/usr/include/claw/impl/game_ai.tpp is in libclaw-dev 1.7.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 | /*
CLAW - a C++ Library Absolutely Wonderful
CLAW is a free library without any particular aim but being useful to
anyone.
Copyright (C) 2005 Sébastien Angibaud
Copyright (C) 2005-2011 Julien Jorge
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
contact: julien.jorge@gamned.org
*/
/**
* \file game_ai.tpp
* \brief Implémentation de fonctions d'intelligence artificielle.
* \author Julien Jorge & Sébastien Angibaud
*/
#include <claw/max_vector.hpp>
#include <cstdlib>
//**************************** gamestate **************************************
/*---------------------------------------------------------------------------*/
/**
* \brief Destructor.
*/
template<typename Action, typename Numeric>
claw::ai::game::game_state<Action, Numeric>::~game_state()
{
// nothing to do
} // game_state::~game_state()
/*---------------------------------------------------------------------------*/
/**
* \brief Get the minimal score a state can get.
*/
template <typename Action, typename Numeric>
typename claw::ai::game::game_state<Action, Numeric>::score
claw::ai::game::game_state<Action, Numeric>::min_score()
{
return s_min_score;
} // game_state::min_score()
/*---------------------------------------------------------------------------*/
/**
* \brief Get the maximal score a state can get.
*/
template <typename Action, typename Numeric>
typename claw::ai::game::game_state<Action, Numeric>::score
claw::ai::game::game_state<Action, Numeric>::max_score()
{
return s_max_score;
} // game_state::max_score()
/*---------------------------------------------------------------------------*/
/**
* \brief Truncate a score to fit in the range (min_score(), max_score()).
* \param score_val The value to fit.
*/
template<typename Action, typename Numeric>
typename claw::ai::game::game_state<Action, Numeric>::score
claw::ai::game::game_state<Action, Numeric>::fit
( score score_val ) const
{
if ( s_max_score < score_val )
return s_max_score;
else if ( score_val < s_min_score )
return s_min_score;
else
return score_val;
} // game_state::fit()
//**************************** action_eval ************************************
/*---------------------------------------------------------------------------*/
/**
* \brief Constructor.
* \param a The evaluated action.
* \param e The evaluation of the action.
*/
template <typename Action, typename Numeric>
claw::ai::game::action_eval<Action, Numeric>::action_eval
( const Action& a, const Numeric& e)
: action(a), eval(e)
{
} // action_eval::action_eval()
/*---------------------------------------------------------------------------*/
/**
* \brief Compare with an otreh action.
* \param ae The other action.
*/
template <typename Action, typename Numeric>
bool claw::ai::game::action_eval<Action, Numeric>::operator<
( const action_eval& ae ) const
{
return eval < ae.eval;
} // action_eval::operator<()
#if 0
/*---------------------------------------------------------------------------*/
/**
* \brief Egalité de deux actions.
* \return vrai si this->eval == ae.eval.
*/
template <typename Action, typename Numeric>
bool claw::ai::game::action_eval<Action, Numeric>::operator==
( const action_eval& ae ) const
{
return eval == ae.eval;
} // action_eval::operator==()
#endif
//********************************* min_max ***********************************
/*---------------------------------------------------------------------------*/
/**
* \brief Apply the min-max algorithm to find the best action.
* \param depth Depth of the search subtree we are allowed to explore.
* \param current_state The state of the game.
* \param computer_turn Tell if the next action is done by the computer.
*/
template<typename State>
typename claw::ai::game::min_max<State>::score
claw::ai::game::min_max<State>::operator()
( int depth, const state& current_state, bool computer_turn ) const
{
score score_val;
// we reached a final state or we are not allowed to search more.
if ( current_state.final() || (depth == 0) )
score_val = current_state.evaluate();
else
{
std::list<action> next_actions;
typename std::list<action>::const_iterator it;
state* new_state;
// get all reachable states
current_state.next_actions( next_actions );
if ( next_actions.empty() )
score_val = current_state.evaluate();
else if (computer_turn)
{
score_val = current_state.min_score();
for (it = next_actions.begin(); it!=next_actions.end(); ++it)
{
new_state=static_cast<state*>(current_state.do_action(*it));
// evaluate the action of the human player
score s = (*this)( depth-1, *new_state, false );
// and keep the best action he can do.
if (s > score_val)
score_val = s;
delete new_state;
}
}
else // human player's turn
{
score_val = current_state.max_score();
for (it = next_actions.begin(); it!=next_actions.end(); ++it)
{
new_state=static_cast<state*>(current_state.do_action(*it));
// evaluate the action of the computer player
score s = (*this)( depth-1, *new_state, true );
// and keep the worst action he can do
if (s < score_val)
score_val = s;
delete new_state;
}
}
}
return score_val;
} // min_max::operator()
//******************************** alpha_beta *********************************
/*---------------------------------------------------------------------------*/
/**
* \brief Apply the alpha-beta algorithm to find the best action.
* \param depth Depth of the search subtree we are allowed to explore.
* \param current_state The state of the game.
* \param computer_turn Tell if the next action is done by the computer.
*/
template <typename State>
typename State::score claw::ai::game::alpha_beta<State>::operator()
( int depth, const state& current_state, bool computer_turn ) const
{
return this->compute
( depth, current_state, computer_turn, current_state.min_score(),
current_state.max_score() );
} // alpha_beta::operator()
/*---------------------------------------------------------------------------*/
/**
* \brief Find the best action using an alpha-beta algorithm.
* \param depth Depth of the search subtree we are allowed to explore.
* \param current_state The state of the game.
* \param computer_turn Tell if the next action is done by the computer.
* \param alpha Worst score of the current player.
* \param beta Best score of the other player.
*/
template<typename State>
typename claw::ai::game::alpha_beta<State>::score
claw::ai::game::alpha_beta<State>::compute
( int depth, const state& current_state, bool computer_turn, score alpha,
score beta ) const
{
score score_val;
// we reached a final state or we are not allowed to search more.
if ( current_state.final() || (depth == 0) )
score_val = current_state.evaluate();
else
{
std::list<action> next_actions;
typename std::list<action>::const_iterator it;
State* new_state;
// get all reachable states
current_state.next_actions( next_actions );
if ( next_actions.empty() )
score_val = current_state.evaluate();
else if (computer_turn)
{
score_val = current_state.min_score();
it = next_actions.begin();
while ( it!=next_actions.end() && (score_val < beta) )
{
new_state=static_cast<state*>(current_state.do_action(*it));
// evaluate the action of the human player
score s = compute
( depth-1, *new_state, false, std::max(alpha, score_val), beta );
// and keep the best action he can do.
if (s > score_val)
score_val = s;
delete new_state;
++it;
}
}
else // human player's turn
{
score_val = current_state.max_score();
it = next_actions.begin();
while ( it!=next_actions.end() && (score_val > alpha) )
{
new_state=static_cast<state*>(current_state.do_action(*it));
// evaluate the action of the computer player
score s = compute
( depth-1, *new_state, true, alpha, std::min(beta, score_val) );
// and keep the worst action he can do
if (s < score_val)
score_val = s;
++it;
delete new_state;
}
}
}
return score_val;
} // alpha_beta::compute()
//***************************** select_action *********************************
/*---------------------------------------------------------------------------*/
/**
* \brief Select an action using the given method.
* \param depth Maximum depth of the search tree.
* \param current_state The state of the game.
* \param new_action (in/out) Best known action.
* \param computer_turn Tell if the action is done by the computer.
*/
template<typename Method>
void claw::ai::game::select_action<Method>::operator()
( int depth, const state& current_state, action& new_action,
bool computer_turn ) const
{
std::list<action> l;
typename std::list<action>::iterator it;
score best_eval;
Method method;
// get all reachable states
current_state.next_actions( l );
best_eval = current_state.min_score();
for (it=l.begin(); it!=l.end(); ++it)
{
state* new_state;
score eval;
// try and evaluate each action
new_state = static_cast<state*>(current_state.do_action(*it));
eval = method(depth-1, *new_state, !computer_turn);
delete new_state;
// we keep one of the best actions
if (eval > best_eval)
{
best_eval = eval;
new_action = *it;
}
}
} // select_action::operator()
//*************************** select_random_action ****************************
/**
* \brief Select a random action among the best ones.
* \param depth Maximum depth of the search tree.
* \param current_state The state of the game.
* \param new_action (in/out) Best known action.
* \param computer_turn Tell if the action is done by the computer.
*/
template<typename Method>
void claw::ai::game::select_random_action<Method>::operator()
( int depth, const state& current_state, action& new_action,
bool computer_turn ) const
{
std::list<action> l;
typename std::list<action>::iterator it;
action_eval<action, score> eval( new_action, current_state.min_score() );
Method method;
max_vector< action_eval<action, score> > events( eval );
// get all reachable states
current_state.next_actions( l );
for (it=l.begin(); it!=l.end(); ++it)
{
state* new_state;
// try and evaluate each action
new_state = static_cast<state*>(current_state.do_action(*it));
eval.action = *it;
eval.eval = method(depth-1, *new_state, !computer_turn);
delete new_state;
// keep the best actions.
events.add( eval );
}
std::size_t i = (double)rand()/(RAND_MAX + 1) * events.get_v().size();
new_action = events.get_v()[i].action;
} // select_random_action::operator()
|