/usr/include/CLAM/SpectralDescriptors.hxx is in libclam-dev 1.4.0-5build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 | /*
* Copyright (c) 2001-2004 MUSIC TECHNOLOGY GROUP (MTG)
* UNIVERSITAT POMPEU FABRA
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#ifndef __SpectralDescriptors_H__
#define __SpectralDescriptors_H__
#include "Array.hxx"
#include "Descriptor.hxx"
#include "Spectrum.hxx"
/*
* This class holds Descriptors computed from Spectral data
*
*
*/
namespace CLAM {
class SpectralDescriptors : public Descriptor {
public:
DYNAMIC_TYPE_USING_INTERFACE (SpectralDescriptors, 21, Descriptor);
/** The spectral power mean value.
* The unit of this measure can be dB
* or none, depending on the scale set for the
* measured Spectrum object.
* @see Spectrum::SetScale
* @see EScale
* @see Stats::GetMean
*/
DYN_ATTRIBUTE (0, public, TData, Mean);
/**
* The geometric mean for the spectral power values sequence.
* See <a href="http://mathworld.wolfram.com/GeometricMean.html">this</a> for a definition of
* this pythagorean mean. Note that computing this measurement over long sequences of
* small real numbers ( as the ones one usually founds in spectral power distributions derived
* of audio windowed with a normalized window function ) pose a numerical problem. To avoid
* this, computation of Geometric mean is restricted to Log scale Spectral Power Distributions
* since this allows to change the product for a summation.
*
* This measure is expressed in dBs.
* @see Stats::GetGeometricMean
*/
DYN_ATTRIBUTE (1, public, TData, GeometricMean);
/**
* The squared sum of spectral power distribution values.
* This measure comes in the same units as the distribution
* values.
* @see Stats::GetEnergy
*/
DYN_ATTRIBUTE (2, public, TData, Energy);
/**
* The frequency where the center of mass of the spectral power
* distribution lies.
* This measure is expressed in Hz.
*
* @see Stats::GetCentroid
*/
DYN_ATTRIBUTE (3, public, TData, Centroid);
DYN_ATTRIBUTE (4, public, TData, Moment2);
DYN_ATTRIBUTE (5, public, TData, Moment3);
DYN_ATTRIBUTE (6, public, TData, Moment4);
DYN_ATTRIBUTE (7, public, TData, Moment5);
DYN_ATTRIBUTE (8, public, TData, Moment6);
DYN_ATTRIBUTE (9, public, TData, Flatness);
DYN_ATTRIBUTE (10,public, TData, MagnitudeKurtosis);
DYN_ATTRIBUTE (11,public, Array<TData>, MFCC);
/**
* Frequency of the maximum magnitude of the spectrum
* normalized by the spectral range
*/
DYN_ATTRIBUTE (12,public, TData, MaxMagFreq);
/**
* The ratio between the energy over 0-100 Hz band and the whole spectrum energy.
* To avoid singularities while keeping descriptor continuity,
* when the whole spectrum energy drops bellow $10^{-4}$,
* such value is considered as whole spectrum energy.
*/
DYN_ATTRIBUTE (13,public, TData, LowFreqEnergyRelation);
/**
* The spectral spread is the variation of the spectrum
* around its mean value. It's computed from the second
* order moment.
*/
DYN_ATTRIBUTE (14,public, TData, Spread);
DYN_ATTRIBUTE (15,public, TData, MagnitudeSkewness);
/**
* The spectral roll-off point is the frequency value
* so that the 85% of the spectral energy is contained below
* it. For silences this is 0Hz. Measured in Hz.
*
* \f[
* Rolloff / \sum_{f=0}^{RollOff} {a_f^2} = 0.85 \times \sum_{f=0}^{SpectralRange} {a_f^2}
* \f]
*/
DYN_ATTRIBUTE (16,public, TData, Rolloff);
/**
* The spectral slope represents the amount of decreasing of
* the spectral magnitude. Measured in ??.
* @see Stats::Slope
*/
DYN_ATTRIBUTE (17,public, TData, Slope);
/**
* Sum of the squared spectrum magnitude multiplied by the wave number of the bin.
* It could be considered the energy derivative, a high pass filter,
* which gives higher values for high frequency content.
*
* \f[
* HighFrequencyContent = \sum_{i=0}^{nBins} i magnitude_i^2
* \f]
*/
DYN_ATTRIBUTE (18,public, TData, HighFrequencyContent);
DYN_ATTRIBUTE (19,public, Array<SpectralDescriptors>, BandDescriptors);
DYN_ATTRIBUTE (20,public, Array<TData>,PCP);
public:
SpectralDescriptors(Spectrum* pSpectrum);
SpectralDescriptors(TData initVal);
const Spectrum* GetpSpectrum() const;
void SetpSpectrum(Spectrum* pSpectrum);
void ConcreteCompute();
//XA_C2S private:
void DefaultInit();
void CopyInit(const SpectralDescriptors & copied);
TData ComputeSpectralFlatness();
TData ComputeHighFrequencyContent();
TData ComputeMaxMagFreq();
TData ComputeLowFreqEnergyRelation();
TData ComputeRolloff();
TData ComputeSpread();
TData ComputeSlope();
private:
const Spectrum* mpSpectrum;
/** Conversion from index to frequency, needed for many descriptors */
double mDeltaFreq; // double because a lot of computations depends on its precission
};
SpectralDescriptors operator * (const SpectralDescriptors& a,TData mult);
SpectralDescriptors operator * (TData mult,const SpectralDescriptors& a);
SpectralDescriptors operator / (const SpectralDescriptors& a,TData div);
SpectralDescriptors operator * (const SpectralDescriptors& a,const SpectralDescriptors& b) ;
SpectralDescriptors operator + (const SpectralDescriptors& a, const SpectralDescriptors& b);
template<>
inline SpectralDescriptors CLAM_max (const SpectralDescriptors& a,const SpectralDescriptors& b)
{
SpectralDescriptors tmpD(a);
if(a.HasMean() && b.HasMean() )
{
if(b.GetMean()>a.GetMean())
tmpD.SetMean(b.GetMean());
}
if(a.HasGeometricMean() && b.HasGeometricMean() )
{
if(b.GetGeometricMean()>a.GetGeometricMean())
tmpD.SetGeometricMean(b.GetGeometricMean());
}
if(a.HasEnergy() && b.HasEnergy() )
{
if(b.GetEnergy()>a.GetEnergy())
tmpD.SetEnergy(b.GetEnergy());
}
if(a.HasCentroid() && b.HasCentroid() )
{
if(b.GetCentroid()>a.GetCentroid())
tmpD.SetCentroid(b.GetCentroid());
}
if(a.HasMoment2() && b.HasMoment2() )
{
if(b.GetMoment2()>a.GetMoment2())
tmpD.SetMoment2(b.GetMoment2());
}
if(a.HasMoment3() && b.HasMoment3() )
{
if(b.GetMoment3()>a.GetMoment3())
tmpD.SetMoment3(b.GetMoment3());
}
if(a.HasMoment4() && b.HasMoment4() )
{
if(b.GetMoment4()>a.GetMoment4())
tmpD.SetMoment4(b.GetMoment4());
}
if(a.HasMoment5() && b.HasMoment5())
{
if(b.GetMoment5()>a.GetMoment5())
tmpD.SetMoment5(b.GetMoment5());
}
if(a.HasMoment6() && b.HasMoment6() )
{
if(b.GetMoment6()>a.GetMoment6())
tmpD.SetMoment6(b.GetMoment6());
}
if(a.HasFlatness() && b.HasFlatness() )
{
if(b.GetFlatness()>a.GetFlatness())
tmpD.SetFlatness(b.GetFlatness());
}
if(a.HasMagnitudeKurtosis() && b.HasMagnitudeKurtosis() )
{
if(b.GetMagnitudeKurtosis()>a.GetMagnitudeKurtosis())
tmpD.SetMagnitudeKurtosis(b.GetMagnitudeKurtosis());
}
if(a.HasMaxMagFreq() && b.HasMaxMagFreq() )
{
if(b.GetMaxMagFreq()>a.GetMaxMagFreq())
tmpD.SetMaxMagFreq(b.GetMaxMagFreq());
}
if(a.HasLowFreqEnergyRelation() && b.HasLowFreqEnergyRelation() )
{
if(b.GetLowFreqEnergyRelation()>a.GetLowFreqEnergyRelation())
tmpD.SetLowFreqEnergyRelation(b.GetLowFreqEnergyRelation());
}
if(a.HasSpread() && b.HasSpread() )
{
if(b.GetSpread()>a.GetSpread())
tmpD.SetSpread(b.GetSpread());
}
if(a.HasMagnitudeSkewness() && b.HasMagnitudeSkewness() )
{
if(b.GetMagnitudeSkewness()>a.GetMagnitudeSkewness())
tmpD.SetMagnitudeSkewness(b.GetMagnitudeSkewness());
}
if(a.HasRolloff() && b.HasRolloff() )
{
if(b.GetRolloff()>a.GetRolloff())
tmpD.SetRolloff(b.GetRolloff());
}
if(a.HasSlope() && b.HasSlope() )
{
if(b.GetSlope()>a.GetSlope())
tmpD.SetSlope(b.GetSlope());
}
if(a.HasHighFrequencyContent() && b.HasHighFrequencyContent() )
{
if(b.GetHighFrequencyContent()>a.GetHighFrequencyContent())
tmpD.SetHighFrequencyContent(b.GetHighFrequencyContent());
}
if(a.HasBandDescriptors() && b.HasBandDescriptors() )
{
/* Array does not have these operators
if(b.GetBandDescriptors()>a.GetBandDescriptors())
tmpD.SetBandDescriptors(b.GetBandDescriptors() );*/
}
if(a.HasMFCC() && b.HasMFCC() )
{
/* Array does not have these operators
if(b.GetMFCC()>a.GetMFCC())
tmpD.SetMFCC(b.GetMFCC());*/
}
return tmpD;
}
template<>
inline SpectralDescriptors CLAM_min (const SpectralDescriptors& a,const SpectralDescriptors& b)
{
SpectralDescriptors tmpD(a);
if(a.HasMean() && b.HasMean() )
{
if(b.GetMean()<a.GetMean())
tmpD.SetMean(b.GetMean());
}
if(a.HasGeometricMean() && b.HasGeometricMean() )
{
if(b.GetGeometricMean()<a.GetGeometricMean())
tmpD.SetGeometricMean(b.GetGeometricMean());
}
if(a.HasEnergy() && b.HasEnergy() )
{
if(b.GetEnergy()<a.GetEnergy())
tmpD.SetEnergy(b.GetEnergy());
}
if(a.HasCentroid() && b.HasCentroid() )
{
if(b.GetCentroid()<a.GetCentroid())
tmpD.SetCentroid(b.GetCentroid());
}
if(a.HasMoment2() && b.HasMoment2() )
{
if(b.GetMoment2()<a.GetMoment2())
tmpD.SetMoment2(b.GetMoment2());
}
if(a.HasMoment3() && b.HasMoment3() )
{
if(b.GetMoment3()<a.GetMoment3())
tmpD.SetMoment3(b.GetMoment3());
}
if(a.HasMoment4() && b.HasMoment4() )
{
if(b.GetMoment4()<a.GetMoment4())
tmpD.SetMoment4(b.GetMoment4());
}
if(a.HasMoment5() && b.HasMoment5())
{
if(b.GetMoment5()<a.GetMoment5())
tmpD.SetMoment5(b.GetMoment5());
}
if(a.HasMoment6() && b.HasMoment6() )
{
if(b.GetMoment6()<a.GetMoment6())
tmpD.SetMoment6(b.GetMoment6());
}
if(a.HasFlatness() && b.HasFlatness() )
{
if(b.GetFlatness()<a.GetFlatness())
tmpD.SetFlatness(b.GetFlatness());
}
if(a.HasMagnitudeKurtosis() && b.HasMagnitudeKurtosis() )
{
if(b.GetMagnitudeKurtosis()<a.GetMagnitudeKurtosis())
tmpD.SetMagnitudeKurtosis(b.GetMagnitudeKurtosis());
}
if(a.HasMaxMagFreq() && b.HasMaxMagFreq() )
{
if(b.GetMaxMagFreq()<a.GetMaxMagFreq())
tmpD.SetMaxMagFreq(b.GetMaxMagFreq());
}
if(a.HasLowFreqEnergyRelation() && b.HasLowFreqEnergyRelation() )
{
if(b.GetLowFreqEnergyRelation()<a.GetLowFreqEnergyRelation())
tmpD.SetLowFreqEnergyRelation(b.GetLowFreqEnergyRelation());
}
if(a.HasSpread() && b.HasSpread() )
{
if(b.GetSpread()<a.GetSpread())
tmpD.SetSpread(b.GetSpread());
}
if(a.HasMagnitudeSkewness() && b.HasMagnitudeSkewness() )
{
if(b.GetMagnitudeSkewness()<a.GetMagnitudeSkewness())
tmpD.SetMagnitudeSkewness(b.GetMagnitudeSkewness());
}
if(a.HasRolloff() && b.HasRolloff() )
{
if(b.GetRolloff()<a.GetRolloff())
tmpD.SetRolloff(b.GetRolloff());
}
if(a.HasSlope() && b.HasSlope() )
{
if(b.GetSlope()<a.GetSlope())
tmpD.SetSlope(b.GetSlope());
}
if(a.HasHighFrequencyContent() && b.HasHighFrequencyContent() )
{
if(b.GetHighFrequencyContent()<a.GetHighFrequencyContent())
tmpD.SetHighFrequencyContent(b.GetHighFrequencyContent());
}
if(a.HasBandDescriptors() && b.HasBandDescriptors() )
{
/* Array does not have these operators
if(b.GetBandDescriptors()<a.GetBandDescriptors())
tmpD.SetBandDescriptors(b.GetBandDescriptors() );*/
}
if(a.HasMFCC() && b.HasMFCC() )
{
/* Array does not have these operators
if(b.GetMFCC()<a.GetMFCC())
tmpD.SetMFCC(b.GetMFCC());*/
}
return tmpD;
}
}
#endif /* __SpectralDescriptors_H__ */
|