/usr/include/geos/geom/Geometry.h is in libgeos-dev 3.2.2-3ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 | /**********************************************************************
* $Id: Geometry.h 2757 2009-12-01 15:39:41Z mloskot $
*
* GEOS - Geometry Engine Open Source
* http://geos.refractions.net
*
* Copyright (C) 2009 Sandro Santilli <strk@keybit.net>
* Copyright (C) 2005 2006 Refractions Research Inc.
* Copyright (C) 2001-2002 Vivid Solutions Inc.
*
* This is free software; you can redistribute and/or modify it under
* the terms of the GNU Lesser General Public Licence as published
* by the Free Software Foundation.
* See the COPYING file for more information.
*
**********************************************************************
*
* Last port: geom/Geometry.java rev. 1.112
*
**********************************************************************/
#ifndef GEOS_GEOM_GEOMETRY_H
#define GEOS_GEOM_GEOMETRY_H
#include <geos/export.h>
#include <geos/platform.h>
#include <geos/inline.h>
#include <geos/geom/Envelope.h>
#include <geos/geom/Dimension.h> // for Dimension::DimensionType
#include <geos/geom/GeometryComponentFilter.h> // for inheritance
#include <string>
#include <iostream>
#include <vector>
#include <memory>
// Forward declarations
namespace geos {
namespace geom {
class Coordinate;
class CoordinateFilter;
class CoordinateSequence;
class CoordinateSequenceFilter;
class GeometryComponentFilter;
class GeometryFactory;
class GeometryFilter;
class IntersectionMatrix;
class PrecisionModel;
class Point;
}
namespace io { // geos.io
class Unload;
} // namespace geos.io
}
namespace geos {
namespace geom { // geos::geom
/// Geometry types
enum GeometryTypeId {
/// a point
GEOS_POINT,
/// a linestring
GEOS_LINESTRING,
/// a linear ring (linestring with 1st point == last point)
GEOS_LINEARRING,
/// a polygon
GEOS_POLYGON,
/// a collection of points
GEOS_MULTIPOINT,
/// a collection of linestrings
GEOS_MULTILINESTRING,
/// a collection of polygons
GEOS_MULTIPOLYGON,
/// a collection of heterogeneus geometries
GEOS_GEOMETRYCOLLECTION
};
/**
* \class Geometry geom.h geos.h
*
* \brief Basic implementation of Geometry, constructed and
* destructed by GeometryFactory.
*
* <code>clone</code> returns a deep copy of the object.
* Use GeometryFactory to construct.
*
* <H3>Binary Predicates</H3>
* Because it is not clear at this time
* what semantics for spatial
* analysis methods involving <code>GeometryCollection</code>s would be useful,
* <code>GeometryCollection</code>s are not supported as arguments to binary
* predicates (other than <code>convexHull</code>) or the <code>relate</code>
* method.
*
* <H3>Set-Theoretic Methods</H3>
*
* The spatial analysis methods will
* return the most specific class possible to represent the result. If the
* result is homogeneous, a <code>Point</code>, <code>LineString</code>, or
* <code>Polygon</code> will be returned if the result contains a single
* element; otherwise, a <code>MultiPoint</code>, <code>MultiLineString</code>,
* or <code>MultiPolygon</code> will be returned. If the result is
* heterogeneous a <code>GeometryCollection</code> will be returned. <P>
*
* Because it is not clear at this time what semantics for set-theoretic
* methods involving <code>GeometryCollection</code>s would be useful,
* <code>GeometryCollections</code>
* are not supported as arguments to the set-theoretic methods.
*
* <H4>Representation of Computed Geometries </H4>
*
* The SFS states that the result
* of a set-theoretic method is the "point-set" result of the usual
* set-theoretic definition of the operation (SFS 3.2.21.1). However, there are
* sometimes many ways of representing a point set as a <code>Geometry</code>.
* <P>
*
* The SFS does not specify an unambiguous representation of a given point set
* returned from a spatial analysis method. One goal of JTS is to make this
* specification precise and unambiguous. JTS will use a canonical form for
* <code>Geometry</code>s returned from spatial analysis methods. The canonical
* form is a <code>Geometry</code> which is simple and noded:
* <UL>
* <LI> Simple means that the Geometry returned will be simple according to
* the JTS definition of <code>isSimple</code>.
* <LI> Noded applies only to overlays involving <code>LineString</code>s. It
* means that all intersection points on <code>LineString</code>s will be
* present as endpoints of <code>LineString</code>s in the result.
* </UL>
* This definition implies that non-simple geometries which are arguments to
* spatial analysis methods must be subjected to a line-dissolve process to
* ensure that the results are simple.
*
* <H4> Constructed Points And The Precision Model </H4>
*
* The results computed by the set-theoretic methods may
* contain constructed points which are not present in the input Geometry.
* These new points arise from intersections between line segments in the
* edges of the input Geometry. In the general case it is not
* possible to represent constructed points exactly. This is due to the fact
* that the coordinates of an intersection point may contain twice as many bits
* of precision as the coordinates of the input line segments. In order to
* represent these constructed points explicitly, JTS must truncate them to fit
* the PrecisionModel.
*
* Unfortunately, truncating coordinates moves them slightly. Line segments
* which would not be coincident in the exact result may become coincident in
* the truncated representation. This in turn leads to "topology collapses" --
* situations where a computed element has a lower dimension than it would in
* the exact result.
*
* When JTS detects topology collapses during the computation of spatial
* analysis methods, it will throw an exception. If possible the exception will
* report the location of the collapse.
*
* equals(Object) and hashCode are not overridden, so that when two
* topologically equal Geometries are added to HashMaps and HashSets, they
* remain distinct. This behaviour is desired in many cases.
*
*/
class GEOS_DLL Geometry {
public:
friend class GeometryFactory;
friend std::ostream& operator<< (std::ostream& os, const Geometry& geom);
/// A vector of const Geometry pointers
typedef std::vector<const Geometry *> ConstVect;
/// A vector of non-const Geometry pointers
typedef std::vector<Geometry *> NonConstVect;
/// An auto_ptr of Geometry
typedef std::auto_ptr<Geometry> AutoPtr;
/// Make a deep-copy of this Geometry
virtual Geometry* clone() const=0;
/// Destroy Geometry and all components
virtual ~Geometry();
/**
* \brief
* Gets the factory which contains the context in which this
* geometry was created.
*
* @return the factory for this geometry
*/
const GeometryFactory* getFactory() const { return factory; }
/**
* \brief
* A simple scheme for applications to add their own custom data to
* a Geometry.
* An example use might be to add an object representing a
* Coordinate Reference System.
*
* Note that user data objects are not present in geometries created
* by construction methods.
*
* @param newUserData an object, the semantics for which are
* defined by the application using this Geometry
*/
void setUserData(void* newUserData) { userData=newUserData; }
/**
* \brief
* Gets the user data object for this geometry, if any.
*
* @return the user data object, or <code>null</code> if none set
*/
void* getUserData() { return userData; }
/*
* \brief
* Returns the ID of the Spatial Reference System used by the
* <code>Geometry</code>.
*
* GEOS supports Spatial Reference System information in the simple way
* defined in the SFS. A Spatial Reference System ID (SRID) is present
* in each <code>Geometry</code> object. <code>Geometry</code>
* provides basic accessor operations for this field, but no others.
* The SRID is represented as an integer.
*
* @return the ID of the coordinate space in which the
* <code>Geometry</code> is defined.
*
*/
virtual int getSRID() const { return SRID; }
/*
* Sets the ID of the Spatial Reference System used by the
* <code>Geometry</code>.
*/
virtual void setSRID(int newSRID) { SRID=newSRID; }
/**
* \brief
* Get the PrecisionModel used to create this Geometry.
*/
const PrecisionModel* getPrecisionModel() const;
/// \brief
/// Returns a vertex of this Geometry,
/// or NULL if this is the empty geometry
///
virtual const Coordinate* getCoordinate() const=0; //Abstract
/**
* \brief
* Returns this Geometry vertices.
* Caller takes ownership of the returned object.
*/
virtual CoordinateSequence* getCoordinates() const=0; //Abstract
/// Returns the count of this Geometrys vertices.
virtual size_t getNumPoints() const=0; //Abstract
/// Returns false if the Geometry not simple.
virtual bool isSimple() const;
/// Return a string representation of this Geometry type
virtual std::string getGeometryType() const=0; //Abstract
/// Return an integer representation of this Geometry type
virtual GeometryTypeId getGeometryTypeId() const=0; //Abstract
/// Returns the number of geometries in this collection
/// (or 1 if this is not a collection)
virtual size_t getNumGeometries() const { return 1; }
/// Returns a pointer to the nth Geometry int this collection
/// (or self if this is not a collection)
virtual const Geometry* getGeometryN(size_t /*n*/) const { return this; }
/**
* \brief Tests the validity of this <code>Geometry</code>.
*
* Subclasses provide their own definition of "valid".
*
* @return <code>true</code> if this <code>Geometry</code> is valid
*
* @see IsValidOp
*/
virtual bool isValid() const;
/// Returns whether or not the set of points in this Geometry is empty.
virtual bool isEmpty() const=0; //Abstract
/// Polygon overrides to check for actual rectangle
virtual bool isRectangle() const { return false; }
/// Returns the dimension of this Geometry (0=point, 1=line, 2=surface)
virtual Dimension::DimensionType getDimension() const=0; //Abstract
/**
* \brief
* Returns the boundary, or an empty geometry of appropriate
* dimension if this <code>Geometry</code> is empty.
*
* (In the case of zero-dimensional geometries,
* an empty GeometryCollection is returned.)
* For a discussion of this function, see the OpenGIS Simple
* Features Specification. As stated in SFS Section 2.1.13.1,
* "the boundary of a Geometry is a set of Geometries of the
* next lower dimension."
*
* @return the closure of the combinatorial boundary
* of this <code>Geometry</code>.
* Ownershipof the returned object transferred to caller.
*/
virtual Geometry* getBoundary() const=0; //Abstract
/// Returns the dimension of this Geometrys inherent boundary.
virtual int getBoundaryDimension() const=0; //Abstract
/// Returns this Geometrys bounding box.
virtual Geometry* getEnvelope() const;
/** \brief
* Returns the minimum and maximum x and y values in this Geometry,
* or a null Envelope if this Geometry is empty.
*/
virtual const Envelope* getEnvelopeInternal() const;
/**
* Tests whether this geometry is disjoint from the specified geometry.
*
* The <code>disjoint</code> predicate has the following equivalent
* definitions:
* - The two geometries have no point in common
* - The DE-9IM Intersection Matrix for the two geometries matches
* <code>[FF*FF****]</code>
* - <code>! g.intersects(this)</code>
* (<code>disjoint</code> is the inverse of <code>intersects</code>)
*
* @param g the Geometry with which to compare this Geometry
* @return true if the two <code>Geometry</code>s are disjoint
*
* @see Geometry::intersects
*/
virtual bool disjoint(const Geometry *other) const;
/** \brief
* Returns true if the DE-9IM intersection matrix for the two
* Geometrys is FT*******, F**T***** or F***T****.
*/
virtual bool touches(const Geometry *other) const;
/// Returns true if disjoint returns false.
virtual bool intersects(const Geometry *g) const;
/**
* Tests whether this geometry crosses the specified geometry.
*
* The <code>crosses</code> predicate has the following equivalent
* definitions:
* - The geometries have some but not all interior points in common.
* - The DE-9IM Intersection Matrix for the two geometries matches
* - <code>[T*T******]</code> (for P/L, P/A, and L/A situations)
* - <code>[T*****T**]</code> (for L/P, A/P, and A/L situations)
* - <code>[0********]</code> (for L/L situations)
* For any other combination of dimensions this predicate returns
* <code>false</code>.
*
* The SFS defined this predicate only for P/L, P/A, L/L, and L/A
* situations.
* JTS extends the definition to apply to L/P, A/P and A/L situations
* as well, in order to make the relation symmetric.
*
* @param g the <code>Geometry</code> with which to compare this
* <code>Geometry</code>
*@return <code>true</code> if the two <code>Geometry</code>s cross.
*/
virtual bool crosses(const Geometry *g) const;
/** \brief
* Returns true if the DE-9IM intersection matrix for the two
* Geometrys is T*F**F***.
*/
virtual bool within(const Geometry *g) const;
/// Returns true if other.within(this) returns true.
virtual bool contains(const Geometry *g) const;
/** \brief
* Returns true if the DE-9IM intersection matrix for the two
* Geometrys is T*T***T** (for two points or two surfaces)
* 1*T***T** (for two curves).
*/
virtual bool overlaps(const Geometry *g) const;
/**
* \brief
* Returns true if the elements in the DE-9IM intersection matrix
* for the two Geometrys match the elements in intersectionPattern.
*
* IntersectionPattern elements may be: 0 1 2 T ( = 0, 1 or 2)
* F ( = -1) * ( = -1, 0, 1 or 2).
*
* For more information on the DE-9IM, see the OpenGIS Simple
* Features Specification.
*
* @throws util::IllegalArgumentException if either arg is a collection
*
*/
virtual bool relate(const Geometry *g,
const std::string& intersectionPattern) const;
bool relate(const Geometry& g, const std::string& intersectionPattern) const
{
return relate(&g, intersectionPattern);
}
/// Returns the DE-9IM intersection matrix for the two Geometrys.
virtual IntersectionMatrix* relate(const Geometry *g) const;
IntersectionMatrix* relate(const Geometry &g) const {
return relate(&g);
}
/**
* \brief
* Returns true if the DE-9IM intersection matrix for the two
* Geometrys is T*F**FFF*.
*/
virtual bool equals(const Geometry *g) const;
/** \brief
* Returns <code>true</code> if this geometry covers the
* specified geometry.
*
* The <code>covers</code> predicate has the following
* equivalent definitions:
*
* - Every point of the other geometry is a point of this geometry.
* - The DE-9IM Intersection Matrix for the two geometries is
* <code>T*****FF*</code>
* or <code>*T****FF*</code>
* or <code>***T**FF*</code>
* or <code>****T*FF*</code>
* - <code>g.coveredBy(this)</code>
* (<code>covers</code> is the inverse of <code>coveredBy</code>)
*
* If either geometry is empty, the value of this predicate
* is <tt>false</tt>.
*
* This predicate is similar to {@link #contains},
* but is more inclusive (i.e. returns <tt>true</tt> for more cases).
* In particular, unlike <code>contains</code> it does not distinguish
* between points in the boundary and in the interior of geometries.
* For most situations, <code>covers</code> should be used in
* preference to <code>contains</code>.
* As an added benefit, <code>covers</code> is more amenable to
* optimization, and hence should be more performant.
*
* @param g
* the <code>Geometry</code> with which to compare this
* <code>Geometry</code>
*
* @return <code>true</code> if this <code>Geometry</code>
* covers <code>g</code>
*
* @see Geometry::contains
* @see Geometry::coveredBy
*/
bool covers(const Geometry* g) const;
/** \brief
* Tests whether this geometry is covered by the
* specified geometry.
*
* The <code>coveredBy</code> predicate has the following
* equivalent definitions:
*
* - Every point of this geometry is a point of the other geometry.
* - The DE-9IM Intersection Matrix for the two geometries matches
* <code>[T*F**F***]</code>
* or <code>[*TF**F***]</code>
* or <code>[**FT*F***]</code>
* or <code>[**F*TF***]</code>
* - <code>g.covers(this)</code>
* (<code>coveredBy</code> is the converse of <code>covers</code>)
*
* If either geometry is empty, the value of this predicate
* is <tt>false</tt>.
*
* This predicate is similar to {@link #within},
* but is more inclusive (i.e. returns <tt>true</tt> for more cases).
*
* @param g the <code>Geometry</code> with which to compare
* this <code>Geometry</code>
* @return <code>true</code> if this <code>Geometry</code>
* is covered by <code>g</code>
*
* @see Geometry#within
* @see Geometry#covers
*/
bool coveredBy(const Geometry* g) const {
return g->covers(this);
}
/// Returns the Well-known Text representation of this Geometry.
virtual std::string toString() const;
virtual std::string toText() const;
/// Returns a buffer region around this Geometry having the given width.
//
/// @throws util::TopologyException if a robustness error occurs
///
virtual Geometry* buffer(double distance) const;
/// \brief
/// Returns a buffer region around this Geometry having the
/// given width and with a specified number of segments used
/// to approximate curves.
//
/// @throws util::TopologyException if a robustness error occurs
///
virtual Geometry* buffer(double distance,int quadrantSegments) const;
/** \brief
* Computes a buffer area around this geometry having the given
* width and with a specified accuracy of approximation for circular
* arcs, and using a specified end cap style.
*
* Buffer area boundaries can contain circular arcs.
* To represent these arcs using linear geometry they must be
* approximated with line segments.
*
* The <code>quadrantSegments</code> argument allows controlling the
* accuracy of the approximation by specifying the number of line
* segments used to represent a quadrant of a circle
*
* The end cap style specifies the buffer geometry that will be
* created at the ends of linestrings. The styles provided are:
*
* - BufferOp::CAP_ROUND - (default) a semi-circle
* - BufferOp::CAP_BUTT - a straight line perpendicular to the
* end segment
* - BufferOp::CAP_SQUARE - a half-square
*
*
* @param distance the width of the buffer
* (may be positive, negative or 0)
*
* @param quadrantSegments the number of line segments used
* to represent a quadrant of a circle
*
* @param endCapStyle the end cap style to use
*
* @return an area geometry representing the buffer region
*
* @throws util::TopologyException if a robustness error occurs
*
* @see BufferOp
*/
virtual Geometry* buffer(double distance, int quadrantSegments,
int endCapStyle) const;
/// \brief
/// Returns the smallest convex Polygon that contains
/// all the points in the Geometry.
virtual Geometry* convexHull() const;
/** \brief
* Returns a Geometry representing the points shared by
* this Geometry and other.
*
* @throws util::TopologyException if a robustness error occurs
* @throws util::IllegalArgumentException if either input is a
* non-empty GeometryCollection
*
*/
virtual Geometry* intersection(const Geometry *other) const;
/** \brief
* Returns a Geometry representing all the points in this Geometry
* and other.
*
* @throws util::TopologyException if a robustness error occurs
* @throws util::IllegalArgumentException if either input is a
* non-empty GeometryCollection
*
*/
virtual Geometry* Union(const Geometry *other) const;
// throw(IllegalArgumentException *, TopologyException *);
/**
* \brief
* Returns a Geometry representing the points making up this
* Geometry that do not make up other.
*
* @throws util::TopologyException if a robustness error occurs
* @throws util::IllegalArgumentException if either input is a
* non-empty GeometryCollection
*
*/
virtual Geometry* difference(const Geometry *other) const;
/** \brief
* Returns a set combining the points in this Geometry not in other,
* and the points in other not in this Geometry.
*
* @throws util::TopologyException if a robustness error occurs
* @throws util::IllegalArgumentException if either input is a
* non-empty GeometryCollection
*
*/
virtual Geometry* symDifference(const Geometry *other) const;
/** \brief
* Returns true if the two Geometrys are exactly equal,
* up to a specified tolerance.
*/
virtual bool equalsExact(const Geometry *other, double tolerance=0)
const=0; //Abstract
virtual void apply_rw(const CoordinateFilter *filter)=0; //Abstract
virtual void apply_ro(CoordinateFilter *filter) const=0; //Abstract
virtual void apply_rw(GeometryFilter *filter);
virtual void apply_ro(GeometryFilter *filter) const;
virtual void apply_rw(GeometryComponentFilter *filter);
virtual void apply_ro(GeometryComponentFilter *filter) const;
/**
* Performs an operation on the coordinates in this Geometry's
* CoordinateSequences.s
* If the filter reports that a coordinate value has been changed,
* {@link #geometryChanged} will be called automatically.
*
* @param filter the filter to apply
*/
virtual void apply_rw(CoordinateSequenceFilter& filter)=0;
/**
* Performs a read-only operation on the coordinates in this
* Geometry's CoordinateSequences.
*
* @param filter the filter to apply
*/
virtual void apply_ro(CoordinateSequenceFilter& filter) const=0;
/** \brief
* Apply a fiter to each component of this geometry.
* The filter is expected to provide a .filter(const Geometry*)
* method.
*
* I intend similar templated methods to replace
* all the virtual apply_rw and apply_ro functions...
* --strk(2005-02-06);
*/
template <class T>
void applyComponentFilter(T& f) const
{
for(size_t i=0, n=getNumGeometries(); i<n; ++i)
f.filter(getGeometryN(i));
}
/// Converts this Geometry to normal form (or canonical form).
virtual void normalize()=0; //Abstract
virtual int compareTo(const Geometry *geom) const;
/** \brief
* Returns the minimum distance between this Geometry
* and the Geometry g
*/
virtual double distance(const Geometry *g) const;
/// Returns the area of this Geometry.
virtual double getArea() const;
/// Returns the length of this Geometry.
virtual double getLength() const;
/** \brief
* Tests whether the distance from this Geometry to another
* is less than or equal to a specified value.
*/
virtual bool isWithinDistance(const Geometry *geom,double cDistance);
/** \brief
* Computes the centroid of this <code>Geometry</code>.
*
* The centroid is equal to the centroid of the set of component
* Geometries of highest dimension (since the lower-dimension geometries
* contribute zero "weight" to the centroid)
*
* @return a {@link Point} which is the centroid of this Geometry
*/
virtual Point* getCentroid() const;
/// Computes the centroid of this Geometry as a Coordinate
//
/// Returns false if centroid cannot be computed (EMPTY geometry)
///
virtual bool getCentroid(Coordinate& ret) const;
/** \brief
* Computes an interior point of this <code>Geometry</code>.
*
* An interior point is guaranteed to lie in the interior of the Geometry,
* if it possible to calculate such a point exactly. Otherwise,
* the point may lie on the boundary of the geometry.
*
* @return a Point which is in the interior of this Geometry, or
* null if the geometry doesn't have an interior (empty)
*/
virtual Point* getInteriorPoint() const;
/*
* \brief
* Notifies this Geometry that its Coordinates have been changed
* by an external party (using a CoordinateFilter, for example).
*/
virtual void geometryChanged();
/**
* \brief
* Notifies this Geometry that its Coordinates have been changed
* by an external party.
*/
void geometryChangedAction();
protected:
/// The bounding box of this Geometry
mutable std::auto_ptr<Envelope> envelope;
/// Returns true if the array contains any non-empty Geometrys.
static bool hasNonEmptyElements(const std::vector<Geometry *>* geometries);
/// Returns true if the CoordinateSequence contains any null elements.
static bool hasNullElements(const CoordinateSequence* list);
/// Returns true if the vector contains any null elements.
static bool hasNullElements(const std::vector<Geometry *>* lrs);
// static void reversePointOrder(CoordinateSequence* coordinates);
// static Coordinate& minCoordinate(CoordinateSequence* coordinates);
// static void scroll(CoordinateSequence* coordinates,Coordinate* firstCoordinate);
// static int indexOf(Coordinate* coordinate,CoordinateSequence* coordinates);
//
/** \brief
* Returns whether the two Geometrys are equal, from the point
* of view of the equalsExact method.
*/
virtual bool isEquivalentClass(const Geometry *other) const;
static void checkNotGeometryCollection(const Geometry *g);
// throw(IllegalArgumentException *);
//virtual void checkEqualSRID(Geometry *other);
//virtual void checkEqualPrecisionModel(Geometry *other);
virtual Envelope::AutoPtr computeEnvelopeInternal() const=0; //Abstract
virtual int compareToSameClass(const Geometry *geom) const=0; //Abstract
int compare(std::vector<Coordinate> a, std::vector<Coordinate> b) const;
int compare(std::vector<Geometry *> a, std::vector<Geometry *> b) const;
bool equal(const Coordinate& a, const Coordinate& b,
double tolerance) const;
int SRID;
/// @deprecated
//Geometry* toInternalGeometry(const Geometry *g) const;
/// @deprecated
//Geometry* fromInternalGeometry(const Geometry *g) const;
/// Polygon overrides to check for actual rectangle
//virtual bool isRectangle() const { return false; } -- moved to public
Geometry(const Geometry &geom);
/** \brief
* Construct a geometry with the given GeometryFactory.
*
* Will keep a reference to the factory, so don't
* delete it until al Geometry objects referring to
* it are deleted.
*
* @param factory
*/
Geometry(const GeometryFactory *factory);
private:
int getClassSortIndex() const;
class GeometryChangedFilter : public GeometryComponentFilter
{
public:
void filter_rw(Geometry* geom)
{
geom->geometryChangedAction();
}
};
static GeometryChangedFilter geometryChangedFilter;
/// The GeometryFactory used to create this Geometry
//
/// Externally owned
///
const GeometryFactory *factory;
static const GeometryFactory* INTERNAL_GEOMETRY_FACTORY;
void* userData;
};
/// \brief
/// Write the Well-known Binary representation of this Geometry
/// as an HEX string to the given output stream
///
std::ostream& operator<< (std::ostream& os, const Geometry& geom);
struct GEOS_DLL GeometryGreaterThen {
bool operator()(const Geometry *first, const Geometry *second);
};
/// Return current GEOS version
std::string geosversion();
/**
* \brief
* Return the version of JTS this GEOS
* release has been ported from.
*/
std::string jtsport();
} // namespace geos::geom
} // namespace geos
#ifdef GEOS_INLINE
# include <geos/geom/Geometry.inl>
#endif
#endif // ndef GEOS_GEOM_GEOMETRY_H
/**********************************************************************
* $Log$
* Revision 1.14 2006/07/08 00:33:55 strk
* * configure.in: incremented CAPI minor version, to avoid falling behind any future version from the 2.2. branch.
* * source/geom/Geometry.cpp, source/geom/GeometryFactory.cpp,
* source/geomgraph/EdgeRing.cpp,
* source/headers/geos/geom/Geometry.h,
* source/headers/geos/geom/GeometryFactory.h,
* source/headers/geos/geom/GeometryFactory.inl,
* source/headers/geos/geomgraph/EdgeRing.h:
* updated doxygen comments (sync with JTS head).
* * source/headers/geos/platform.h.in: include <inttypes.h>
* rather then <stdint.h>
*
* Revision 1.13 2006/06/12 10:10:39 strk
* Fixed getGeometryN() to take size_t rather then int, changed unsigned int parameters to size_t.
*
* Revision 1.12 2006/05/18 08:56:50 strk
* * source/geom/Geometry.cpp,
* source/headers/geos/geom/Geometry.h: added
* covers() and isCoveredBy() predicates.
* * tests/unit/Makefile.am,
* tests/unit/geom/Geometry/coversTest.cpp:
* added test for covers() predicates.
*
* Revision 1.11 2006/05/04 15:49:39 strk
* updated all Geometry::getDimension() methods to return Dimension::DimensionType (closes bug#93)
*
* Revision 1.10 2006/04/28 10:55:39 strk
* Geometry constructors made protected, to ensure all constructions use GeometryFactory,
* which has been made friend of all Geometry derivates. getNumPoints() changed to return
* size_t.
*
* Revision 1.9 2006/04/11 09:31:47 strk
* Added Geometry::AutoPtr typedef
*
* Revision 1.8 2006/04/10 18:15:09 strk
* Changed Geometry::envelope member to be of type auto_ptr<Envelope>.
* Changed computeEnvelopeInternal() signater to return auto_ptr<Envelope>
*
* Revision 1.7 2006/04/07 09:54:30 strk
* Geometry::getNumGeometries() changed to return 'unsigned int'
* rather then 'int'
*
* Revision 1.6 2006/03/31 16:53:53 strk
* Added comment about possible NULL return from getCoordinate()
*
* Revision 1.5 2006/03/24 09:52:41 strk
* USE_INLINE => GEOS_INLINE
*
* Revision 1.4 2006/03/23 15:10:29 strk
* Dropped by-pointer TopologyException constructor, various small cleanups
*
* Revision 1.3 2006/03/23 12:12:01 strk
* Fixes to allow build with -DGEOS_INLINE
*
* Revision 1.2 2006/03/20 12:03:25 strk
* Added operator<< for Geometry, writing HEXWKB
*
* Revision 1.1 2006/03/09 16:46:49 strk
* geos::geom namespace definition, first pass at headers split
*
**********************************************************************/
|