This file is indexed.

/usr/include/libGenome-1.3/libGenome/IntervalSequenceTree.h is in libgenome-1.3-0-dev 1.3.1-3build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
#ifndef __IntervalSequenceTree_h__
#define __IntervalSequenceTree_h__

#include <vector>

/*
class interval {
	gnSeqI length();
	cropEnd();
	cropStart();
}
*/

// select idea shamelessly ripped from Metrowerks
template <bool Condition, class If, class Then>
class type_select
{
public:
	typedef If type;
};

template <class If, class Then>
class type_select<false, If, Then>
{
public:
	typedef Then type;
};

static const uint64 IST_END = ((0xFFFFFFFF << 31) << 1 ) + 0xFFFFFFFF;

/**
 * class implementing an Interval Sequence Tree
 * this is a tree for storing a changing sequence of intervals 
 * that was invented one rainy afternoon by Aaron Darling and
 * Michael Rusch.  
 * Important features are that stabbing queries,
 * stabbing insertions, and stabbing deletions are O( log n )
 * assuming a uniform distribution of stab sites.
 */
template< class Key, class Allocator = std::allocator<Key> >
class IntervalSequenceTree
{
public:
	typedef Key value_type;
//	typedef unsigned long long size_type;

	typedef Allocator                             allocator_type;
	typedef typename Allocator::reference         reference;
	typedef typename Allocator::const_reference   const_reference;
	typedef typename Allocator::size_type         size_type;
	typedef typename Allocator::difference_type   difference_type;
	typedef typename Allocator::pointer           pointer;
	typedef typename Allocator::const_pointer     const_pointer;

// node types and iterator definitions
protected:
	/**
	 * This class represents nodes of an Interval Sequence Tree.  Internal
	 * nodes define any of left, center, and right to be non-null and key to
	 * be null.  Leaf nodes define left, center, and right as null and key points
	 * to an interval.  The length field in an internal node is always the sum
	 * of lengths of the leaf nodes in its subtree.  The subtree_size field is
	 * defined as the number of nodes (leaf and internal) below the node.
	 */
	class IstNode {
	public:			
		IstNode* parent;
		IstNode* left;
		IstNode* right;
		size_type subtree_size;
		size_type length;
		Key* key;

		IstNode() :
			parent( NULL ),
			left( NULL ),
			right( NULL ),
			subtree_size( 0 ),
			length( 0 ),
			key( NULL ) {}
	};
	typedef typename Allocator::template rebind<IstNode>::other node_allocator_type;
	typedef typename node_allocator_type::pointer node_pointer;
	typedef typename node_allocator_type::const_pointer const_node_pointer;

//	typedef typename IstNode* node_pointer;
//	typedef typename const IstNode* const_node_pointer;

public:	

	// generic bidirectional iterator interface ripped from MSL, thanks guys
	template <bool is_const>
	class __generic_iterator
	{
	public:
		typedef typename IntervalSequenceTree::value_type       value_type;
//		typedef typename IntervalSequenceTree::difference_type  difference_type;
		typedef typename type_select<is_const, typename IntervalSequenceTree::const_pointer,
		                                  typename IntervalSequenceTree::pointer>::type pointer;
		typedef typename type_select<is_const, typename IntervalSequenceTree::const_reference,
		                                  typename IntervalSequenceTree::reference>::type reference;
		typedef std::bidirectional_iterator_tag        iterator_category;
		
		__generic_iterator() {}
		__generic_iterator(const __generic_iterator<false>& i) : ptr_(i.ptr_) {}
		reference operator * () const {return ptr_->data_;}
		pointer operator -> () const  {return &ptr_->data_;}
		__generic_iterator& operator ++ () {increment((const IstNode*&)ptr_); return *this;}
		__generic_iterator operator ++ (int) {__generic_iterator tmp(*this); ++(*this); return tmp;}
		__generic_iterator& operator -- () {decrement((const IstNode*&)ptr_); return *this;}
		__generic_iterator operator -- (int) {__generic_iterator tmp(*this); --(*this); return tmp;}
		friend bool operator ==(const __generic_iterator& x, const __generic_iterator& y) {return x.ptr_ == y.ptr_;}
		friend bool operator !=(const __generic_iterator& x, const __generic_iterator& y) {return x.ptr_ != y.ptr_;}
	private:
		typedef typename type_select<is_const, typename IntervalSequenceTree::node_pointer,
		                                  typename IntervalSequenceTree::const_node_pointer>::type node_pointer;

		node_pointer ptr_;

		explicit __generic_iterator(node_pointer n) : ptr_(n) {}

		friend class __generic_iterator<true>;
		friend class IntervalSequenceTree;
	};

	friend class __generic_iterator<false>;
	friend class __generic_iterator<true>;
	typedef __generic_iterator<false> iterator;
	typedef __generic_iterator<true>  const_iterator;
	typedef std::reverse_iterator< iterator > reverse_iterator;
	typedef std::reverse_iterator< const_iterator > const_reverse_iterator;


// constructor related methods
	IntervalSequenceTree();
	template< class InputIterator >
	IntervalSequenceTree( InputIterator first, InputIterator last );
	IntervalSequenceTree( const IntervalSequenceTree& ist );
	IntervalSequenceTree& operator=( const IntervalSequenceTree& ist );
	~IntervalSequenceTree();

// standard container methods
	iterator begin();
	const_iterator begin() const;
	iterator end();
	const_iterator end() const;
	reverse_iterator rbegin();
	const_reverse_iterator rbegin() const;
	reverse_iterator rend();
	const_reverse_iterator rend() const;
	size_type max_size() const;
	bool empty() const;
	
// insertion and erasure
	iterator insert( const value_type& val, size_type point = IST_END );
	template <class InputIterator>
	void insert(InputIterator first, InputIterator last, size_type point = IST_END );

	size_type erase( size_type point, size_type length );
	void erase( iterator first, iterator last );

// search
	iterator find( size_type point );
	const_iterator find( size_type point ) const;

// interval sequence specific:
	/**
	 * Returns the total length of intervals contained in this interval sequence
	 */
	size_type length() const;
	size_type nodeCount() const;
	size_type countNodes( IstNode* x = NULL ) const;

protected:
	IstNode *root;		/**< Root of the tree */
	IstNode *leftmost;	/**< Left most tree node, for begin() method */
	IstNode *rightmost;	/**< Right most tree node, for end() method */
	
	static void propogateChanges( IstNode* cur_node, int64 length_diff, int64 subtree_diff );
	static IstNode* recursiveFind( size_type& point, IstNode* node );
	static void increment( IstNode*& x);
	void decrement( IstNode*& x) const;
	static void deleteSubtree( IstNode*& istn );
	static void checkTree( node_pointer cur_node );
};



//template< class Key, class Allocator >
//IntervalSequenceTree< Key, Allocator >::IST_END = -1;

template< class Key, class Allocator >
inline
IntervalSequenceTree< Key, Allocator >::IntervalSequenceTree(){
	root = NULL;
	leftmost = NULL;
	rightmost = NULL;
//	IST_END = -1;	// wraps to UINT64_MAX because IST_END is unsigned
}

template< class Key, class Allocator >
template< class InputIterator >
IntervalSequenceTree< Key, Allocator >::IntervalSequenceTree( InputIterator first, InputIterator last ){
	insert( first, last );
}

template< class Key, class Allocator >
IntervalSequenceTree< Key, Allocator >::IntervalSequenceTree( const IntervalSequenceTree& ist ){
	insert( ist.begin(), ist.end() );
}

template< class Key, class Allocator >
IntervalSequenceTree< Key, Allocator >& IntervalSequenceTree< Key, Allocator >::operator=( const IntervalSequenceTree& ist ){
	insert( ist.begin(), ist.end() );
}

template< class Key, class Allocator >
IntervalSequenceTree< Key, Allocator >::~IntervalSequenceTree(){
	deleteSubtree( root );
}

template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::iterator 
IntervalSequenceTree< Key, Allocator >::begin(){
	return iterator( leftmost );
}

template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::const_iterator 
IntervalSequenceTree< Key, Allocator >::begin() const{
	return const_iterator( leftmost );
}

template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::iterator 
IntervalSequenceTree< Key, Allocator >::end(){
	return iterator( NULL );
}

template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::const_iterator 
IntervalSequenceTree< Key, Allocator >::end() const{
	return const_iterator( NULL );
}

template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::reverse_iterator 
IntervalSequenceTree< Key, Allocator >::rbegin(){
	return reverse_iterator( end() );
}

template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::const_reverse_iterator 
IntervalSequenceTree< Key, Allocator >::rbegin() const{
	return const_reverse_iterator( end() );
}

template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::reverse_iterator 
IntervalSequenceTree< Key, Allocator >::rend(){
	return reverse_iterator( begin() );
}

template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::const_reverse_iterator 
IntervalSequenceTree< Key, Allocator >::rend() const{
	return const_reverse_iterator( begin() );
}

template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::size_type 
IntervalSequenceTree< Key, Allocator >::max_size() const{
	return IST_END - 1;
}

template< class Key, class Allocator >
bool IntervalSequenceTree< Key, Allocator >::empty() const{
	return root == NULL ? true : false;
}

template< class Key, class Allocator >
void IntervalSequenceTree< Key, Allocator >::checkTree( 
//	IntervalSequenceTree< Key, Allocator >::IstNode*
	node_pointer cur_node ){
	if( cur_node ){
		if( cur_node->parent == cur_node )
			std::cerr << "freakout\n";
		checkTree( cur_node->left );
		checkTree( cur_node->right );
	}
}

template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::iterator 
IntervalSequenceTree< Key, Allocator >::insert( 
	const Key& val, 
	typename IntervalSequenceTree< Key, Allocator >::size_type point )
{
	size_type iv_offset = point;
	IstNode* ins_node = recursiveFind( iv_offset, root );
	IstNode* new_node = new IstNode();
	new_node->key = new Key( val );
	new_node->length = val.GetLength();
	new_node->subtree_size = 0;
	if( ins_node == NULL ){
		// end insert
		rightmost = new_node;
		if( root == NULL ){
			root = new_node;
			leftmost = new_node;
			return iterator( new_node );
		}
		// find the shallowest right insertion point
		ins_node = NULL;
		decrement( ins_node );
		// make a new parent node
		IstNode* new_parent = new IstNode();
		new_parent->left = ins_node;
		new_parent->right = new_node;
		new_parent->parent = ins_node->parent;
		if( new_parent->parent == NULL )
			root = new_parent;
		else
			new_parent->parent->right = new_parent;
		ins_node->parent = new_parent;
		new_parent->length = ins_node->length;

		// update lengths and subtree_sizes along the path to the root
//		checkTree( root );
//		propogateChanges( new_node, 0, 0 );
//		propogateChanges( ins_node, 0, 0 );
		propogateChanges( new_parent, new_node->length, 2 );
		return iterator( new_node );
	}

	// iv_offset is the distance into the node that the leaf should be split
	// 0 is a special case (left insert)
	if( iv_offset == 0 ){
		IstNode* new_parent = new IstNode();
		new_parent->left = new_node;
		new_parent->right = ins_node;
		new_parent->parent = ins_node->parent;
		if( new_parent->parent->right == ins_node )
			new_parent->parent->right = new_parent;
		else
			new_parent->parent->left = new_parent;
		new_parent->length = ins_node->length;

		ins_node->parent = new_parent;
		new_node->parent = new_parent;

		if( point == 0 )
			leftmost = new_node;
		// update lengths and subtree_sizes along the path to the root
//		checkTree( root );
//		propogateChanges( new_node, 0, 0 );
//		propogateChanges( ins_node, 0, 0 );
		propogateChanges( new_parent, new_node->length, 2 );
	}else{
		// need to split a leaf node
		IstNode* new_gp = new IstNode();
		IstNode* new_parent = new IstNode();
		new_gp->parent = ins_node->parent;
		new_gp->right = new_parent;
		new_gp->left = new IstNode();
		new_gp->left->key = new Key( *ins_node->key );
		new_gp->left->key->CropEnd( ins_node->length - iv_offset );
		new_gp->left->length = new_gp->left->key->GetLength();
		new_gp->left->parent = new_gp;
		
		ins_node->key->CropStart( iv_offset );
		ins_node->length = ins_node->key->GetLength();
		ins_node->parent = new_parent;
		new_node->parent = new_parent;
		new_parent->left = new_node;
		new_parent->right = ins_node;
		new_parent->parent = new_gp;
		new_parent->length = new_node->length + ins_node->length;
		new_parent->subtree_size = 2;

		new_gp->length = ins_node->length + new_gp->left->length;
		new_gp->subtree_size = 1;
		if( new_gp->parent == NULL ){
			root = new_gp;
			leftmost = new_gp->left;
			rightmost = ins_node;
		}else if( new_gp->parent->right == ins_node )
			new_gp->parent->right = new_gp;
		else
			new_gp->parent->left = new_gp;

		// update lengths and subtree_sizes along the path to the root
//		checkTree( root );
//		propogateChanges( new_node, 0, 0 );
//		propogateChanges( ins_node, 0, 0 );
//		propogateChanges( new_gp->left, 0, 0 );
//		propogateChanges( new_parent, 0, 0 );
		new_gp->subtree_size = -1;
		propogateChanges( new_gp, new_node->length, 4 );
	}
	return iterator( new_node );
}

template< class Key, class Allocator >
template <class InputIterator>
void IntervalSequenceTree< Key, Allocator >::insert( 
	InputIterator first, 
	InputIterator last, 
	typename IntervalSequenceTree< Key, Allocator >::size_type point )
{

}

template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::size_type 
IntervalSequenceTree< Key, Allocator >::erase( 
	typename IntervalSequenceTree< Key, Allocator >::size_type point, 
	typename IntervalSequenceTree< Key, Allocator >::size_type length )
{
	size_type iv_offset = point;
	IstNode* ins_node = recursiveFind( iv_offset, root );

	// iv_offset is the distance into the node that the leaf should be split
	// 0 is a special case (left delete)
	size_type deleted_nodes = 0;
	while( length > 0 ){
		if( ins_node == NULL ){
			// end delete?  that's illegal
			return deleted_nodes;
		}
		if( iv_offset == 0 ){
			if( length >= ins_node->length ){
				// delete the whole thing
				length -= ins_node->length;
				if( ins_node->parent == NULL ){
					// deleting the root
					delete ins_node;
					root = NULL;
					leftmost = NULL;
					rightmost = NULL;
					return deleted_nodes + 1;
				}

				IstNode* other_child, *del_node;
				if( ins_node->parent->left == ins_node ){
					other_child = ins_node->parent->right;
				}else if( ins_node->parent->right == ins_node ){
					other_child = ins_node->parent->left;
				}
				del_node = ins_node;
				increment( ins_node );

				// update tree structure
				IstNode* tmp_parent = other_child->parent;
				IstNode* tmp_gp = tmp_parent->parent;
				*tmp_parent = *other_child;
				tmp_parent->parent = tmp_gp;
				if( tmp_parent->left )
					tmp_parent->left->parent = tmp_parent;
				if( tmp_parent->right )
					tmp_parent->right->parent = tmp_parent;
				if( ins_node == other_child )
					ins_node = tmp_parent;
				delete other_child;
				
				// propogate deletion length thru root
				tmp_parent = tmp_parent->parent;
//				checkTree( root );
				propogateChanges( tmp_parent, -del_node->length, -2 );

				// finally delete ins_node
				delete del_node;
				++deleted_nodes;
			}else{
				// crop from start
				ins_node->key->CropStart( length );
//				checkTree( root );
				propogateChanges( ins_node, -length, 0 );
				return deleted_nodes;
			}
		}else if( length >= ins_node->length - iv_offset ){
			// crop from end
			ins_node->key->CropEnd( ins_node->length - iv_offset );
			length -= ins_node->length - iv_offset;
//			checkTree( root );
			propogateChanges( ins_node, -(ins_node->length - iv_offset), 0 );
			increment( ins_node );
			iv_offset = 0;
		}else{
			// delete from middle (nastee part)
			IstNode* new_parent = new IstNode();
			new_parent->left = ins_node;
			new_parent->length = ins_node->length;
			new_parent->right = new IstNode();
			new_parent->right->key = new Key( *ins_node->key );
			new_parent->right->length = ins_node->length - length - iv_offset;
			new_parent->right->key->CropStart( length + iv_offset );
			new_parent->left->key->CropEnd( ins_node->length - iv_offset );
			new_parent->left->length = iv_offset;
			new_parent->parent = ins_node->parent;
			if( new_parent->parent == NULL ){
				root = new_parent;
				rightmost = new_parent->right;
			}else if( new_parent->parent->left == ins_node )
				new_parent->parent->left = new_parent;
			else if( new_parent->parent->right == ins_node )
				new_parent->parent->right = new_parent;
			
			ins_node->parent = new_parent;
			new_parent->right->parent = new_parent;
//			checkTree( root );
//			propogateChanges( ins_node, 0, 0 );
//			propogateChanges( new_parent->right, 0, 0 );
			propogateChanges( new_parent, -length, 2 );
			return deleted_nodes;
		}
	}
	return deleted_nodes;
}

template< class Key, class Allocator >
void IntervalSequenceTree< Key, Allocator >::propogateChanges( 
	IstNode* cur_node,
	int64 length_diff, 
	int64 subtree_diff )
{
	std::vector< IstNode* > node_stack;
	while( cur_node != NULL ){
		if( cur_node->parent == cur_node )
			std::cerr << "when I say oh, you say shit!";
		cur_node->length += length_diff;
		cur_node->subtree_size += subtree_diff;
		node_stack.push_back( cur_node );
		cur_node = cur_node->parent;
	}
}

template< class Key, class Allocator >
void IntervalSequenceTree< Key, Allocator >::erase( 
	typename IntervalSequenceTree< Key, Allocator >::iterator first, 
	typename IntervalSequenceTree< Key, Allocator >::iterator last )
{

}

template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::iterator 
IntervalSequenceTree< Key, Allocator >::find( 
	typename IntervalSequenceTree< Key, Allocator >::size_type point ) 
{
	return iterator( IntervalSequenceTree< Key, Allocator >::recursiveFind( point, root ) );
}

template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::const_iterator 
IntervalSequenceTree< Key, Allocator >::find( 
	typename IntervalSequenceTree< Key, Allocator >::size_type point ) const
{
	return const_iterator( IntervalSequenceTree< Key, Allocator >::recursiveFind( point, root ) );
}

template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::IstNode* 
IntervalSequenceTree< Key, Allocator >::recursiveFind( 
	typename IntervalSequenceTree< Key, Allocator >::size_type& point, 
	IstNode* node ) {

	if( node == NULL )
		return NULL;

	// return this node if it's a leaf
	if( node->key != NULL )
		return node;
	// look for the next node to recurse to
	if( point < node->length ){
		if( node->left ){
			if( point < node->left->length )
				return recursiveFind( point, node->left );
			point -= node->left->length;
		}
		return recursiveFind( point, node->right );
	}
	point -= node->length;
	// out of range
	return NULL;
}

template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::size_type 
IntervalSequenceTree< Key, Allocator >::length() const{
	return root == NULL ? 0 : root->length;
}

template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::size_type 
IntervalSequenceTree< Key, Allocator >::nodeCount() const{
	return root == NULL ? 0 : root->subtree_size + 1;
}

template< class Key, class Allocator >
typename IntervalSequenceTree< Key, Allocator >::size_type 
IntervalSequenceTree< Key, Allocator >::countNodes( IstNode* x ) const{
	if( x == NULL )
		x = root;
	if( x->key == NULL )
		return countNodes( x->left ) + countNodes( x->right ) + 1;
	return 1;
}


template< class Key, class Allocator >
void IntervalSequenceTree< Key, Allocator >::increment( IstNode*& x) {
	// find the least-ancestor with another child
	// and set x to that child
	while( x->parent != NULL ){
		if( x == x->parent->left &&
			x->parent->right != NULL ){
			x = x->parent->right;
			break;
		}else
			x = x->parent;
	}
	// if there were no other children to the right then we're at the end
	if( x->parent == NULL ){
		x = NULL;
		return;
	}

	// find the left-most leaf node below x
	while( x->key == NULL ){
		if( x->left != NULL )
			x = x->left;
		else if( x->right != NULL )
			x = x->right;
	}
}

template< class Key, class Allocator >
void IntervalSequenceTree< Key, Allocator >::decrement( IstNode*& x) const{
	if( x != NULL ){
		// find the least-ancestor with another child to the left
		// and set x to that child
		while( x->parent != NULL ){
			if( x == x->parent->right &&
				x->parent->left != NULL){
				x = x->parent->left;
				break;
			}else
				x = x->parent;
		}
		// if there was no other children to the left then we're at the end
		// raise hell! (cause an access violation)
		if( x->parent == NULL )
			x = NULL;
	}else{
		x = root;
	}
	
	// find the right-most leaf node below x
	while( x->key == NULL ){
		if( x->right != NULL )
			x = x->right;
		else if( x->left != NULL )
			x = x->left;
	}
}

template< class Key, class Allocator >
void IntervalSequenceTree< Key, Allocator >::deleteSubtree( IstNode*& istn ) {
	if( istn->left != NULL )
		deleteSubtree( istn->left );
	if( istn->right != NULL )
		deleteSubtree( istn->right );
	if( istn->key != NULL )
		delete istn->key;
	delete istn;
}


#endif // __IntervalSequenceTree_h__