This file is indexed.

/usr/include/dolfin/la/SingularSolver.h is in libdolfin1.0-dev 1.0.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
// Copyright (C) 2008-2011 Anders Logg
//
// This file is part of DOLFIN.
//
// DOLFIN is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// DOLFIN is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
//
// First added:  2005-09-19
// Last changed: 2011-10-06

#ifndef __SINGULAR_SOLVER_H
#define __SINGULAR_SOLVER_H

#include <boost/scoped_ptr.hpp>
#include <dolfin/common/types.h>
#include <dolfin/common/Variable.h>
#include "LinearSolver.h"

namespace dolfin
{

  /// This class provides a linear solver for singular linear systems
  /// Ax = b where A has a one-dimensional null-space (kernel). This
  /// may happen for example when solving Poisson's equation with
  /// pure Neumann boundary conditions.
  ///
  /// The solver attempts to create an extended non-singular system
  /// by adding the constraint [1, 1, 1, ...]^T x = 0.
  ///
  /// If an optional mass matrix M is supplied, the solver attempts
  /// to create an extended non-singular system by adding the
  /// constraint m^T x = 0 where m is the lumped mass matrix. This
  /// corresponds to setting the average (integral) of the finite
  /// element function with coefficients x to zero.
  ///
  /// The solver makes not attempt to check that the null-space is
  /// indeed one-dimensional. It is also assumed that the system
  /// Ax = b retains its sparsity pattern between calls to solve().

  class SingularSolver : public Variable
  {
  public:

    /// Create linear solver
    SingularSolver(std::string method = "lu",
                   std::string preconditioner = "ilu");

    /// Destructor
    ~SingularSolver();

    /// Solve linear system Ax = b
    uint solve(const GenericMatrix& A, GenericVector& x, const GenericVector& b);

    /// Solve linear system Ax = b using mass matrix M for setting constraint
    uint solve(const GenericMatrix& A, GenericVector& x, const GenericVector& b,
               const GenericMatrix& M);

    /// Default parameter values
    static Parameters default_parameters()
    {
      Parameters p("singular_solver");

      p.add(LinearSolver::default_parameters());

      return p;
    }

  private:

    // Initialize extended system
    void init(const GenericMatrix& A);

    // Create extended system
    void create(const GenericMatrix& A, const GenericVector& b, const GenericMatrix* M);

    // Linear solver
    LinearSolver linear_solver;

    // Extended matrix
    boost::scoped_ptr<GenericMatrix> B;

    // Solution of extended system
    boost::scoped_ptr<GenericVector> y;

    // Extended vector
    boost::scoped_ptr<GenericVector> c;

  };

}

#endif