This file is indexed.

/usr/include/Box2D/Common/b2Math.h is in libbox2d-dev 2.0.1+dfsg1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
/*
* Copyright (c) 2006-2007 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty.  In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/

#ifndef B2_MATH_H
#define B2_MATH_H

#include "b2Settings.h"
#include <cmath>
#include <cfloat>
#include <cstdlib>

#include <stdio.h>

#ifdef TARGET_FLOAT32_IS_FIXED

inline Fixed b2Min(const Fixed& a, const Fixed& b)
{
  return a < b ? a : b;
}

inline Fixed b2Max(const Fixed& a, const Fixed& b)
{
  return a > b ? a : b;
}

inline Fixed b2Clamp(Fixed a, Fixed low, Fixed high)
{
	return b2Max(low, b2Min(a, high));
}

inline bool b2IsValid(Fixed x)
{
	return true;
}

#define	b2Sqrt(x)	sqrt(x)
#define	b2Atan2(y, x)	atan2(y, x)

#else

/// This function is used to ensure that a floating point number is
/// not a NaN or infinity.
inline bool b2IsValid(float32 x)
{
#ifdef _MSC_VER
	return _finite(x) != 0;
#else
	return finite(x) != 0;
#endif
}

/// This is a approximate yet fast inverse square-root.
inline float32 b2InvSqrt(float32 x)
{
	union
	{
		float32 x;
		int32 i;
	} convert;

	convert.x = x;
	float32 xhalf = 0.5f * x;
	convert.i = 0x5f3759df - (convert.i >> 1);
	x = convert.x;
	x = x * (1.5f - xhalf * x * x);
	return x;
}

#define	b2Sqrt(x)	sqrtf(x)
#define	b2Atan2(y, x)	atan2f(y, x)

#endif

inline float32 b2Abs(float32 a)
{
	return a > 0.0f ? a : -a;
}

/// A 2D column vector.

struct b2Vec2
{
	/// Default constructor does nothing (for performance).
	b2Vec2() {}

	/// Construct using coordinates.
	b2Vec2(float32 x, float32 y) : x(x), y(y) {}

	/// Set this vector to all zeros.
	void SetZero() { x = 0.0f; y = 0.0f; }

	/// Set this vector to some specified coordinates.
	void Set(float32 x_, float32 y_) { x = x_; y = y_; }

	/// Negate this vector.
	b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; }
	
	/// Add a vector to this vector.
	void operator += (const b2Vec2& v)
	{
		x += v.x; y += v.y;
	}
	
	/// Subtract a vector from this vector.
	void operator -= (const b2Vec2& v)
	{
		x -= v.x; y -= v.y;
	}

	/// Multiply this vector by a scalar.
	void operator *= (float32 a)
	{
		x *= a; y *= a;
	}

	/// Get the length of this vector (the norm).
	float32 Length() const
	{
#ifdef TARGET_FLOAT32_IS_FIXED
		float est = b2Abs(x) + b2Abs(y);
		if(est == 0.0f) {
			return 0.0;
		} else if(est < 0.1) {
			return (1.0/256.0) * b2Vec2(x<<8, y<<8).Length();
		} else if(est < 180.0f) {
			return b2Sqrt(x * x + y * y);
		} else {
			return 256.0 * (b2Vec2(x>>8, y>>8).Length());
		}
#else
		return b2Sqrt(x * x + y * y);
#endif 
	}

	/// Get the length squared. For performance, use this instead of
	/// b2Vec2::Length (if possible).
	float32 LengthSquared() const
	{
		return x * x + y * y;
	}

	/// Convert this vector into a unit vector. Returns the length.
#ifdef TARGET_FLOAT32_IS_FIXED
	float32 Normalize()
	{
		float32 length = Length();
		if (length < B2_FLT_EPSILON)
		{
			return 0.0f;
		} 
#ifdef NORMALIZE_BY_INVERT_MULTIPLY
		if (length < (1.0/16.0)) {
			x = x << 4;
			y = y << 4;
			return (1.0/16.0)*Normalize();
		} else if(length > 16.0) {
			x = x >> 4;
			y = y >> 4;
			return 16.0*Normalize();
		}
		float32 invLength = 1.0f / length;
		x *= invLength;
		y *= invLength;
#else
		x /= length;
		y /= length;
#endif
		return length;
	}
#else
	float32 Normalize()
	{
		float32 length = Length();
		if (length < B2_FLT_EPSILON)
		{
			return 0.0f;
		}
		float32 invLength = 1.0f / length;
		x *= invLength;
		y *= invLength;

		return length;
	}
#endif

	/// Does this vector contain finite coordinates?
	bool IsValid() const
	{
		return b2IsValid(x) && b2IsValid(y);
	}

	float32 x, y;
};

/// A 2-by-2 matrix. Stored in column-major order.
struct b2Mat22
{
	/// The default constructor does nothing (for performance).
	b2Mat22() {}

	/// Construct this matrix using columns.
	b2Mat22(const b2Vec2& c1, const b2Vec2& c2)
	{
		col1 = c1;
		col2 = c2;
	}

	/// Construct this matrix using scalars.
	b2Mat22(float32 a11, float32 a12, float32 a21, float32 a22)
	{
		col1.x = a11; col1.y = a21;
		col2.x = a12; col2.y = a22;
	}

	/// Construct this matrix using an angle. This matrix becomes
	/// an orthonormal rotation matrix.
	explicit b2Mat22(float32 angle)
	{
		float32 c = cosf(angle), s = sinf(angle);
		col1.x = c; col2.x = -s;
		col1.y = s; col2.y = c;
	}

	/// Initialize this matrix using columns.
	void Set(const b2Vec2& c1, const b2Vec2& c2)
	{
		col1 = c1;
		col2 = c2;
	}

	/// Initialize this matrix using an angle. This matrix becomes
	/// an orthonormal rotation matrix.
	void Set(float32 angle)
	{
		float32 c = cosf(angle), s = sinf(angle);
		col1.x = c; col2.x = -s;
		col1.y = s; col2.y = c;
	}

	/// Set this to the identity matrix.
	void SetIdentity()
	{
		col1.x = 1.0f; col2.x = 0.0f;
		col1.y = 0.0f; col2.y = 1.0f;
	}

	/// Set this matrix to all zeros.
	void SetZero()
	{
		col1.x = 0.0f; col2.x = 0.0f;
		col1.y = 0.0f; col2.y = 0.0f;
	}

	/// Extract the angle from this matrix (assumed to be
	/// a rotation matrix).
	float32 GetAngle() const
	{
		return b2Atan2(col1.y, col1.x);
	}

#ifdef TARGET_FLOAT32_IS_FIXED

	/// Compute the inverse of this matrix, such that inv(A) * A = identity.
	b2Mat22 Invert() const
	{
		float32 a = col1.x, b = col2.x, c = col1.y, d = col2.y;
		float32 det = a * d - b * c;
		b2Mat22 B;
		int n = 0;

		if(b2Abs(det) <= (B2_FLT_EPSILON<<8))
		{
			n = 3;
			a = a<<n; b = b<<n; 
			c = c<<n; d = d<<n;
			det = a * d - b * c;
			b2Assert(det != 0.0f);
			det = float32(1) / det;
			B.col1.x = ( det * d) << n;	B.col2.x = (-det * b) << n;
			B.col1.y = (-det * c) << n;	B.col2.y = ( det * a) << n;
		} 
		else
		{
			n = (b2Abs(det) >= 16.0)? 4 : 0;
			b2Assert(det != 0.0f);
			det = float32(1<<n) / det;
			B.col1.x = ( det * d) >> n;	B.col2.x = (-det * b) >> n;
			B.col1.y = (-det * c) >> n;	B.col2.y = ( det * a) >> n;
		}
		
		return B;
	}

	// Solve A * x = b
	b2Vec2 Solve(const b2Vec2& b) const
	{
		float32 a11 = col1.x, a12 = col2.x, a21 = col1.y, a22 = col2.y;
		float32 det = a11 * a22 - a12 * a21;
		int n = 0;
		b2Vec2 x;

		
		if(b2Abs(det) <= (B2_FLT_EPSILON<<8))
		{
			n = 3;
			a11 = col1.x<<n; a12 = col2.x<<n;
			a21 = col1.y<<n; a22 = col2.y<<n;
			det = a11 * a22 - a12 * a21;
			b2Assert(det != 0.0f);
			det = float32(1) / det;
			x.x = (det * (a22 * b.x - a12 * b.y)) << n;
			x.y = (det * (a11 * b.y - a21 * b.x)) << n;
		} 
		else 
		{
			n = (b2Abs(det) >= 16.0) ? 4 : 0;
			b2Assert(det != 0.0f);
			det = float32(1<<n) / det;
			x.x = (det * (a22 * b.x - a12 * b.y)) >> n;
			x.y = (det * (a11 * b.y - a21 * b.x)) >> n;
		}

		return x;
	}

#else
	b2Mat22 Invert() const
	{
		float32 a = col1.x, b = col2.x, c = col1.y, d = col2.y;
		b2Mat22 B;
		float32 det = a * d - b * c;
		b2Assert(det != 0.0f);
		det = float32(1.0f) / det;
		B.col1.x =  det * d;	B.col2.x = -det * b;
		B.col1.y = -det * c;	B.col2.y =  det * a;
		return B;
	}

	/// Solve A * x = b, where b is a column vector. This is more efficient
	/// than computing the inverse in one-shot cases.
	b2Vec2 Solve(const b2Vec2& b) const
	{
		float32 a11 = col1.x, a12 = col2.x, a21 = col1.y, a22 = col2.y;
		float32 det = a11 * a22 - a12 * a21;
		b2Assert(det != 0.0f);
		det = 1.0f / det;
		b2Vec2 x;
		x.x = det * (a22 * b.x - a12 * b.y);
		x.y = det * (a11 * b.y - a21 * b.x);
		return x;
	}
#endif

	b2Vec2 col1, col2;
};

/// A transform contains translation and rotation. It is used to represent
/// the position and orientation of rigid frames.
struct b2XForm
{
	/// The default constructor does nothing (for performance).
	b2XForm() {}

	/// Initialize using a position vector and a rotation matrix.
	b2XForm(const b2Vec2& position, const b2Mat22& R) : position(position), R(R) {}

	/// Set this to the identity transform.
	void SetIdentity()
	{
		position.SetZero();
		R.SetIdentity();
	}

	b2Vec2 position;
	b2Mat22 R;
};

/// This describes the motion of a body/shape for TOI computation.
/// Shapes are defined with respect to the body origin, which may
/// no coincide with the center of mass. However, to support dynamics
/// we must interpolate the center of mass position.
struct b2Sweep
{
	/// Get the interpolated transform at a specific time.
	/// @param t the normalized time in [0,1].
	void GetXForm(b2XForm* xf, float32 t) const;

	/// Advance the sweep forward, yielding a new initial state.
	/// @param t the new initial time.
	void Advance(float32 t);

	b2Vec2 localCenter;	///< local center of mass position
	b2Vec2 c0, c;		///< center world positions
	float32 a0, a;		///< world angles
	float32 t0;			///< time interval = [t0,1], where t0 is in [0,1]
};


extern const b2Vec2 b2Vec2_zero;
extern const b2Mat22 b2Mat22_identity;
extern const b2XForm b2XForm_identity;

/// Peform the dot product on two vectors.
inline float32 b2Dot(const b2Vec2& a, const b2Vec2& b)
{
	return a.x * b.x + a.y * b.y;
}

/// Perform the cross product on two vectors. In 2D this produces a scalar.
inline float32 b2Cross(const b2Vec2& a, const b2Vec2& b)
{
	return a.x * b.y - a.y * b.x;
}

/// Perform the cross product on a vector and a scalar. In 2D this produces
/// a vector.
inline b2Vec2 b2Cross(const b2Vec2& a, float32 s)
{
	b2Vec2 v; v.Set(s * a.y, -s * a.x);
	return v;
}

/// Perform the cross product on a scalar and a vector. In 2D this produces
/// a vector.
inline b2Vec2 b2Cross(float32 s, const b2Vec2& a)
{
	b2Vec2 v; v.Set(-s * a.y, s * a.x);
	return v;
}

/// Multiply a matrix times a vector. If a rotation matrix is provided,
/// then this transforms the vector from one frame to another.
inline b2Vec2 b2Mul(const b2Mat22& A, const b2Vec2& v)
{
	b2Vec2 u;
	u.Set(A.col1.x * v.x + A.col2.x * v.y, A.col1.y * v.x + A.col2.y * v.y);
	return u;
}

/// Multiply a matrix transpose times a vector. If a rotation matrix is provided,
/// then this transforms the vector from one frame to another (inverse transform).
inline b2Vec2 b2MulT(const b2Mat22& A, const b2Vec2& v)
{
	b2Vec2 u;
	u.Set(b2Dot(v, A.col1), b2Dot(v, A.col2));
	return u;
}

/// Add two vectors component-wise.
inline b2Vec2 operator + (const b2Vec2& a, const b2Vec2& b)
{
	b2Vec2 v; v.Set(a.x + b.x, a.y + b.y);
	return v;
}

/// Subtract two vectors component-wise.
inline b2Vec2 operator - (const b2Vec2& a, const b2Vec2& b)
{
	b2Vec2 v; v.Set(a.x - b.x, a.y - b.y);
	return v;
}

inline b2Vec2 operator * (float32 s, const b2Vec2& a)
{
	b2Vec2 v; v.Set(s * a.x, s * a.y);
	return v;
}

inline bool operator == (const b2Vec2& a, const b2Vec2& b)
{
	return a.x == b.x && a.y == b.y;
}

inline float32 b2Distance(const b2Vec2& a, const b2Vec2& b)
{
	b2Vec2 c = a - b;
	return c.Length();
}

inline float32 b2DistanceSquared(const b2Vec2& a, const b2Vec2& b)
{
	b2Vec2 c = a - b;
	return b2Dot(c, c);
}

inline b2Mat22 operator + (const b2Mat22& A, const b2Mat22& B)
{
	b2Mat22 C;
	C.Set(A.col1 + B.col1, A.col2 + B.col2);
	return C;
}

// A * B
inline b2Mat22 b2Mul(const b2Mat22& A, const b2Mat22& B)
{
	b2Mat22 C;
	C.Set(b2Mul(A, B.col1), b2Mul(A, B.col2));
	return C;
}

// A^T * B
inline b2Mat22 b2MulT(const b2Mat22& A, const b2Mat22& B)
{
	b2Vec2 c1; c1.Set(b2Dot(A.col1, B.col1), b2Dot(A.col2, B.col1));
	b2Vec2 c2; c2.Set(b2Dot(A.col1, B.col2), b2Dot(A.col2, B.col2));
	b2Mat22 C;
	C.Set(c1, c2);
	return C;
}

inline b2Vec2 b2Mul(const b2XForm& T, const b2Vec2& v)
{
	return T.position + b2Mul(T.R, v);
}

inline b2Vec2 b2MulT(const b2XForm& T, const b2Vec2& v)
{
	return b2MulT(T.R, v - T.position);
}

inline b2Vec2 b2Abs(const b2Vec2& a)
{
	b2Vec2 b; b.Set(b2Abs(a.x), b2Abs(a.y));
	return b;
}

inline b2Mat22 b2Abs(const b2Mat22& A)
{
	b2Mat22 B;
	B.Set(b2Abs(A.col1), b2Abs(A.col2));
	return B;
}

template <typename T>
inline T b2Min(T a, T b)
{
	return a < b ? a : b;
}

inline b2Vec2 b2Min(const b2Vec2& a, const b2Vec2& b)
{
	b2Vec2 c;
	c.x = b2Min(a.x, b.x);
	c.y = b2Min(a.y, b.y);
	return c;
}

template <typename T>
inline T b2Max(T a, T b)
{
	return a > b ? a : b;
}

inline b2Vec2 b2Max(const b2Vec2& a, const b2Vec2& b)
{
	b2Vec2 c;
	c.x = b2Max(a.x, b.x);
	c.y = b2Max(a.y, b.y);
	return c;
}

template <typename T>
inline T b2Clamp(T a, T low, T high)
{
	return b2Max(low, b2Min(a, high));
}

inline b2Vec2 b2Clamp(const b2Vec2& a, const b2Vec2& low, const b2Vec2& high)
{
	return b2Max(low, b2Min(a, high));
}

template<typename T> inline void b2Swap(T& a, T& b)
{
	T tmp = a;
	a = b;
	b = tmp;
}

#define	RAND_LIMIT	32767

// Random number in range [-1,1]
inline float32 b2Random()
{
	float32 r = (float32)(rand() & (RAND_LIMIT));
	r /= RAND_LIMIT;
	r = 2.0f * r - 1.0f;
	return r;
}

/// Random floating point number in range [lo, hi]
inline float32 b2Random(float32 lo, float32 hi)
{
	float32 r = (float32)(rand() & (RAND_LIMIT));
	r /= RAND_LIMIT;
	r = (hi - lo) * r + lo;
	return r;
}

/// "Next Largest Power of 2
/// Given a binary integer value x, the next largest power of 2 can be computed by a SWAR algorithm
/// that recursively "folds" the upper bits into the lower bits. This process yields a bit vector with
/// the same most significant 1 as x, but all 1's below it. Adding 1 to that value yields the next
/// largest power of 2. For a 32-bit value:"
inline uint32 b2NextPowerOfTwo(uint32 x)
{
	x |= (x >> 1);
	x |= (x >> 2);
	x |= (x >> 4);
	x |= (x >> 8);
	x |= (x >> 16);
	return x + 1;
}

inline bool b2IsPowerOfTwo(uint32 x)
{
	bool result = x > 0 && (x & (x - 1)) == 0;
	return result;
}

#endif