/usr/include/speech_tools/EST_Ngrammar.h is in libestools2.1-dev 1:2.1~release-2build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 | /*************************************************************************/
/* */
/* Centre for Speech Technology Research */
/* University of Edinburgh, UK */
/* Copyright (c) 1996 */
/* All Rights Reserved. */
/* */
/* Permission is hereby granted, free of charge, to use and distribute */
/* this software and its documentation without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of this work, and to */
/* permit persons to whom this work is furnished to do so, subject to */
/* the following conditions: */
/* 1. The code must retain the above copyright notice, this list of */
/* conditions and the following disclaimer. */
/* 2. Any modifications must be clearly marked as such. */
/* 3. Original authors' names are not deleted. */
/* 4. The authors' names are not used to endorse or promote products */
/* derived from this software without specific prior written */
/* permission. */
/* */
/* THE UNIVERSITY OF EDINBURGH AND THE CONTRIBUTORS TO THIS WORK */
/* DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING */
/* ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT */
/* SHALL THE UNIVERSITY OF EDINBURGH NOR THE CONTRIBUTORS BE LIABLE */
/* FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES */
/* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN */
/* AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, */
/* ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF */
/* THIS SOFTWARE. */
/* */
/*************************************************************************/
/* Author : Simon King & Alan W Black */
/* Date : February 1997 */
/*-----------------------------------------------------------------------*/
/* */
/* A general class for ngrams (bi-gram, tri-gram etc) */
/* */
/*=======================================================================*/
#ifndef __EST_NGRAMMAR_H__
#define __EST_NGRAMMAR_H__
#include <cstdarg>
#include <cstdlib>
using namespace std;
#include "EST_String.h"
#include "EST_Val.h"
#include "EST_rw_status.h"
#include "EST_types.h"
#include "EST_FMatrix.h"
#include "EST_TList.h"
#include "EST_StringTrie.h"
#include "EST_simplestats.h"
#include "EST_PST.h"
#include "EST_string_aux.h"
#include "EST_math.h"
// HTK style
#define SENTENCE_START_MARKER "!ENTER"
#define SENTENCE_END_MARKER "!EXIT"
#define OOV_MARKER "!OOV"
#define EST_NGRAMBIN_MAGIC 1315402337
// for compressed save/load
#define GZIP_FILENAME_EXTENSION "gz"
#define COMPRESS_FILENAME_EXTENSION "Z"
// Ultimate floor
#define TINY_FREQ 1.0e-10
// ngram state - represents the N-1 word history and contains
// the pdf of the next word
class EST_NgrammarState {
private:
protected:
EST_DiscreteProbDistribution p_pdf;
int p_id; // a 'name'
public:
EST_NgrammarState() :
p_pdf()
{
init();
};
EST_NgrammarState(int id,EST_Discrete *d){clear();init(id,d);};
EST_NgrammarState(int id,const EST_DiscreteProbDistribution &pdf)
{clear();init(id,pdf);};
EST_NgrammarState(const EST_NgrammarState &s);
EST_NgrammarState(const EST_NgrammarState *const s);
~EST_NgrammarState();
EST_IVector path; // how we got here
// initialise
void clear();
void init();
void init(int id, EST_Discrete *d);
void init(int id, const EST_DiscreteProbDistribution &pdf);
// build
void cumulate(const int index, const double count=1)
{p_pdf.cumulate(index,count);};
void cumulate(const EST_String &word, const double count=1)
{p_pdf.cumulate(word,count);};
// access
int id() const {return p_id; };
const EST_DiscreteProbDistribution &pdf_const() const {return p_pdf; };
EST_DiscreteProbDistribution &pdf() {return p_pdf; };
double probability(const EST_String &w) const
{return p_pdf.probability(w);}
double probability(int w) const {return p_pdf.probability(w);}
double frequency(const EST_String &w) const
{return p_pdf.frequency(w);}
double frequency(int w) const {return p_pdf.frequency(w);}
const EST_String &most_probable(double *prob = NULL) const
{return p_pdf.most_probable(prob);}
friend ostream& operator<<(ostream& s, const EST_NgrammarState &a);
};
class EST_BackoffNgrammarState {
private:
protected:
int p_level; // = 0 for root node
double backoff_weight;
EST_DiscreteProbDistribution p_pdf;
EST_StringTrie children;
EST_BackoffNgrammarState* add_child(const EST_Discrete *d,
const EST_StrVector &words);
EST_BackoffNgrammarState* add_child(const EST_Discrete *d,
const EST_IVector &words);
public:
EST_BackoffNgrammarState()
{ init(); };
EST_BackoffNgrammarState(const EST_Discrete *d,int level)
{clear();init(d,level);};
EST_BackoffNgrammarState(const EST_DiscreteProbDistribution &pdf,int level)
{clear();init(pdf,level);};
EST_BackoffNgrammarState(const EST_BackoffNgrammarState &s);
EST_BackoffNgrammarState(const EST_BackoffNgrammarState *const s);
~EST_BackoffNgrammarState();
// initialise
void clear();
void init();
void init(const EST_Discrete *d, int level);
void init(const EST_DiscreteProbDistribution &pdf, int level);
// build
bool accumulate(const EST_StrVector &words,
const double count=1);
bool accumulate(const EST_IVector &words,
const double count=1);
// access
const EST_DiscreteProbDistribution &pdf_const() const {return p_pdf; };
EST_DiscreteProbDistribution &pdf() {return p_pdf; };
double probability(const EST_String &w) const
{return p_pdf.probability(w);}
double frequency(const EST_String &w) const
{return p_pdf.frequency(w);}
const EST_String &most_probable(double *prob = NULL) const
{return p_pdf.most_probable(prob);}
const int level() const {return p_level;}
EST_BackoffNgrammarState* get_child(const EST_String &word) const
{
return (EST_BackoffNgrammarState*)children.lookup(word);
}
EST_BackoffNgrammarState* get_child(const int word) const
{
return (EST_BackoffNgrammarState*)children.lookup(p_pdf.get_discrete()->name(word));
}
void remove_child(EST_BackoffNgrammarState *child,
const EST_String &name);
// recursive delete of contents and children
void zap();
const EST_BackoffNgrammarState *const get_state(const EST_StrVector &words) const;
bool ngram_exists(const EST_StrVector &words,
const double threshold) const;
const double get_backoff_weight() const {return backoff_weight; }
const double get_backoff_weight(const EST_StrVector &words) const;
bool set_backoff_weight(const EST_StrVector &words, const double w);
void frequency_of_frequencies(EST_DVector &ff);
void print_freqs(ostream &os,const int order,EST_String followers="");
friend ostream& operator<<(ostream& s, const EST_BackoffNgrammarState &a);
};
class EST_Ngrammar {
public:
// 3 representations : sparse, dense and backed off. User specifies which.
enum representation_t {sparse, dense, backoff};
// now only keep frequencies (or log frequencies)
// probabilities (or log probabilities) can be done
// on the fly quickly enough
enum entry_t {frequencies, log_frequencies};
protected:
// each instance of an EST_Ngrammar is a grammar of fixed order
// e.g. a bigram (order = 2)
int p_order;
int p_num_samples;
double p_number_of_sentences; // which were used to build this grammar
EST_String p_sentence_start_marker;
EST_String p_sentence_end_marker;
// only one representation in use at a time
representation_t p_representation;
entry_t p_entry_type;
// sparse representation is a tree structure
// holding only those N-grams which were seen
EST_PredictionSuffixTree sparse_representation;
bool init_sparse_representation();
// dense representation is just an array of all states
bool init_dense_representation();
// backoff representation is also a tree structure
// but the root state pdf is the most recent word in the
// ngram and going down the tree is going back in time....
// here is the root node :
EST_BackoffNgrammarState *backoff_representation;
double backoff_threshold;
// need a non-zero unigram floor to enable backing off
double backoff_unigram_floor_freq;
// instead of simple discounting, we have a (possibly) different
// discount per order and per frequency
// e.g. backoff_discount[2](4) contains the discount to be
// applied to a trigram frequency of 4
// backoff_discount[0] is unused (we don't discount unigrams)
EST_DVector *backoff_discount;
const double get_backoff_discount(const int order, const double freq) const;
bool init_backoff_representation();
void prune_backoff_representation(EST_BackoffNgrammarState *start_state=NULL); // remove any zero frequency branches
void backoff_restore_unigram_states();
int p_num_states; // == p_vocab_size ^ (p_ord-1) if fully dense
EST_NgrammarState *p_states; // state id is index into this array
int find_dense_state_index(const EST_IVector &words, int index=0) const;
// and the reverse
const EST_StrVector &make_ngram_from_index(const int i) const;
// vocabulary
EST_Discrete *vocab;
EST_Discrete *pred_vocab; // may be different from state vocab
bool init_vocab(const EST_StrList &wordlist);
bool init_vocab(const EST_StrList &word_list,
const EST_StrList &pred_list);
// make sure vocab matches a given wordlist
bool check_vocab(const EST_StrList &wordlist);
EST_DiscreteProbDistribution vocab_pdf; // overall pdf
const EST_String &lastword(const EST_StrVector &words) const
{ return words(p_order-1); }
const int lastword(const EST_IVector &words) const
{ return words(p_order-1); }
// are we allowing out-of-vocabulary words, or is the vocabulary closed?
bool allow_oov;
bool sparse_to_dense();
bool dense_to_sparse();
// these aren't sorted yet ...
void take_logs();
void take_exps();
void freqs_to_probs(); // just calls normalise
bool build_sparse(const EST_String &filename,
const EST_String &prev,
const EST_String &prev_prev,
const EST_String &last);
// for dense and backoff
bool build_ngram(const EST_String &filename,
const EST_String &prev,
const EST_String &prev_prev,
const EST_String &last,
const EST_String &input_format);
// go through all matching ngrams ( *(ngram[i])="" matches anything )
void iterate(EST_StrVector &words,
void (*function)(EST_Ngrammar *n,
EST_StrVector &words,
void *params),
void *params);
// same, but with a constant Ngrammar
void const_iterate(EST_StrVector &words,
void (*function)(const EST_Ngrammar *const n,
EST_StrVector &words,
void *params),
void *params) const;
bool p_init(int o, representation_t r);
// new filename returned of we had to copy stdin to a
// temporary file - must delete it later !
bool oov_preprocess(const EST_String &filename,
EST_String &new_filename,
const EST_String &what);
const EST_NgrammarState &find_state_const(const EST_StrVector &words)const;
EST_NgrammarState &find_state(const EST_StrVector &words);
const EST_NgrammarState &find_state_const(const EST_IVector &words) const;
EST_NgrammarState &find_state(const EST_IVector &words);
// special versions for backoff grammars
const EST_DiscreteProbDistribution &backoff_prob_dist(const EST_StrVector &words) const;
const double backoff_reverse_probability_sub(const EST_StrVector &words,
const EST_BackoffNgrammarState *root) const;
const double backoff_probability(const EST_StrVector &words,
const bool trace=false) const;
const double backoff_reverse_probability(const EST_StrVector &words) const;
const EST_String & backoff_most_probable(const EST_StrVector &words,
double *prob = NULL) const;
// backoff representation isn't a nice array of states
// so use this to visit every node in the tree
// and apply the function to that node
void backoff_traverse(EST_BackoffNgrammarState *start_state,
void (*function)(EST_BackoffNgrammarState *s,
void *params),
void *params);
// visit every node at a given level
void backoff_traverse(EST_BackoffNgrammarState *start_state,
void (*function)(EST_BackoffNgrammarState *s,
void *params),
void *params, const int level);
public:
EST_Ngrammar() {default_values();}
EST_Ngrammar(int o, representation_t r,
const EST_StrList &wordlist)
{
default_values(); init(o,r,wordlist);
}
// When state trans vocab differs from prediction vocab
EST_Ngrammar(int o, representation_t r,
const EST_StrList &wordlist,
const EST_StrList &predlist)
{
default_values(); init(o,r,wordlist,predlist);
}
EST_Ngrammar(int o, representation_t r, EST_Discrete &v)
{
default_values(); init(o,r,v);
}
~EST_Ngrammar();
void default_values();
void clear();
bool init(int o, representation_t r,
const EST_StrList &wordlist);
bool init(int o, representation_t r,
const EST_StrList &wordlist,
const EST_StrList &predlist);
bool init(int o, representation_t r, EST_Discrete &v);
bool init(int o, representation_t r,
EST_Discrete &v,EST_Discrete &pv);
// access
int num_states(void) const { return p_num_states;}
double samples(void) const { return p_num_samples;}
int order() const { return p_order; }
int get_vocab_length() const { return vocab?vocab->length():0; }
EST_String get_vocab_word(int i) const;
int get_vocab_word(const EST_String &s) const;
int get_pred_vocab_length() const { return pred_vocab->length(); }
EST_String get_pred_vocab_word(int i) const { return pred_vocab->name(i); }
int get_pred_vocab_word(const EST_String &s) const
{ return pred_vocab->name(s); }
int closed_vocab() const {return !allow_oov; }
entry_t entry_type() const {return p_entry_type;}
representation_t representation() const
{ return p_representation;}
// build
bool build(const EST_StrList &filenames,
const EST_String &prev = SENTENCE_START_MARKER,
const EST_String &prev_prev = SENTENCE_END_MARKER,
const EST_String &last = SENTENCE_END_MARKER,
const EST_String &input_format = "",
const EST_String &oov_mode = "",
const int mincount=1,
const int maxcount=10);
// Accumulate ngrams
void accumulate(const EST_StrVector &words,
const double count=1);
//const int index=0);
void accumulate(const EST_IVector &words,
const double count=1);
//const int index=0);
// hack - fix enter/exit probs s.t. P(...,!ENTER)=P(!EXIT,...)=0, for all x
void make_htk_compatible();
// I/O functions
EST_read_status load(const EST_String &filename);
EST_read_status load(const EST_String &filename, const EST_StrList &wordlist);
EST_write_status save(const EST_String &filename,
const EST_String type="cstr_ascii",
const bool trace=false,
double floor=0.0);
int wordlist_index(const EST_String &word, const bool report=true) const;
const EST_String &wordlist_index(int i) const;
int predlist_index(const EST_String &word) const;
const EST_String &predlist_index(int i) const;
// set
bool set_entry_type(entry_t new_type);
bool set_representation(representation_t new_representation);
// probability distributions
// -------------------------
// flag 'force' forces computation of probs on-the-fly if necessary
double probability(const EST_StrVector &words, bool force=false,
const bool trace=false) const;
double frequency(const EST_StrVector &words, bool force=false,
const bool trace=false) const;
const EST_String &predict(const EST_StrVector &words,
double *prob,int *state) const;
const EST_String &predict(const EST_StrVector &words) const
{double p; int state; return predict(words,&p,&state); }
const EST_String &predict(const EST_StrVector &words,double *prob) const
{int state; return predict(words,prob,&state); }
const EST_String &predict(const EST_IVector &words,double *prob,int *state) const;
const EST_String &predict(const EST_IVector &words) const
{double p; int state; return predict(words,&p,&state); }
const EST_String &predict(const EST_IVector &words,double *prob) const
{int state; return predict(words,prob,&state); }
int find_state_id(const EST_StrVector &words) const;
int find_state_id(const EST_IVector &words) const;
int find_next_state_id(int state, int word) const;
// fast versions for common N
//const double probability(const EST_String w1);
//const double probability(const EST_String w1,const EST_String w2);
//const double probability(const EST_String w1,const EST_String w2,
//const EST_String w2);
// reverse - probability of words[0..order-2] given word[order-1]
double reverse_probability(const EST_StrVector &words,
bool force=false) const;
double reverse_probability(const EST_IVector &words,
bool force=false) const;
// predict, where words has 'order' elements and the last one is "" or NULL
const EST_DiscreteProbDistribution &prob_dist(const EST_StrVector &words) const;
const EST_DiscreteProbDistribution &prob_dist(const EST_IVector &words) const;
const EST_DiscreteProbDistribution &prob_dist(int state) const;
// bool stats(const EST_String filename,
// double &raw_entropy, double &count,
// double &entropy, double &perplexity,
// const EST_String &prev = SENTENCE_START_MARKER,
// const EST_String &prev_prev = SENTENCE_END_MARKER,
// const EST_String &last = SENTENCE_END_MARKER,
// const EST_String &input_format = "") const;
void fill_window_start(EST_IVector &window,
const EST_String &prev,
const EST_String &prev_prev) const;
void fill_window_start(EST_StrVector &window,
const EST_String &prev,
const EST_String &prev_prev) const;
// why anybody would want to do this ....
//EST_Ngrammar &operator =(const EST_Ngrammar &a);
bool ngram_exists(const EST_StrVector &words) const;
bool ngram_exists(const EST_StrVector &words, const double threshold) const;
const double get_backoff_weight(const EST_StrVector &words) const;
bool set_backoff_weight(const EST_StrVector &words, const double w);
void print_freqs(ostream &os,double floor=0.0);
// i/o functions
// -------------
friend ostream& operator<<(ostream& s, EST_Ngrammar &n);
friend EST_read_status load_ngram_htk_ascii(const EST_String filename,
EST_Ngrammar &n);
friend EST_read_status load_ngram_htk_binary(const EST_String filename,
EST_Ngrammar &n);
friend EST_read_status load_ngram_arpa(const EST_String filename,
EST_Ngrammar &n,
const EST_StrList &vocab);
friend EST_read_status load_ngram_cstr_ascii(const EST_String filename,
EST_Ngrammar &n);
friend EST_read_status load_ngram_cstr_bin(const EST_String filename,
EST_Ngrammar &n);
friend EST_write_status save_ngram_htk_ascii_sub(const EST_String &word,
ostream *ost,
EST_Ngrammar &n,
double floor);
friend EST_write_status save_ngram_htk_ascii(const EST_String filename,
EST_Ngrammar &n,
double floor=0.0);
//friend EST_write_status save_ngram_htk_binary(const EST_String filename,
// EST_Ngrammar &n);
friend EST_write_status save_ngram_cstr_ascii(const EST_String filename,
EST_Ngrammar &n,
const bool trace=false,
double floor=0.0);
friend EST_write_status save_ngram_cstr_bin(const EST_String filename,
EST_Ngrammar &n,
const bool trace=false,
double floor=0.0);
friend EST_write_status save_ngram_arpa(const EST_String filename,
EST_Ngrammar &n);
friend EST_write_status save_ngram_arpa_sub(ostream *ost,
EST_Ngrammar &n,
const EST_StrVector &words);
friend EST_write_status save_ngram_wfst(const EST_String filename,
EST_Ngrammar &n);
// Auxiliary functions
// smoothing
friend void frequency_of_frequencies(EST_DVector &ff, EST_Ngrammar &n,int this_order=0);
friend void map_frequencies(EST_Ngrammar &n, const EST_DVector &map, const int this_order=0);
friend bool Good_Turing_smooth(EST_Ngrammar &n, int maxcount, int mincount=0);
friend void Good_Turing_discount(EST_Ngrammar &ngrammar, const int maxcount,
const double default_discount=0.5);
friend void fs_build_backoff_ngrams(EST_Ngrammar *backoff_ngrams,
EST_Ngrammar &ngram);
friend int fs_backoff_smooth(EST_Ngrammar *backoff_ngrams,
EST_Ngrammar &ngram, int smooth_thresh);
// frequencies below mincount get backed off
// frequencies above maxcount are not smoothed(discounted)
bool compute_backoff_weights(const int mincount=1,
const int maxcount=10);
bool merge(EST_Ngrammar &n,float weight);
friend class EST_BackoffNgrammar;
};
void Ngram_freqsmooth(EST_Ngrammar &ngram,
int smooth_thresh1,
int smooth_thresh2);
// utils
void slide(EST_IVector &i, const int l);
void slide(EST_StrVector &i, const int l);
bool test_stats(EST_Ngrammar &ngram,
const EST_String &filename,
double &raw_entropy,
double &count,
double &entropy,
double &perplexity,
const EST_String &input_format,
const EST_String &prev = SENTENCE_START_MARKER,
const EST_String &prev_prev = SENTENCE_END_MARKER,
const EST_String &last = SENTENCE_END_MARKER);
VAL_REGISTER_CLASS_DCLS(ngrammar,EST_Ngrammar)
#endif // __EST_NGRAMMAR_H__
|