This file is indexed.

/usr/include/givaro/givpoly1dense.h is in libgivaro-dev 3.2.13-1.2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#ifndef _GIV_POLY1_DENSE_H_
#define _GIV_POLY1_DENSE_H_
// ==========================================================================
// $Source: /var/lib/cvs/Givaro/src/library/poly1/givpoly1dense.h,v $
// Copyright(c)'94-97 by Givaro Team
// see the copyright file.
// Authors: T. Gautier
// $Id: givpoly1dense.h,v 1.17 2008-09-18 08:11:46 jgdumas Exp $
// ==========================================================================
// Description: univariate polynom over T
// - we assume that T is a ring (0,1,+,*) with:

#include <iostream>
#include <vector>
#include "givaro/givdegree.h"
#include "givaro/givindeter.h"
#include "givaro/givinteger.h"
#include "givaro/givrandom.h"


template < typename T, typename A=std::allocator<T> > 
class givvector : public std::vector<T,A> {
    typedef givvector<T,A>     Self_t;
public:
    givvector() : std::vector<T,A>() {}
    givvector(size_t s) : std::vector<T,A>(s) { }
    givvector(const Self_t& p, givNoCopy xxx) : std::vector<T,A>(p) {}
    givvector(const Self_t& p, givWithCopy xxx) : std::vector<T,A>(p) {}
    Self_t& reallocate (size_t s) { this->resize(s); return *this; }
    Self_t& logcopy(const Self_t& src) { return *this = src; }
    Self_t& copy(const Self_t& src) { return *this = src; }
    int areEqual(const Self_t& p) const { 
        return *this == p; 
    }
    int areNEqual(const Self_t& p) const { 
        return *this != p;
    }

};

//  -------------------------------------------- Class Poly1Dom<Domain>
template <class Domain>
class Poly1Dom<Domain,Dense> {
protected:  //  -- Representation 
    Domain 		_domain;  // -- subdomain
    Indeter		_x;	  // -- for I/O, if any
public :

        // -- Exported types
    typedef          Domain		       Domain_t;
    typedef typename Domain::Element           Type_t;

        // -- Self_t
    typedef          Poly1Dom<Domain,Dense>    Self_t;

        // -- The representation of a dense polynomial.
        // assuming that we have correct operator, especially size, allocate
        // , reallocate
        // - zero is Rep.size() ==0 or Rep.size() =1 && Rep[0] ==0
        // - Rep.size() is the degree + 1 if !=0
//     typedef          Array0<Type_t>            Storage_t;
    typedef          givvector<Type_t>            Storage_t;
    typedef          Storage_t                 Rep;
    typedef          Storage_t                 Element;

    Poly1Dom (const Domain& d, const Indeter& X = Indeter() );
    Poly1Dom (const Self_t&);

    int operator==( const Poly1Dom<Domain,Dense>& BC) const 
        { return _domain == BC._domain;}
    int operator!=( const Poly1Dom<Domain,Dense>& BC) const 
        { return _domain != BC._domain;}

        // -- Return the domain of the entries
    const Domain& subdomain() const { return _domain; }
        // -- Return the domain of the entries
    const Domain& getdomain() const { return _domain; }
    Domain& setdomain(const Domain& D) { return _domain = D; }
            

        // -- Constantes
     Rep zero;
     Rep one;
	
        // -- Init polynomial 
    Rep& init(Rep& a) const;
        // -- Init polynomial with value : F.init(p[0],cste)
    template<class XXX>
    Rep& init(Rep& p, const XXX &cste ) const;

        // -- Allocate a polynomial with deg+1 coefficients, each of them are 
        // set to zero, except the leading coef which is set to one.
    Rep& init (Rep& r, const Degree deg) const;

        // -- For polynomial = lcoeff X^deg 
    template<class XXX>
    Rep& init (Rep& p, const Degree deg , const XXX& lcoeff) const;

        //    F.assign(P[deg], lcoeff); 
    Rep& assign (Rep& p, const Degree deg , const Type_t& lcoeff) const;
        // -- Assign polynomial with field value : F.assign(p[0],cste)
    Rep& assign(Rep& p, const Type_t &cste ) const {
	    return assign(p, Degree(0), cste);
    }
        // -- Assignment p = q
    Rep& assign( Rep& p, const Rep& q) const;

        // -- Convert polynomials : F.assign(cste, p[0])
    Type_t& convert(Type_t&, const Rep &) const;

        // -- Convert polynomials : F.convert(cste, p[0])
    template<class XXX>
    XXX& convert(XXX& p, const Rep &) const;

    template<class UU, template<class XX> class Vect>
    Vect<UU>& convert( Vect<UU>&, const Rep& P ) const ;

        // -- Dstor
    ~Poly1Dom ();

        // -- Comparaison operator
    int isZero  ( const Rep& P ) const;
    //    int isZero  ( const Rep& P ) const{return iszero(P);}
    int isOne   ( const Rep& P ) const;
    int areEqual ( const Rep& P, const Rep& Q ) const;
    int areNEqual( const Rep& P, const Rep& Q ) const;

        // -- Returns the leading coefficients
    Type_t& leadcoef(Type_t& c, const Rep& P) const;

        // -- Returns the i-th coefficients
    Type_t& getEntry(Type_t& c, const Degree& i, const Rep& P) const;

        // -- Returns the degree of polynomial
    Degree& degree(Degree& d, const Rep& P) const;

        // -- Returns the valuation of polynomial
    Degree& val(Degree& d, const Rep& P) const;
  
        // -- Compute the degree of P
    Rep& setdegree( Rep& P ) const;

        // -- Evaluation on one point.
    Type_t& eval(Type_t& pval, const Rep& P, const Type_t& val) const;

        // -- Returns the differentiate polynomial
    Rep& diff( Rep& P, const Rep& Q) const;

        // -- 
    std::istream& read ( std::istream& i );
    std::ostream& write( std::ostream& o ) const;
    std::istream& read ( std::istream& i, Rep& n) const;
    std::ostream& write( std::ostream& o, const Rep& n) const;

        // -- Arithmetics operators
    Rep& addin ( Rep& res, const Rep& u ) const;
    Rep& add ( Rep& res, const Rep& u, const Rep& v ) const;
    Rep& add ( Rep& res, const Rep& u, const Type_t& val ) const;
    Rep& add ( Rep& res, const Type_t& val, const Rep& v ) const;

    Rep& subin ( Rep& res, const Rep& u ) const;
    Rep& sub ( Rep& res, const Rep& u, const Rep& v ) const;
    Rep& sub ( Rep& res, const Rep& u, const Type_t& val ) const;
    Rep& sub ( Rep& res, const Type_t& val, const Rep& v ) const;

    Rep& negin ( Rep& res ) const;
    Rep& neg ( Rep& res, const Rep& u ) const;

    Rep& mulin ( Rep& q, const Rep& a ) const;
    Rep& mulin ( Rep& q, const Type_t& a ) const;
    Rep& mul   ( Rep& q, const Rep& a, const Rep& b ) const;
    Rep& mul   ( Rep& q, const Type_t& a, const Rep& b ) const;
    Rep& mul   ( Rep& q, const Rep& a, const Type_t& b ) const;

    Rep& shiftin ( Rep&, int ) const;
    Rep& shift   ( Rep&, const Rep&, int ) const;

    Rep& divin ( Rep& q, const Rep& a ) const;
    Rep& divin ( Rep& q, const Type_t& a ) const;
    Rep& div   ( Rep& q, const Rep& a, const Rep& b ) const;
    Rep& div   ( Rep& q, const Type_t& a, const Rep& b ) const;
    Rep& div   ( Rep& q, const Rep& a, const Type_t& b ) const;

    Rep& modin ( Rep& q, const Rep& a ) const;
    Rep& modin ( Rep& q, const Type_t& a ) const;
    Rep& mod   ( Rep& q, const Rep& a, const Rep& b ) const;
    Rep& mod   ( Rep& q, const Type_t& a, const Rep& b ) const;
    Rep& mod   ( Rep& q, const Rep& a, const Type_t& b ) const;


    Rep& axpy  (Rep& r, const Rep& a, const Rep& x, const Rep& y) const;
    Rep& axpy  (Rep& r, const Type_t& a, const Rep& x, const Rep& y) const;
    Rep& axpyin(Rep& r, const Rep& a, const Rep& x) const;
    Rep& axpyin(Rep& r, const Type_t& a, const Rep& x) const;
        // -- amxy: r <- c - a * b
    Rep& amxy  (Rep& r, const Rep& a, const Rep& b, const Rep& c) const;
    Rep& amxy  (Rep& r, const Type_t& a, const Rep& b, const Rep& c) const;
        // -- amxyin: r -= a*b
    Rep& amxyin(Rep& r, const Rep& a, const Rep& b) const;
    Rep& amxyin(Rep& r, const Type_t& a, const Rep& b) const;
        // -- axmy: r <- a * x - y
    Rep& axmy  (Rep& r, const Rep& a, const Rep& x, const Rep& y) const;
    Rep& axmy  (Rep& r, const Type_t& a, const Rep& x, const Rep& y) const;

        // A = q*B + r
    Rep& divmod( Rep& q, Rep& r, const Rep& a, const Rep& b ) const;

        // m*A = q*B + r
    Rep& pdivmod( Rep& q, Rep& r, Type_t& m, const Rep& a, const Rep& b ) const;
    Rep& pmod( Rep& r, Type_t& m, const Rep& a, const Rep& b ) const;
    Rep& pmod( Rep& r, const Rep& a, const Rep& b ) const;
    Rep& pdiv( Rep& q, Type_t& m, const Rep& a, const Rep& b ) const;
    Rep& pdiv( Rep& q, const Rep& a, const Rep& b ) const;


        // -- gcd D = gcd(P,Q) = P*U+Q*V;
    Rep& gcd ( Rep& D, const Rep& P, const Rep& Q) const;  
    Rep& gcd ( Rep& D, Rep& U, Rep& V, const Rep& P, const Rep& Q) const;  
    Rep& lcm ( Rep& D, const Rep& P, const Rep& Q) const;  
        // -- modular inverse of P : U P = 1 + V Q
    Rep& invmod ( Rep& U, const Rep& P, const Rep& Q) const;  

        // -- misc
        // -- W <-- P^n
    Rep& pow( Rep& W, const Rep& P, long n) const;
        // -- W <-- P^n [ U ]
    Rep& powmod( Rep& W, const Rep& P, IntegerDom::Element pwr, const Rep& U) const;
    template < class MyInt >
    Rep& powmod( Rep& W, const Rep& P, MyInt pwr, const Rep& U) const {
        return powmod(W, P, (IntegerDom::Element)pwr, U);
    }

        // -- W <-- P(X^b)
    Rep& power_compose( Rep& W, const Rep& P, long b) const;

        // -- n th cyclotomic polynomial
    Rep& cyclotomic( Rep& P, long n) const;


        // -- Random generators
        // -- Random dense polynomial of degree 0
    template< class RandIter > Rep& random(RandIter& g, Rep& r) const;
        // -- Random dense polynomial of size s
    template< class RandIter > Rep& random(RandIter& g, Rep& r, long s) const ;
        // -- Random dense polynomial of degree d
    template< class RandIter > Rep& random(RandIter& g, Rep& r, Degree s) const ;

    Rep& random(GivRandom& g, Rep& r, Degree s) const ;
        // -- Random dense polynomial with same size as b. 
    template< class RandIter > Rep& random(RandIter& g, Rep& r, const Rep& b) const;

    template< class RandIter > Rep& nonzerorandom(RandIter& g, Rep& r) const;
    template< class RandIter > Rep& nonzerorandom(RandIter& g, Rep& r, long s) const;
    template< class RandIter > Rep& nonzerorandom(RandIter& g, Rep& r, Degree s) const ;
    template< class RandIter > Rep& nonzerorandom(RandIter& g, Rep& r, const Rep& b) const;
    
        // -- Square free decomposition
     size_t& sqrfree(size_t& Nfact, Rep* Fact, const Rep& P) const;


}; //  ------------------------------- End Of The Class Poly1Dom<Type_t>

#endif