This file is indexed.

/usr/include/dolfin/swig/la_post.i is in libdolfin1.0-dev 1.0.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
/* -*- C -*- */
// ===========================================================================
// SWIG directives for the DOLFIN la kernel module (post)
//
// The directives in this file are applied _after_ the header files of the
// modules has been loaded.
// ===========================================================================

// ---------------------------------------------------------------------------
// Instantiate uBLAS template classes
// ---------------------------------------------------------------------------
%template(uBLASSparseMatrix) dolfin::uBLASMatrix<boost::numeric::ublas::compressed_matrix<double, boost::numeric::ublas::row_major> >;
%template(uBLASDenseMatrix) dolfin::uBLASMatrix<boost::numeric::ublas::matrix<double> >;
%template(uBLASSparseFactory) dolfin::uBLASFactory<boost::numeric::ublas::compressed_matrix<double, boost::numeric::ublas::row_major> >;
%template(uBLASDenseFactory) dolfin::uBLASFactory<boost::numeric::ublas::matrix<double> >;

// ---------------------------------------------------------------------------
// SLEPc specific extension code
// ---------------------------------------------------------------------------
#ifdef HAS_SLEPC
%feature("docstring") dolfin::SLEPcEigenSolver::_get_eigenvalue "Missing docstring";
%feature("docstring") dolfin::SLEPcEigenSolver::_get_eigenpair "Missing docstring";
%extend dolfin::SLEPcEigenSolver {

PyObject* _get_eigenvalue(const int i) {
    double lr, lc;
    self->get_eigenvalue(lr, lc, i);
    return Py_BuildValue("dd", lr, lc);
}

PyObject* _get_eigenpair(dolfin::PETScVector& r, dolfin::PETScVector& c, const int i) {
    double lr, lc;
    self->get_eigenpair(lr, lc, r, c, i);
    return Py_BuildValue("dd", lr, lc);
}

%pythoncode %{
    def get_eigenpair(self, i = 0, r_vec = None, c_vec = None,):
        """Gets the i-th solution of the eigenproblem"""
        r_vec = r_vec or PETScVector()
        c_vec = c_vec or PETScVector()
        lr, lc = self._get_eigenpair(r_vec, c_vec, i)
        return lr, lc, r_vec, c_vec

    def get_eigenvalue(self, i = 0):
        """Gets the i-th eigenvalue of the eigenproblem"""
        return self._get_eigenvalue(i)
%}

}
#endif

// ---------------------------------------------------------------------------
// C++ and Python extension code for BlockVector
// ---------------------------------------------------------------------------
%extend dolfin::BlockVector {
  %pythoncode %{

    def __getitem__(self, i):
        return self.get_block(i)

    def __setitem__(self, i, m):
        if not hasattr(self, "_items"):
            self._items = {}
        self._items[i] = m
        self.set_block(i, m)

    def __add__(self, v):
      a = self.copy()
      a += v
      return a

    def __sub__(self, v):
      a = self.copy()
      a -= v
      return a

    def __mul__(self, v):
      a = self.copy()
      a *= v
      return a

    def __rmul__(self, v):
      return self.__mul__(v)
  %}
}

// ---------------------------------------------------------------------------
// C++ and Python extension code for BlockMatrix
// ---------------------------------------------------------------------------
%extend dolfin::BlockMatrix {
%pythoncode
%{
    def __mul__(self, other):
        v = BlockVector(self.size(0))
        self.mult(other, v)
        return v

    def __getitem__(self, t):
        i,j = t
        return self.get_block(i, j)

    def __setitem__(self, t, m):
        if not hasattr(self, "_items"):
            self._items = {}
        self._items[t] = m
        i,j = t
        self.set_block(i, j, m)

%}
}
// ---------------------------------------------------------------------------
// Indices.i defines helper functions to extract C++ indices from Python
// indices. These functions are not wrapped to the Python interface. They are
// only included in the C++ wrapper file.
//
// la_get_set_items.i defines helper functions that are wrapped to the
// Python. These are then used in the extended Python classes. See below.
// ---------------------------------------------------------------------------
%{
#include "dolfin/swig/Indices.i"
#include "dolfin/swig/la_get_set_items.i"
%}

%include "dolfin/swig/la_get_set_items.i"

// ---------------------------------------------------------------------------
// Modify the GenericVector interface
// ---------------------------------------------------------------------------
%feature("docstring") dolfin::GenericVector::_scale "Missing docstring";
%feature("docstring") dolfin::GenericVector::_vec_mul "Missing docstring";
%extend dolfin::GenericVector
{
  void _scale(double a)
  {
    (*self) *= a;
  }

  void _vec_mul(const GenericVector& other)
  {
    (*self) *= other;
  }
// ---------------------------------------------------------------------------
  %pythoncode
  %{
    def __in_parallel(self):
        first, last = self.local_range()
        return first > 0 or len(self) > last

    def __is_compatible(self, other):
        "Returns True if self, and other are compatible Vectors"
        if not isinstance(other, GenericVector):
            return False
        self_type = get_tensor_type(self)
        return self_type == get_tensor_type(other)

    def array(self):
        "Return a numpy array representation of the local part of a Vector"
        from numpy import zeros, arange, uint0
        v = zeros(self.local_size())
        self.get_local(v)
        return v

    def __contains__(self, value):
        from numpy import isscalar
        if not isscalar(value):
            raise TypeError, "expected scalar"
        return _contains(self,value)

    def __gt__(self, value):
        from numpy import isscalar
        if isscalar(value):
            return _compare_vector_with_value(self, value, dolfin_gt)
        if isinstance(value, GenericVector):
            return _compare_vector_with_vector(self, value, dolfin_gt)
        return NotImplemented

    def __ge__(self,value):
        from numpy import isscalar
        if isscalar(value):
            return _compare_vector_with_value(self, value, dolfin_ge)
        if isinstance(value, GenericVector):
            return _compare_vector_with_vector(self, value, dolfin_ge)
        return NotImplemented

    def __lt__(self,value):
        from numpy import isscalar
        if isscalar(value):
            return _compare_vector_with_value(self, value, dolfin_lt)
        if isinstance(value, GenericVector):
            return _compare_vector_with_vector(self, value, dolfin_lt)
        return NotImplemented

    def __le__(self,value):
        from numpy import isscalar
        if isscalar(value):
            return _compare_vector_with_value(self, value, dolfin_le)
        if isinstance(value, GenericVector):
            return _compare_vector_with_vector(self, value, dolfin_le)
        return NotImplemented

    def __eq__(self,value):
        from numpy import isscalar
        if isscalar(value):
            return _compare_vector_with_value(self, value, dolfin_eq)
        if isinstance(value, GenericVector):
            return _compare_vector_with_vector(self, value, dolfin_eq)
        return NotImplemented

    def __neq__(self,value):
        from numpy import isscalar
        if isscalar(value):
            return _compare_vector_with_value(self, value, dolfin_neq)
        if isinstance(value, GenericVector):
            return _compare_vector_with_vector(self, value, dolfin_neq)
        return NotImplemented

    def __neg__(self):
        ret = self.copy()
        ret *= -1
        return ret

    def __delitem__(self,i):
        raise ValueError, "cannot delete Vector elements"

    def __delslice__(self,i,j):
        raise ValueError, "cannot delete Vector elements"

    def __setslice__(self, i, j, values):
        if i == 0 and (j >= len(self) or j == -1): # slice == whole
            from numpy import isscalar
            # No test for equal lengths because this is checked by DOLFIN in _assign
            if isinstance(values, GenericVector) or isscalar(values):
                self._assign(values)
                return
        self.__setitem__(slice(i, j, 1), values)

    def __getslice__(self, i, j):
        if i == 0 and (j >= len(self) or j == -1):
            return self.copy()
        return self.__getitem__(slice(i, j, 1))

    def __getitem__(self, indices):
        from numpy import ndarray, integer
        from types import SliceType
        if isinstance(indices, (int, integer)):
            return _get_vector_single_item(self, indices)
        elif isinstance(indices, (SliceType, ndarray, list) ):
            return down_cast(_get_vector_sub_vector(self, indices))
        else:
            raise TypeError, "expected an int, slice, list or numpy array of integers"

    def __setitem__(self, indices, values):
        from numpy import ndarray, integer, isscalar
        from types import SliceType
        if isinstance(indices, (int, integer)):
            if isscalar(values):
                return _set_vector_items_value(self, indices, values)
            else:
                raise TypeError, "provide a scalar to set single item"
        elif isinstance(indices, (SliceType, ndarray, list)):
            if isscalar(values):
                _set_vector_items_value(self, indices, values)
            elif isinstance(values, GenericVector):
                _set_vector_items_vector(self, indices, values)
            elif isinstance(values, ndarray):
                _set_vector_items_array_of_float(self, indices, values)
            else:
                raise TypeError, "provide a scalar, GenericVector or numpy array of float to set items in Vector"
        else:
            raise TypeError, "index must be an int, slice or a list or numpy array of integers"

    def __len__(self):
        return self.size()

    def __iter__(self):
        for i in xrange(self.size()):
            yield _get_vector_single_item(self, i)

    def __add__(self, other):
        """x.__add__(y) <==> x+y"""
        if self.__is_compatible(other):
            ret = self.copy()
            ret.axpy(1.0, other)
            return ret
        return NotImplemented

    def __sub__(self,other):
        """x.__sub__(y) <==> x-y"""
        if self.__is_compatible(other):
            ret = self.copy()
            ret.axpy(-1.0, other)
            return ret
        return NotImplemented

    def __mul__(self,other):
        """x.__mul__(y) <==> x*y"""
        from numpy import isscalar
        if isscalar(other):
            ret = self.copy()
            ret._scale(other)
            return ret
        if isinstance(other,GenericVector):
            ret = self.copy()
            ret._vec_mul(other)
            return ret
        return NotImplemented

    def __div__(self,other):
        """x.__div__(y) <==> x/y"""
        from numpy import isscalar
        if isscalar(other):
            ret = self.copy()
            ret._scale(1.0 / other)
            return ret
        return NotImplemented

    def __radd__(self,other):
        """x.__radd__(y) <==> y+x"""
        return self.__add__(other)

    def __rsub__(self, other):
        """x.__rsub__(y) <==> y-x"""
        return self.__sub__(other)

    def __rmul__(self, other):
        """x.__rmul__(y) <==> y*x"""
        from numpy import isscalar
        if isscalar(other):
            ret = self.copy()
            ret._scale(other)
            return ret
        return NotImplemented

    def __rdiv__(self, other):
        """x.__rdiv__(y) <==> y/x"""
        return NotImplemented

    def __iadd__(self, other):
        """x.__iadd__(y) <==> x+y"""
        if self.__is_compatible(other):
            self.axpy(1.0, other)
            return self
        return NotImplemented

    def __isub__(self, other):
        """x.__isub__(y) <==> x-y"""
        if self.__is_compatible(other):
            self.axpy(-1.0, other)
            return self
        return NotImplemented

    def __imul__(self, other):
        """x.__imul__(y) <==> x*y"""
        from numpy import isscalar
        if isscalar(other):
            self._scale(other)
            return self
        if isinstance(other, GenericVector):
            self._vec_mul(other)
            return self
        return NotImplemented

    def __idiv__(self, other):
        """x.__idiv__(y) <==> x/y"""
        from numpy import isscalar
        if isscalar(other):
            self._scale(1.0 / other)
            return self
        return NotImplemented

  %}
}

// ---------------------------------------------------------------------------
// Modify the GenericMatrix interface
// ---------------------------------------------------------------------------
%feature("docstring") dolfin::GenericMatrix::_scale "Missing docstring";
%feature("docstring") dolfin::GenericMatrix::_data "Missing docstring";
%extend dolfin::GenericMatrix
{
  void _scale(double a)
  {
    (*self)*=a;
  }

  PyObject* _data() {

    PyObject* rows = %make_numpy_array(1, ulong)(self->size(0)+1,
						 boost::tuples::get<0>(self->data()),
						 false);
    PyObject* cols = %make_numpy_array(1, ulong)(boost::tuples::get<3>(self->data()),
						 boost::tuples::get<1>(self->data()),
						 false);
    PyObject* values = %make_numpy_array(1, double)(boost::tuples::get<3>(self->data()),
						    boost::tuples::get<2>(self->data()),
						    false);

    if ( rows == NULL || cols == NULL || values == NULL)
      return NULL;

    return Py_BuildValue("NNN", rows, cols, values);
  }
// ---------------------------------------------------------------------------
  %pythoncode
  %{
    def __is_compatible(self,other):
        "Returns True if self, and other are compatible Vectors"
        if not isinstance(other,GenericMatrix):
            return False
        self_type = get_tensor_type(self)
        return self_type == get_tensor_type(other)

    def array(self):
        "Return a numpy array representation of Matrix"
        from numpy import zeros
        m_range = self.local_range(0);
        A = zeros((m_range[1] - m_range[0], self.size(1)))
        for i, row in enumerate(xrange(*m_range)):
            column, values = self.getrow(row)
            A[i, column] = values
        return A

    def data(self, deepcopy=True):
        """
        Return arrays to underlaying compresssed row/column storage data

        This method is only available for the uBLAS and MTL4 linear algebra
        backends.

        *Arguments*
            deepcopy
                Return a copy of the data. If set to False a reference
                to the Matrix need to be kept, otherwise the data will be
                destroyed together with the destruction of the Matrix
        """
        rows, cols, values = self._data()
        if deepcopy:
            rows, cols, values = rows.copy(), cols.copy(), values.copy()

        return rows, cols, values

    # FIXME: Getting matrix entries need to be carefully examined, especially for
    #        parallel objects.
    """
    def __getitem__(self,indices):
        from numpy import ndarray
        from types import SliceType
        if not (isinstance(indices, tuple) and len(indices) == 2):
            raise TypeError, "expected two indices"
        if not all(isinstance(ind, (int, SliceType, list, ndarray)) for ind in indices):
            raise TypeError, "an int, slice, list or numpy array as indices"

        if isinstance(indices[0], int):
            if isinstance(indices[1], int):
                return _get_matrix_single_item(self,indices[0],indices[1])
            return down_cast(_get_matrix_sub_vector(self,indices[0], indices[1], True))
        elif isinstance(indices[1],int):
            return down_cast(_get_matrix_sub_vector(self,indices[1], indices[0], False))
        else:
            same_indices = id(indices[0]) == id(indices[1])

            if not same_indices and ( type(indices[0]) == type(indices[1]) ):
                if isinstance(indices[0],(list,SliceType)):
                    same_indices = indices[0] == indices[1]
                else:
                    same_indices = (indices[0] == indices[1]).all()

            if same_indices:
                return down_cast(_get_matrix_sub_matrix(self, indices[0], None))
            else:
                return down_cast(_get_matrix_sub_matrix(self, indices[0], indices[1]))

    def __setitem__(self, indices, values):
        from numpy import ndarray, isscalar
        from types import SliceType
        if not (isinstance(indices, tuple) and len(indices) == 2):
            raise TypeError, "expected two indices"
        if not all(isinstance(ind, (int, SliceType, list, ndarray)) for ind in indices):
            raise TypeError, "an int, slice, list or numpy array as indices"

        if isinstance(indices[0], int):
            if isinstance(indices[1], int):
                if not isscalar(values):
                    raise TypeError, "expected scalar for single value assigment"
                _set_matrix_single_item(self, indices[0], indices[1], values)
            else:
                raise NotImplementedError
                if isinstance(values,GenericVector):
                    _set_matrix_items_vector(self, indices[0], indices[1], values, True)
                elif isinstance(values,ndarray):
                    _set_matrix_items_array_of_float(self, indices[0], indices[1], values, True)
                else:
                    raise TypeError, "expected a GenericVector or numpy array of float"
        elif isinstance(indices[1], int):
            raise NotImplementedError
            if isinstance(values, GenericVector):
                _set_matrix_items_vector(self, indices[1], indices[0], values, False)
            elif isinstance(values, ndarray):
                _set_matrix_items_array_of_float(self, indices[1], indices[0], values, False)
            else:
                raise TypeError, "expected a GenericVector or numpy array of float"

        else:
            raise NotImplementedError
            same_indices = id(indices[0]) == id(indices[1])

            if not same_indices and ( type(indices[0]) == type(indices[1]) ):
                if isinstance(indices[0], (list, SliceType)):
                    same_indices = indices[0] == indices[1]
                else:
                    same_indices = (indices[0] == indices[1]).all()

            if same_indices:
                if isinstance(values,GenericMatrix):
                    _set_matrix_items_matrix(self, indices[0], None, values)
                elif isinstance(values, ndarray) and len(values.shape)==2:
                    _set_matrix_items_array_of_float(self, indices[0], None, values)
                else:
                    raise TypeError, "expected a GenericMatrix or 2D numpy array of float"
            else:
                if isinstance(values,GenericMatrix):
                    _set_matrix_items_matrix(self, indices[0], indices[1], values)
                elif isinstance(values,ndarray) and len(values.shape) == 2:
                    _set_matrix_items_array_of_float(self, indices[0], indices[1], values)
                else:
                    raise TypeError, "expected a GenericMatrix or 2D numpy array of float"
    """

    def __add__(self,other):
        """x.__add__(y) <==> x+y"""
        if self.__is_compatible(other):
            ret = self.copy()
            ret.axpy(1.0, other, False)
            return ret
        return NotImplemented

    def __sub__(self,other):
        """x.__sub__(y) <==> x-y"""
        if self.__is_compatible(other):
            ret = self.copy()
            ret.axpy(-1.0, other, False)
            return ret
        return NotImplemented

    def __mul__(self,other):
        """x.__mul__(y) <==> x*y"""
        from numpy import ndarray, isscalar
        if isscalar(other):
            ret = self.copy()
            ret._scale(other)
            return ret
        elif isinstance(other,GenericVector):
            matrix_type = get_tensor_type(self)
            vector_type = get_tensor_type(other)
            if vector_type not in _matrix_vector_mul_map[matrix_type]:
                raise TypeError, "Provide a Vector which can be down_casted to ''"%vector_type.__name__
            if type(other) == Vector:
                ret = Vector(self.size(0))
            else:
                ret = vector_type(self.size(0))
            self.mult(other, ret)
            return ret
        elif isinstance(other, ndarray):
            if len(other.shape) != 1:
                raise ValueError, "Provide an 1D NumPy array"
            vec_size = other.shape[0]
            if vec_size != self.size(1):
                raise ValueError, "Provide a NumPy array with length %d"%self.size(1)
            vec_type = _matrix_vector_mul_map[get_tensor_type(self)][0]
            vec  = vec_type(vec_size)
            vec.set_local(other)
            result_vec = vec.copy()
            self.mult(vec, result_vec)
            ret = other.copy()
            result_vec.get_local(ret)
            return ret
        return NotImplemented

    def __div__(self,other):
        """x.__div__(y) <==> x/y"""
        from numpy import isscalar
        if isscalar(other):
            ret = self.copy()
            ret._scale(1.0/other)
            return ret
        return NotImplemented

    def __radd__(self,other):
        """x.__radd__(y) <==> y+x"""
        return self.__add__(other)

    def __rsub__(self,other):
        """x.__rsub__(y) <==> y-x"""
        return self.__sub__(other)

    def __rmul__(self,other):
        """x.__rmul__(y) <==> y*x"""
        from numpy import isscalar
        if isscalar(other):
            ret = self.copy()
            ret._scale(other)
            return ret
        return NotImplemented

    def __rdiv__(self,other):
        """x.__rdiv__(y) <==> y/x"""
        return NotImplemented

    def __iadd__(self,other):
        """x.__iadd__(y) <==> x+y"""
        if self.__is_compatible(other):
            self.axpy(1.0, other, False)
            return self
        return NotImplemented

    def __isub__(self,other):
        """x.__isub__(y) <==> x-y"""
        if self.__is_compatible(other):
            self.axpy(-1.0, other, False)
            return self
        return NotImplemented

    def __imul__(self,other):
        """x.__imul__(y) <==> x*y"""
        from numpy import isscalar
        if isscalar(other):
            self._scale(other)
            return self
        return NotImplemented

    def __idiv__(self,other):
        """x.__idiv__(y) <==> x/y"""
        from numpy import isscalar
        if isscalar(other):
            self._scale(1.0 / other)
            return self
        return NotImplemented

  %}
}

// ---------------------------------------------------------------------------
// Macro with C++ and Python extension code for GenericVector types in PyDOLFIN
// that are able to return a pointer to the underlaying contigious data
// only used for the uBLAS and MTL4 backends
// ---------------------------------------------------------------------------
%define LA_VEC_DATA_ACCESS(VEC_TYPE)
%feature("docstring") dolfin::VEC_TYPE::_data "Missing docstring";
%extend dolfin::VEC_TYPE
{
  PyObject* _data()
  {
    return %make_numpy_array(1, double)(self->size(), self->data(), false);
  }

  %pythoncode
  %{
    def data(self, deepcopy=True):
        """
        Return an array to underlaying data

        This method is only available for the uBLAS and MTL4 linear algebra
        backends.

        *Arguments*
            deepcopy
                Return a copy of the data. If set to False a reference
                to the Matrix need to be kept, otherwise the data will be
                destroyed together with the destruction of the Matrix
        """
        ret = self._data()
        if deepcopy:
            ret = ret.copy()

        return ret
  %}
}
%enddef

// ---------------------------------------------------------------------------
// Macro with code for down casting GenericTensors
// ---------------------------------------------------------------------------
%define DOWN_CAST_MACRO(TENSOR_TYPE)
%inline %{
bool has_type_ ## TENSOR_TYPE(dolfin::GenericTensor & tensor)
{ return tensor.has_type<dolfin::TENSOR_TYPE>(); }

dolfin::TENSOR_TYPE & down_cast_ ## TENSOR_TYPE(dolfin::GenericTensor & tensor)
{ return tensor.down_cast<dolfin::TENSOR_TYPE>(); }
%}

%pythoncode %{
_has_type_map[TENSOR_TYPE] = has_type_ ## TENSOR_TYPE
_down_cast_map[TENSOR_TYPE] = down_cast_ ## TENSOR_TYPE
%}

%enddef

// ---------------------------------------------------------------------------
// Run the data macro
// ---------------------------------------------------------------------------
LA_VEC_DATA_ACCESS(uBLASVector)
LA_VEC_DATA_ACCESS(Vector)

// ---------------------------------------------------------------------------
// Define Python lookup maps for down_casting
// ---------------------------------------------------------------------------
%pythoncode %{
_has_type_map = {}
_down_cast_map = {}
# A map with matrix types as keys and list of possible vector types as values
_matrix_vector_mul_map = {}
%}

// ---------------------------------------------------------------------------
// Run the downcast macro
// ---------------------------------------------------------------------------
DOWN_CAST_MACRO(uBLASVector)

// NOTE: Silly SWIG force us to describe the type explicit for uBLASMatrices
%inline %{
bool has_type_uBLASDenseMatrix(dolfin::GenericTensor & tensor)
{ return tensor.has_type<dolfin::uBLASDenseMatrix>(); }

dolfin::uBLASMatrix<boost::numeric::ublas::matrix<double> > & down_cast_uBLASDenseMatrix(dolfin::GenericTensor & tensor)
{ return tensor.down_cast<dolfin::uBLASDenseMatrix>(); }

bool has_type_uBLASSparseMatrix(dolfin::GenericTensor & tensor)
{ return tensor.has_type<dolfin::uBLASSparseMatrix>(); }

dolfin::uBLASMatrix<boost::numeric::ublas::compressed_matrix<double, boost::numeric::ublas::row_major> > & down_cast_uBLASSparseMatrix(dolfin::GenericTensor & tensor)
{ return tensor.down_cast<dolfin::uBLASSparseMatrix>(); }
%}

%pythoncode %{
_has_type_map[uBLASDenseMatrix] = has_type_uBLASDenseMatrix
_down_cast_map[uBLASDenseMatrix] = down_cast_uBLASDenseMatrix
_has_type_map[uBLASSparseMatrix] = has_type_uBLASSparseMatrix
_down_cast_map[uBLASSparseMatrix] = down_cast_uBLASSparseMatrix
%}

// ---------------------------------------------------------------------------
// Fill lookup map
// ---------------------------------------------------------------------------
%pythoncode %{
_matrix_vector_mul_map[uBLASSparseMatrix] = [uBLASVector]
_matrix_vector_mul_map[uBLASDenseMatrix]  = [uBLASVector]
%}

// ---------------------------------------------------------------------------
// Run backend specific macros
// ---------------------------------------------------------------------------
#ifdef HAS_PETSC
DOWN_CAST_MACRO(PETScVector)
DOWN_CAST_MACRO(PETScMatrix)

%pythoncode %{
_matrix_vector_mul_map[PETScMatrix] = [PETScVector]
%}
#endif

#ifdef HAS_TRILINOS

%runtime%{
#include <Teuchos_RCP.hpp>
#include <Epetra_CrsGraph.h>
#include <Epetra_FECrsMatrix.h>
#include <Epetra_FEVector.h>
%}

DOWN_CAST_MACRO(EpetraVector)
DOWN_CAST_MACRO(EpetraMatrix)

%pythoncode %{
_matrix_vector_mul_map[EpetraMatrix] = [EpetraVector]
%}

%extend dolfin::EpetraMatrix{
  Teuchos::RCP<Epetra_FECrsMatrix> _mat ()
  {
    Epetra_FECrsMatrix* tmp = self->mat().get();
    return Teuchos::RCP<Epetra_FECrsMatrix>(tmp, false);
  }

%pythoncode %{
    def mat(self):
        "Return the Epetra_FECrsMatrix"
        A = self._mat()

        # Store the tensor to avoid garbage collection
        # Need to be in try clause as this wont work when PyTrilinos
        # is not installed
        try:
            A._org_vec = self
        except:
            pass

        return A
%}
}

%extend dolfin::EpetraVector{
  Teuchos::RCP<Epetra_FEVector> _vec ()
  {
    Epetra_FEVector* tmp = self->vec().get();
    return Teuchos::RCP<Epetra_FEVector>(tmp, false);
  }

%pythoncode %{
    def vec(self):
        "Return the Epetra_FEVector"
        v = self._vec()

        # Store the tensor to avoid garbage collection
        # Need to be in try clause as this wont work when PyTrilinos
        # is not installed
        try:
            v._org_vec = self
        except:
            pass

        return v
%}
}
#endif

#ifdef HAS_MTL4
LA_VEC_DATA_ACCESS(MTL4Vector)

DOWN_CAST_MACRO(MTL4Vector)
DOWN_CAST_MACRO(MTL4Matrix)

%pythoncode %{
_matrix_vector_mul_map[MTL4Matrix] = [MTL4Vector]
%}
#endif

// ---------------------------------------------------------------------------
// Dynamic wrappers for GenericTensor::down_cast and GenericTensor::has_type,
// using dict of tensor types to select from C++ template instantiations
// ---------------------------------------------------------------------------
%pythoncode %{
def get_tensor_type(tensor):
    "Return the concrete subclass of tensor."
    for k, v in _has_type_map.items():
        if v(tensor):
            return k
    dolfin_error("Unregistered tensor type.")

def has_type(tensor, subclass):
    "Return wether tensor is of the given subclass."
    global _has_type_map
    assert _has_type_map
    assert subclass in _has_type_map
    return bool(_has_type_map[subclass](tensor))

def down_cast(tensor, subclass=None):
    "Cast tensor to the given subclass, passing the wrong class is an error."
    global _down_cast_map
    assert _down_cast_map
    if subclass is None:
        subclass = get_tensor_type(tensor)
    assert subclass in _down_cast_map
    ret = _down_cast_map[subclass](tensor)

    # Store the tensor to avoid garbage collection
    ret._org_upcasted_tensor = tensor
    return ret

%}