license in the
** Software to reproduce, prepare derivative works, distribute copies to
** the public, perform publicly and display publicly, and to permit
** others to do so.
*/

#ifndef _BL_THREAD_H_
#define _BL_THREAD_H_

//
// $Id: Thread.H,v 1.20 2002/04/11 19:40:29 car Exp $
//

//#include <cstdio>

#include <Utility.H>

//
// An abstract base class for defining threaded operations.
//
// You must be very careful when using Pthread objects to ensure
// that the Pthread object exists at least as long as the POSIX
// thread executing the work() routine is running.
// Most of this was written by Mike Lijewski <mjlijewski@lbl.gov>

extern "C"
{
    typedef void* (*Thread_Function)(void*);
}

class FunctionThread;
class Mutex;
class ConditionVariable;

class Barrier;
class SingleBarrier;
class Semaphore;
class SemaphoreB;
class Gate;

template <class M> class Lock;
template <class M> class TryLock;

template <> class Lock<Semaphore>;

template <class T, class M> class SafeVariable;
template <class T> class ThreadSpecificData;
template <> class ThreadSpecificData<void>;


//
// Mutex
//

//
// This Mutex class is designed to be used in a very stylized manner.
// While we can instantiate a Mutex, to lock or unlock it we must instantiate
// a Lock object with the Mutex.  This makes locked Mutexes exception-safe.
// If we want to trylock it we must use a TryLock object.
//

class Mutex
{
public:
    class Implementation;
    Mutex();
    virtual ~Mutex();
    void lock();
    void unlock();
    bool trylock();
private:
    Mutex(const Mutex&);
    void operator=(const Mutex&);
#if !defined(BL_ICC_VERSION)
    void* operator new(size_t size);
#endif
protected:
    Implementation* m_impl;
};


//
// Lock
//

//
// In order to ensure that Mutexes get released when an exception happens,
// we introduce yet another class that must be used to lock and unlock a
// Mutex.
//
// We have the following stylized method of defining a Mutex and then
// locking and unlocking it:
//
//   int   counter;       // A shared counter.
//   Mutex counterMT;     // A mutex on the counter.
//
//   {
//       //
//       // Instantiate Lock object in its own scope.
//       // This locks the Mutex `counterMT'.
//       //
//       Lock lock(counterMT);
//       //
//       // Update the counter.
//       //
//       counter += 1;
//       //
//       // On exit from the scope the Lock destructor is called which
//       // will unlock the Mutex `counterMT'.
//   }
//

template <class M = Mutex>
class Lock
{
public:
    explicit Lock(M& mutex);
    ~Lock();
private:
    Lock(const Lock&);
    void operator=(const Lock&);
#if !defined(BL_ICC_VERSION)
    void* operator new(size_t size);
#endif
    M& m_mutex;
};

template <class M>
Lock<M>::Lock (M& mutex)
    : m_mutex(mutex)
{
    m_mutex.lock();
}

template <class M>
Lock<M>::~Lock()
{
    m_mutex.unlock();
}


//
// TryLock
//

//
// We have the following stylized method of defining a Mutex and then
// attempting to lock and unlock it:
//
//   int   counter;       // A shared counter.
//   Mutex counterMT;     // A mutex on the counter.
//
//   {
//       //
//       // Instantiate TryLock object in its own scope.
//       // This attempts to lock the Mutex `counterMT'.
//       //
//       TryLock trylock(counterMT);
//
//       if ( trylock.locked() )
//       {
//           //
//           // Update the counter.
//           //
//           counter += 1;
//       }
//       //
//       // On exit from the scope the TryLock destructor is called which
//       // will unlock the Mutex `counterMT' only if it was successfully
//       // locked.
//       //
//   }
//

template <class M = Mutex>
class TryLock
{
public:
    explicit TryLock(M& mutex);
    ~TryLock();
    bool locked() const;
private:
    TryLock(const TryLock&);
    void operator=(const TryLock&);
    void* operator new(size_t size);
    M& m_mutex;
    bool m_locked;
};


template <class M>
TryLock<M>::TryLock(M& mutex)
    : m_mutex(mutex), m_locked(mutex.trylock())
{
}

template <class M>
TryLock<M>::~TryLock()
{
    if ( m_locked )
    {
	m_mutex.unlock();
    }
}

template <class M>
bool
TryLock<M>::locked() const
{
    return m_locked;
}


//
// ConditionVariable
//

class ConditionVariable
{
public:
    class Implementation;
    ConditionVariable();
    ~ConditionVariable();
    void signal();		// Signal at least one waiting thread.
    void broadcast();		// Signal all waiting threads.
    void wait();			// Wait on the condition.
    void lock();
    void unlock();
    bool trylock();
private:
    ConditionVariable(const ConditionVariable&);
    void operator=(const ConditionVariable&);
    Implementation* m_impl;
};


//
// Barrier
//

class Barrier
    : protected ConditionVariable
{
public:
    explicit Barrier(int cnt = 0);
    void init(int cnt);
    void wait();
private:
    Barrier(const Barrier&);
    void operator=(const Barrier&);
    int count;			// Number of threads to wait for
    int n_sleepers;		// Number of threads to waiting
    bool releasing;		// Still waking up sleepers
};


//
// Semaphore
//

class Semaphore
    : protected ConditionVariable
{
public:
    explicit Semaphore(int val_ = 1);
    void wait();
    bool trywait();
    void post();
private:
    Semaphore(const Semaphore&);
    void operator=(const Semaphore&);
    int value;
};

template <>
class Lock<Semaphore>
{
public:
    explicit Lock(Semaphore& sem_);
    ~Lock();
private:
    Semaphore& sem;
};


//
// SemaphoreB
//

class SemaphoreB
    : protected ConditionVariable
{
public:
    explicit SemaphoreB(int val_ = 1);
    int down();
    int up();
    int value();
    int decrement();
private:
    SemaphoreB(const SemaphoreB&);
    void operator=(const SemaphoreB&);
    int val;
};


//
//Single Barrier
//

class SingleBarrier
    : protected ConditionVariable
{
public:
    explicit SingleBarrier(int);
    void wait();
    void post();
private:
    SingleBarrier(const SingleBarrier&);
    void operator=(const SingleBarrier&);
    int count;			// Number of threads to post
    int n_posters;		// Number of threads who posted
    int n_waiters;		// Number of threads waiting
    bool releasing;		// Still waking up sleepers
};


//
// Gate
//

class Gate
    : protected ConditionVariable
{
public:
    Gate();
    void open();
    void close();
    void release();
    void wait();
private:
    Gate(const Gate&);
    void operator=(const Gate&);
    bool closed;
};


//
//SafeVariable
//

template <class T, class M = Mutex>
class SafeVariable
{
public:
    void set(const T& n);
    const T get() const;

    SafeVariable& operator=(const T& n);
    operator const T() const;
private:
    T val;
    mutable M m;
};

template <class T, class M>
void
SafeVariable<T,M>::set(const T& n)
{
    m.lock();
    val = n;
    m.unlock();
}

template < class T, class M>
const T
SafeVariable<T,M>::get() const
{
    m.lock();
    const T tval = val;
    m.unlock();
    return tval;
}

template <class T, class M>
SafeVariable<T,M>&
SafeVariable<T,M>::operator=(const T& n)
{
    set(n);
    return *this;
}

template <class T, class M>
SafeVariable<T,M>::operator const T() const
{
    return get();
}


//
//ThreadSpecific Data
//

template <>
class ThreadSpecificData<void>
{
public:
    class Implementation;
    explicit ThreadSpecificData(void (*dst)(void*) = 0);
    virtual ~ThreadSpecificData() = 0;
    void* set(const void* t);
    void* get() const;
private:
    Implementation* m_impl;
};

template <class T>
class ThreadSpecificData
    : private ThreadSpecificData<void>
{
public:
    explicit ThreadSpecificData(const T* p = 0);
    ThreadSpecificData (const T* p, void (*TSD_DESTROY)(void*));
    virtual ~ThreadSpecificData();
    T* set(const T* t);
    T* get() const;
    T* operator->();
    T& operator*();
    T* release();
    void reset(const T* p = 0);
private:
    ThreadSpecificData(const ThreadSpecificData&);
    void operator=(const ThreadSpecificData&);
    static void tsd_destroy(void*);
};

template <class T>
ThreadSpecificData<T>::ThreadSpecificData(const T* p)
    : ThreadSpecificData<void>(tsd_destroy)
{
    if ( p ) set(p);
}

template <class T>
ThreadSpecificData<T>::ThreadSpecificData(const T* p, void (*THR_DESTROY)(void*))
    : ThreadSpecificData<void>(THR_DESTROY)
{
    if ( p ) set(p);
}

template <class T>
ThreadSpecificData<T>::~ThreadSpecificData()
{
    reset();
}

template <class T>
T*
ThreadSpecificData<T>::set(const T* v)
{
    return static_cast<T*>(ThreadSpecificData<void>::set(static_cast<const void*>(v)));
}

template <class T>
T*
ThreadSpecificData<T>::get() const
{
    return static_cast<T*>(ThreadSpecificData<void>::get());
}

template <class T>
T*
ThreadSpecificData<T>::operator->()
{
    return get();
}

template <class T>
T&
ThreadSpecificData<T>::operator*()
{
    return *get();
}

template <class T>
T*
ThreadSpecificData<T>::release()
{
    return set(0);
}

template <class T>
void
ThreadSpecificData<T>::reset(const T* p)
{
    delete set(p);
}

template <class T>
void
ThreadSpecificData<T>::tsd_destroy(void* v)
{
    //printf("ThreadSpecificData<T>::tsd_destroy(%p)\n",v);
    delete static_cast<T*>(v);
}

//
// Thread
//

namespace Thread
{
    void sleep (const BoxLib::Time& tspec);
    unsigned long max_threads ();
    void exit (void* status = 0);
    void yield ();
    int getID ();
    bool baseThread ();
    enum CancelState { Enable, Disable };
    CancelState setCancelState (CancelState state);
}



class FunctionThread
{
public:
    enum DetachState { Joinable, Detached };
    class Implementation;
    FunctionThread(Thread_Function func_,
                   void* arg_ = 0,
                   DetachState = Joinable,
                   int stacksize = 0);
    ~FunctionThread();
    void* join() const;
    void detach() const;
protected:
    Implementation* m_impl;
};

namespace BoxLib
{
    void Thread_Error(const char* file, int lineno, const char* message, int status);
}

#ifndef BL_THREADS

#include <cstdlib>


// Thread
namespace Thread
{
inline unsigned long max_threads() { return 1UL;}
inline int getID () { return 0; }
inline bool baseThread () { return true; }
}

// Mutex
inline Mutex::Mutex() {}
inline Mutex::~Mutex() {}
inline void Mutex::lock() {}
inline void Mutex::unlock() {}

// ConditionVariable
inline ConditionVariable::ConditionVariable() {}
inline ConditionVariable::~ConditionVariable() {}
inline void ConditionVariable::broadcast() {}
inline void ConditionVariable::signal() {}
inline void ConditionVariable::wait() {}
inline void ConditionVariable::lock() {}
inline void ConditionVariable::unlock() {}
 
#endif

#endif