/usr/include/CLAM/Stats.hxx is in libclam-dev 1.4.0-5build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 | /*
* Copyright (c) 2004 MUSIC TECHNOLOGY GROUP (MTG)
* UNIVERSITAT POMPEU FABRA
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#ifndef _Stats_
#define _Stats_
#include "BasicOps.hxx"
#include "Array.hxx"
#include <algorithm>
namespace CLAM{
template <unsigned int x,unsigned int y> class GreaterThan
{
public: static StaticBool<(x>y)> mIs;
};
template <unsigned int x,unsigned int y> StaticBool<(x>y)> GreaterThan<x,y>::mIs;
/**
* An StatMemory may hold a T value and remembers whether
* it has been set or is not initialized.
* It has two states, value memorized and no value memorized.
* By default is not memorized until it is assigned to a value that is copied.
* Then you can query the value using the call operator.
* By reseting it you are releasing the memory until a new assignement.
*/
template <typename T>
class StatMemory
{
public:
StatMemory() : mMemorized(false) {}
const StatMemory & operator = (const T & value)
{
mMemorized=true;
mMemory=value;
return *this;
}
bool HasValue()
{
return mMemorized;
}
void Reset()
{
mMemorized=false;
}
operator T()
{
CLAM_ASSERT(mMemorized,"Using a value that has not been memorized");
return mMemory;
}
private:
T mMemory;
bool mMemorized;
};
/** Class to hold basic statistics related to an array of arbitrary data. Statistics are computed
* efficiently and reusing computations whenever possible.
* @param abs whether the statistics are performed directly on the values (by default or template
* parameter=false) or on the absolute value of the array elements
* @param T the array type
* @param U the type of the resulting statistics
* @pre Most stats are not tolerant to size 0 data sets
*/
template <bool abs=false,class T=TData, class U=TData,int initOrder=5> class StatsTmpl
{
public:
/* @internal Only constructor available. We do not want a default constructor because then we could not be sure
* that data is consisten and we would have to be constantly be doing checks.*/
StatsTmpl(const Array<T>* data):mMoments(initOrder,5),mCentralMoments(initOrder,5),mCenterOfGravities(initOrder,5)
{
CLAM_ASSERT(data!=NULL,"Stats: A constructed array must be passed");
mData=data;
/*we initialize moments up to initOrder-th order, if higher moments are asked for
arrays are then resized*/
mMoments.SetSize(initOrder);
mCentralMoments.SetSize(initOrder);
mCenterOfGravities.SetSize(initOrder);
for(unsigned i=0;i<initOrder;i++)
{
mMoments[i]=NULL;
mCentralMoments[i]=NULL;
mCenterOfGravities[i]= NULL;
}
InitMoment((O<initOrder>*)(0));
}
~StatsTmpl()
{
for (int i=0;i<mMoments.Size();i++)
{
if(mMoments[i]) delete mMoments[i];
}
for (int i=0;i<mCentralMoments.Size();i++)
{
if(mCentralMoments[i]) delete mCentralMoments[i];
}
for (int i=0;i<mCenterOfGravities.Size();i++)
{
if(mCenterOfGravities[i]) delete mCenterOfGravities[i];
}
}
/** Method to change data array and reset all previous computations*/
void SetArray(const Array<T>* data)
{
Reset();
mData=data;
mCentroid.Reset();
}
/**
* Get order-th raw moment.
* This method just acts as a selector, if order is greater than init order, we cannot assure
* that the pointer has been initialized and we need extra checks (slow downs).
*/
template <int order> U GetMoment(const O<order>*)
{
return GetMoment((const O<order>*)(0),GreaterThan<order,initOrder>::mIs);
}
/** Get all raw moments up to the order indicated*/
template<int order> void GetMoments(Array<U>& moments, const O<order>*)
{
if(moments.Size()<order)
{
moments.Resize(order);
moments.SetSize(order);
}
pTmpArray=&moments;
GetChainedMoment((const O<order>*)(0));
pTmpArray=NULL;
}
/**
* Get order-th central moment.
* This method just acts as a selector, if order is greater than init order, we cannot assure
* that the pointer has been initialized and we need extra checks (slow downs).
*/
template <int order> U GetCentralMoment(const O<order>*)
{
return GetCentralMoment((const O<order>*)(0),GreaterThan<order,initOrder>::mIs);
}
/** Get all central moments up to the order indicated*/
template<int order> void GetCentralMoments(Array<U>& centralMoments,
const O<order>*)
{
if(centralMoments.Size()<order)
{
centralMoments.Resize(order);
centralMoments.SetSize(order);
}
pTmpArray=¢ralMoments;
GetChainedCentralMoment((const O<order>*)(0));
pTmpArray=NULL;
}
/**
* Get order-th center of gravity.
* This method just acts as a selector, if order is greater than init order, we cannot assure
* that the pointer has been initialized and we need extra checks (slow downs).
*/
template <int order> U GetCenterOfGravity(const O<order>*)
{
return GetCenterOfGravity((const O<order>*)(0),GreaterThan<order,initOrder>::mIs);
}
/** Get all center of gravities up to the order indicated*/
template<int order> void GetCenterOfGravities(Array<U>& centerOfGravities,
const O<order>*)
{
if(centerOfGravities.Size()<order)
{
centerOfGravities.Resize(order);
centerOfGravities.SetSize(order);
}
pTmpArray=¢erOfGravities;
GetChainedCenterOfGravity((const O<order>*)(0));
pTmpArray=NULL;
}
/**
* Get mean, compute it if necessary.
*
* \f[
* Mean(X) = \frac {\sum x_i} { Size(X) }
* \f]
*/
U GetMean()
{
if (mData->Size()<=0) return U(.0);
//FirstOrder* first;
return GetMoment(FirstOrder);
}
/**
* Get centroid, compute it if necessary.
*
* The centroid of a function returns the position \f$i\f$
* around which most higher values are concentrated.
*
* \f[
* Centroid(X) = \frac
* {\sum i \cdot x_i }
* {\sum x_i}
* \f]
*
* whenever the Mean(X) is less than 1e-7, then it will return the mid position
* \f[
* \frac{Size(X)-1}{2}
* \f]
*
*/
U GetCentroid()
{
// return GetCenterOfGravity(FirstOrder);
if (mCentroid.HasValue()) return mCentroid;
unsigned N = mData->Size();
U mean = GetMean();
if (mean < 1e-7 )
{
mCentroid = U(N-1)/2;
return mCentroid;
}
U centroid=0.0;
for (unsigned i = 0; i < N; i++)
{
centroid += (abs?Abs((*mData)[i]):(*mData)[i]) * (i+1);
}
mCentroid=centroid/mean/U(N) - 1;
return mCentroid;
}
/**
* Computes and returns the Spread arround the Centroid.
* \f[
* Spread(Y) = \frac
* {\sum_{i=0}^{N-1}{(Centroid(Y)-x_i)^2 y_i} }
* { \sum_{i=0}^{N-1}{y_i} }
* \f]
* The spread gives an idea on how much the distribution
* is NOT concentrated over the distribution centroid.
* Taking the array as a distribution and the values being probabilities,
* the spread would be the variance of such distribution.
*
* Significant values:
* - For a full concentration on a single bin: 0.0
* - For two balanced diracs on the extreme bins
* \f[
* Spread(BalancedDiracsDistribution) = {N^2 \over 4}
* \f]
* - For a uniform distribution the spread it's:
* \f[
* Spread(UniformDistribution) = \frac{(N-1)(N+1)}{12}
* \f]
*
* Singularities and solution:
* - When \f$\sum{y_i}\f$ is less than 1e-14 it return the uniform distribution
* formula above.
* - Centroid NaN silence NaN is solved inside GetCentroid
* - When Centroid is less than 0.2, 0.2 is taken as the centroid value.
*
* Normalization: Multiply the result by the square of the gap between
* arrays positions. ex. in an array representing a spectrum multiply by
* \f$ BinFreq^2 \f$
*
* @todo still not tested as stats but tested its usage for SpectralSpread
* @todo should use other stats than centroid to save computations
* @see GetCentroid
*/
U GetSpread()
{
const unsigned N = mData->Size();
const Array<T> & data = *mData;
const U centroid = GetCentroid();
// Compute spectrum variance around centroid frequency
TData variance = 0;
TData sumMags = 0;
for (unsigned i=0; i<N; i++)
{
U centroidDistance = i - centroid;
centroidDistance *= centroidDistance;
variance += centroidDistance * data[i];
sumMags += data[i];
}
// NaN solving: Silence is like a plain distribution
if (sumMags < 1e-14) return U(N+1) * (N-1) / 12;
return variance / sumMags;
}
/** Get standard deviation, compute it if necessary*/
U GetStandardDeviation()
{
return mStdDev(*mData,GetCentralMomentFunctor<2>(),true);
}
/**
* Get skewness coefficient, compute it if necessary.
*
* The Skewness of a distribution gives an idea of
* the assimetry of the variance of the values.
* @f[
* Skewness(X) = \frac
* {\sum{\left( (x_i-Mean(X))^3\right)} }
* {\left(
* \sum{\left(
* x_i-Mean(X)
* \right)^2}
* \right) ^\frac{3}{2} }
* @f]
* Tipical values:
* - This function returns greater positive values when
* there are more extreme values above the median than below.
* - Returns negative values when
* there are more extreme values below the median than above.
* - Returns zero when the distribution of the \f$x_i\f$
* values around the Median is equilibrated.
*
* Singularities and solutions:
* - Constant functions: Currently returns NaN but, in the future,
* it should return 0 because it can be considered an
* equilibrated function.
*
* @todo Give an order of magnitude, limits or something
*/
U GetSkew()
{
return mSkew(*mData,mStdDev,GetCentralMomentFunctor<3>(),true);
}
/**
* Get kurtosis, compute it if necessary.
*
* The Kurtosis of a distribution gives an idea
* of the degree of pickness of the distribution.
* @f[
* Kurtosis(X) = \frac
* {\sum{\left( (x_i-Mean(X))^4\right)} }
* {\left(
* \sum{\left(
* x_i-Mean(X)
* \right)^2}
* \right) ^2 }
* @f]
*
* Tipical values:
* - A normal distribution of \f$x_i\f$ values has a kurtosis near to 3.
* - A constant distribution has a kurtosis of \f$\frac{-6(n^2+1)}{5(n^2-1)} + 3 \f$
*
* Singularities and solutions:
* - Constant functions: Currently returns 3 althought it is not clear
* that it should be the right one, and it can vary on future implementations.
*/
U GetKurtosis()
{
return mKurtosis(*mData,GetCentralMomentFunctor<2>(),GetCentralMomentFunctor<4>(),true);
}
/**
* Get variance, compute it if necessary.
*
* The variance is the mean cuadratic distance from the mean.
* @f[
* Variance(X) = \frac
* {\sum{\left( (x_i-Mean(X))^2\right)} }
* {Size(X)}
* @f]
*/
U GetVariance()
{
return GetCentralMoment(SecondOrder);
}
/**
* Get energy, compute it if necessary.
*
* @f[
* Energy(X) = \sum{{x_i}^2 }
* @f]
*
*/
T GetEnergy()
{
return mEnergy(*mData);
}
/**
* Get the Geometric mean, and computes it if necessary.
*
* The Geometric mean gives the mean magnitude order.
* It converges with the mean when all the values \f$x_i\f$ are closer.
*
* @f[
* GeometricMean(X) = {\left( \prod x_i \right)} ^ \frac{1}{Size(X) }
* @f]
* In order to make the computation cheap, For easy computation, logarithms are used.
* @f[
* \log (GeometricMean(X)) = \frac
* { \sum \log_e x_i }
* { Size(X) }
* @f]
*/
U GetGeometricMean()
{
return mGeometricMean(*mData);
}
/**
* Get the root means square (RMS), compute it if necessary.
* \f[
* \sqrt { \sum{{x_i}^2 } }
* \f]
* @todo Is it a mean??
* */
T GetRMS()
{
return mRMS(*mData);
}
/** Get maximum value */
T GetMax()
{
return mMaxElement(*mData);
}
/** Get minimum value */
T GetMin()
{
return mMinElement(*mData);
}
/**
* Computes and returns the Slope.
*
* The slope gives an idea of the mean pendent on the array:
* - Less than zero means that is decreasing
* - More than zero means that is increasing
* - Zero means that any tendency is the dominant
*
* The Slope is defined as:
* \f[
* {1 \over \sum{x_i}}
* { N \sum{i x_i } - \sum{i} \sum{x_i}
* \over
* {N \sum{i^2} - (\sum{i})^2 }}
* \f]
*
* We can transform this formula into one depending on the Centroid
* which is already calculated in order to obtain other stats:
* \f[
* 6 {
* { 2 Centroid - N + 1}
* \over
* { N (N-1) (N+1)}
* }
* \f]
*
* The slope is relative to the array position index.
* If you want to give to the array position a dimentional meaning,
* (p.e. frequency or time) then you should divide by the gap between array positions.
* for example GetSlope/BinFreq for a FFT or GetSlope*SampleRate for an audio
*
*/
U GetSlope()
{
// TODO: Sums where Y is used can be taken from Mean and Centroid
const TSize size = mData->Size();
// \sum^{i=0}_{N-1}(x_i)
// const TData sumY = GetMean()*size;
// \sum^{i=0}_{N-1}(i x_i)
// const TData sumXY = GetCentroid()*GetMean()*size;
// \sum^{i=0}_{N-1}(i)
// const TData sumX = (size-1)*size/2.0;
// \sum^{i=0}_{N-1}(i^2)
// const TData sumXX = (size-1)*(size)*(size+size-1)/6.0;
//TData num = size*sumXY - sumX*sumY;
// = size Centroid Mean size - (size-1)(size)(size)Mean/2
// = size^2 mean (Centroid - (size-1)/2)
//num = size*size*GetMean()*(GetCentroid()-(size-1)/2.0);
// size*sumXX - sumX*sumX =
// = size (size-1) size (size+size-1)/6 - (size-1)^2(size)^2/4
// = size^2 ( (size-1)(size+size-1)/6 - (size-1)^2/4 )
// = size^2 (size-1)( (size+size-1)/6 - (size-1)/4 )
// = size^2 (size-1)( (4*size-2) - (3*size-3) )/12
// = size^2 (size-1) (size+1)/12
//TData denum = (size*sumXX - sumX*sumX)*sumY;
// = size mean size^2 (size-1) (size+1) / 12
// = size^3 mean (size-1) (size+1) / 12
//denum = size*size*size * GetMean() * (size-1) * (size+1) /12.0;
// return num/denum;
// = size^2 mean (Centroid - (size-1)/2) / (size^3 mean (size-1) (size+1) / 12)
// = (Centroid - (size-1)/2) / (size (size-1) (size+1) /12)
// = ( 12*centroid - 6*size + 6 ) / ( size (size-1) (size+1) )
// = 6 (2*centroid - size + 1)) / ( size (size-1) (size+1) )
return 6*(2*GetCentroid() - size + 1) / (size * (size-1) * (size+1));
}
/**
* Get flatness, compute it if necessary.
*
* The flatness is the relation among the geometric mean and the arithmetic mean.
*
* \f[
* Flatness(X) = \frac
* {GeometricMean(X)}
* {Mean(X)}
* \f]
*
* Singularities and solution:
* - When the mean is lower than 1e-20, it is set at 1e-20
* - When the geometric mean is lower than 1e-20, it is set at 1e-20
* @todo Explain why this is a mesure of the flatness
* @bug Singularity solution don't work for non absolute stats
*/
U GetFlatness()
{
U mean = GetMean();
U geometricMean = GetGeometricMean();
if (mean<1e-20) mean=TData(1e-20);
if (geometricMean<1e-20 ) geometricMean=TData(1e-20);
return geometricMean/mean;
}
/**
* Reset all the cached computations.
* This method is called automatically if you change the data pointer
* using the SetData method, but it should be called explicitly whenever
* the values on that array changes externally.
*/
void Reset()
{
//Note: we keep previously allocated data, we just reset computations
for (int i=0;i<mMoments.Size();i++)
if(mMoments[i]!=NULL) mMoments[i]->Reset();
for (int i=0;i<mCentralMoments.Size();i++)
if(mCentralMoments[i]!=NULL) mCentralMoments[i]->Reset();
for (int i=0;i<mCenterOfGravities.Size();i++)
if(mCenterOfGravities[i]!=NULL) mCenterOfGravities[i]->Reset();
mKurtosis.Reset();
mStdDev.Reset();
mSkew.Reset();
mEnergy.Reset();
mRMS.Reset();
mGeometricMean.Reset();
mMaxElement.Reset();
mMinElement.Reset();
mCentroid.Reset();
}
private:
/**
* @warning The implementation of this statistic is numerically unstable.
* Don't use it.
*/
U GetTilt()
{
const Array<T>& Y = *mData;
const TSize size = mData->Size();
const U m1 = GetMean();
TData d1=0;
TData d2=0;
for (unsigned i=0;i<size;i++)
{
d1 += i/Y[i];
d2 += 1/Y[i];
}
// ti = m1/ai *(n - (d1/d2))
// SpecTilt = m1²/ti² * SUM[1/ai *(i-d1/d2)]
TData SumTi2 = 0;
TData Tilt = 0;
for (unsigned i=0;i<size;i++)
{
Tilt += (1/Y[i] *(i-d1/d2));
TData ti = m1/Y[i]*(i - (d1/d2));
SumTi2 += ti*ti;
}
Tilt*= (m1*m1/SumTi2);
return Tilt;
}
/** Chained method for initializing moments*/
template<int order> void InitMoment(const O<order>*)
{
if(mMoments[order-1]!=NULL)
delete mMoments[order-1];
mMoments[order-1]=new Moment<order,abs,T,U>;
if(mCentralMoments[order-1]!=NULL)
delete mCentralMoments[order-1];
mCentralMoments[order-1]=new CentralMoment<order,abs,T,U>;
if(mCenterOfGravities[order-1]!=NULL)
delete mCenterOfGravities[order-1];
mCenterOfGravities[order-1]= new CenterOfGravity<order,abs,T,U>;
InitMoment((O<order-1>*)(0));
}
/** Chained method terminator */
void InitMoment(O<1>*)
{
mMoments[0]=new Moment<1,abs,T,U>;
mCentralMoments[0]=new CentralMoment<1,abs,T,U>;
mCenterOfGravities[0]= new CenterOfGravity<1,abs,T,U>;
}
/** Get order-th raw moment, order is smaller than init order*/
template<int order> U GetMoment(const O<order>*,StaticFalse&)
{
return (*(dynamic_cast<Moment<order,abs,T,U>*> (mMoments[order-1])))(*mData);
}
/** Get order-th raw moment, order is greater than init order*/
template<int order> U GetMoment(const O<order>*,StaticTrue&)
{
if(order>mMoments.Size())
{
int previousSize=mMoments.Size();
mMoments.Resize(order);
mMoments.SetSize(order);
for(int i=previousSize;i<order;i++) mMoments[i]=NULL;
}
if(mMoments[order-1]==NULL)
{
mMoments[order-1]=new Moment<order,abs,T,U>;
}
//return GetMoment((const O<order>*)(0),StaticFalse());
return (*(dynamic_cast<Moment<order,abs,T,U>*> (mMoments[order-1])))(*mData);
}
/** Chained method to return moment indicated by order and previous*/
template<int order> void GetChainedMoment(const O<order>* )
{
(*pTmpArray)[order-1]=GetMoment((const O<order>*)(0));
GetChainedMoment((O<order-1>*)(0));
}
/** Chained method terminator*/
void GetChainedMoment(O<1>* )
{
(*pTmpArray)[0]=GetMoment((O<1>*)(0));
}
/** Get order-th central moment, order is smaller than init order*/
template<int order> U GetCentralMoment(const O<order>*,StaticFalse&)
{
CentralMoment<order,abs,T,U> & tmpMoment = GetCentralMomentFunctor<order>();
//first we see if we already have corresponding Raw Moments up to the order demanded
for(int i=0;i<order;i++)
{
//if we don't, we will have to compute them
if(mMoments[i]==NULL)
return tmpMoment(*mData);
}
// if we do, we will use formula that relates Central Moments with Raw Moments
return tmpMoment(*mData,mMoments);
}
/** Get order-th central moment, order is greater than init order*/
template<int order> U GetCentralMoment(const O<order>*,StaticTrue&)
{
if(order>mCentralMoments.Size())
{
const int previousSize=mCentralMoments.Size();
mCentralMoments.Resize(order+1);
mCentralMoments.SetSize(order+1);
for(int i=previousSize; i<order; i++) mCentralMoments[i]=NULL;
}
if(mCentralMoments[order-1]==NULL)
{
mCentralMoments[order-1] = new CentralMoment<order,abs,T,U>;
}
return GetCentralMoment((const O<order>*)(0),StaticFalse());
}
/** Chained method to return central moment indicated by order and previous*/
template<int order> void GetChainedCentralMoment(const O<order>* )
{
(*pTmpArray)[order-1]=GetCentralMoment((const O<order>*)(0));
GetChainedCentralMoment((O<order-1>*)(0));
}
/** Chained method terminator*/
void GetChainedCentralMoment(O<1>* )
{
(*pTmpArray)[0]=GetCentralMoment((O<1>*)(0));
}
/** Get order-th center of gravity, order is smaller than init order*/
template<int order> U GetCenterOfGravity(const O<order>*,StaticFalse& orderIsGreater)
{
return (*dynamic_cast<CenterOfGravity<order,abs,T,U>*> (mCenterOfGravities[order-1]))(*mData);
}
/** Get order-th center of gravity, order is greater than init order*/
template<int order> U GetCenterOfGravity(const O<order>*,StaticTrue& orderIsGreater)
{
if(order>mCenterOfGravities.Size())
{
int previousSize=mCenterOfGravities.Size();
mCenterOfGravities.Resize(order);
mCenterOfGravities.SetSize(order);
for(int i=previousSize;i<order;i++) mCenterOfGravities[i]=NULL;
}
if(mCenterOfGravities[order-1]=NULL)
{
mCenterOfGravities[order-1]=new CenterOfGravity<order,abs,T,U>;
}
return GetCenterOfGravity((const O<order>*)(0),StaticFalse());
}
/** Chained method to return center of gravity indicated by order and previous*/
template<int order> void GetChainedCenterOfGravity(const O<order>* )
{
(*pTmpArray)[order-1]=GetCenterOfGravity((const O<order>*)(0));
GetChainedCenterOfGravity((O<order-1>*)(0));
}
/** Chained method terminator*/
void GetChainedCenterOfGravity(O<1>* )
{
(*pTmpArray)[0]=GetCenterOfGravity((O<1>*)(0));
}
template <unsigned order>
CentralMoment<order,abs,T,U> & GetCentralMomentFunctor()
{
CLAM_ASSERT( signed(order-1) < mCentralMoments.Size(),
"Calling for a Central Moment order above the configured one");
typedef CentralMoment<order,abs,T,U> CentralMomentN;
const unsigned int position = order-1;
if (!mCentralMoments[position])
mCentralMoments[position] = new CentralMomentN;
return *dynamic_cast<CentralMomentN*>(mCentralMoments[position]);
}
Array<BaseMemOp*> mMoments;
Array<BaseMemOp*> mCentralMoments;
Array<BaseMemOp*> mCenterOfGravities;
KurtosisTmpl<abs,T,U> mKurtosis;
SkewTmpl<abs,T,U> mSkew;
StandardDeviationTmpl<abs,T,U> mStdDev;
EnergyTmpl<T> mEnergy;
RMSTmpl<T> mRMS;
GeometricMeanTmpl<T,U> mGeometricMean;
ComplexMaxElement<abs,T> mMaxElement;
ComplexMinElement<abs,T> mMinElement;
StatMemory<U> mCentroid;
const Array<T>* mData;
/** Dummy pointer used because of some VC6 limitations*/
Array<T>* pTmpArray;
};
typedef StatsTmpl<> Stats;
};//namespace
#endif
|