This file is indexed.

/usr/share/ada/adainclude/gtkada/glib-graphs.adb is in libgtkada2.24.1-dev 2.24.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
-----------------------------------------------------------------------
--               GtkAda - Ada95 binding for Gtk+/Gnome               --
--                                                                   --
--                 Copyright (C) 2001-2010, AdaCore                  --
--                                                                   --
-- This library is free software; you can redistribute it and/or     --
-- modify it under the terms of the GNU General Public               --
-- License as published by the Free Software Foundation; either      --
-- version 2 of the License, or (at your option) any later version.  --
--                                                                   --
-- This library is distributed in the hope that it will be useful,   --
-- but WITHOUT ANY WARRANTY; without even the implied warranty of    --
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU --
-- General Public License for more details.                          --
--                                                                   --
-- You should have received a copy of the GNU General Public         --
-- License along with this library; if not, write to the             --
-- Free Software Foundation, Inc., 59 Temple Place - Suite 330,      --
-- Boston, MA 02111-1307, USA.                                       --
--                                                                   --
-----------------------------------------------------------------------

with Unchecked_Deallocation;

package body Glib.Graphs is

   type Search_Color is (White, Gray, Black);
   type Color_Array  is array (Natural range <>) of Search_Color;

   procedure Move_To_Next (E : in out Edge_Iterator);
   --  nove the next matching edge, starting at the one pointed to by E
   --  E should be the first potential candidate for the next item (ie should
   --  already have been moved to the next edge).

   ------------------
   -- Set_Directed --
   ------------------

   procedure Set_Directed (G : in out Graph; Directed : Boolean) is
   begin
      G.Directed := Directed;
   end Set_Directed;

   -----------------
   -- Is_Directed --
   -----------------

   function Is_Directed (G : Graph) return Boolean is
   begin
      return G.Directed;
   end Is_Directed;

   ---------------
   -- Get_Index --
   ---------------

   function Get_Index (V : access Vertex) return Natural is
   begin
      return V.Index;
   end Get_Index;

   ---------------
   -- Max_Index --
   ---------------

   function Max_Index (G : Graph) return Natural is
   begin
      return G.Last_Vertex_Index;
   end Max_Index;

   ----------------
   -- Add_Vertex --
   ----------------

   procedure Add_Vertex (G : in out Graph; V : access Vertex'Class) is
   begin
      V.Index             := G.Last_Vertex_Index;
      G.Last_Vertex_Index := G.Last_Vertex_Index + 1;
      G.Num_Vertices      := G.Num_Vertices + 1;
      Add (G.Vertices, V);
   end Add_Vertex;

   --------------
   -- Add_Edge --
   --------------

   procedure Add_Edge
     (G            : in out Graph;
      E            : access Edge'Class;
      Source, Dest : access Vertex'Class)
   is
      pragma Unreferenced (G);
   begin
      pragma Assert (E.Src = null and then E.Dest = null);
      E.Src  := Vertex_Access (Source);
      E.Dest := Vertex_Access (Dest);
      Add (Source.Out_Edges, E);
      Add (Dest.In_Edges, E);
   end Add_Edge;

   ------------
   -- Remove --
   ------------

   procedure Remove (G : in out Graph; E : access Edge'Class) is
      pragma Unreferenced (G);

      procedure Free is new Unchecked_Deallocation (Edge'Class, Edge_Access);
      E2 : Edge_Access := Edge_Access (E);

   begin
      Remove (E.Src.Out_Edges, E);
      Remove (E.Dest.In_Edges, E);
      Destroy (E.all);
      Free (E2);
   end Remove;

   -------------
   -- Destroy --
   -------------

   procedure Destroy (G : in out Graph) is
   begin
      Clear (G);
   end Destroy;

   -----------
   -- Clear --
   -----------

   procedure Clear (G : in out Graph) is
   begin
      while G.Vertices /= null loop
         Remove (G, G.Vertices.V);
      end loop;
   end Clear;

   ------------
   -- Remove --
   ------------

   procedure Remove (G : in out Graph; V : access Vertex'Class) is
      procedure Free is new Unchecked_Deallocation
        (Vertex'Class, Vertex_Access);
      E : Edge_Iterator;
      E2 : Edge_Access;
      V2 : Vertex_Access := Vertex_Access (V);
   begin
      --  Destroy all outgoing edges
      E := First (G, Src => Vertex_Access (V));
      while not At_End (E) loop
         E2 := Get (E);
         Next (E);
         Remove (G, E2);
      end loop;

      --  Destroy all ingoing edges
      E := First (G, Dest => Vertex_Access (V));
      while not At_End (E) loop
         E2 := Get (E);
         Next (E);
         Remove (G, E2);   --  ??? Could be more efficient, since we have
                           --  the pointer into the list directly
      end loop;

      --  Free the vertex
      Internal_Remove (G, V);
      Destroy (V.all);
      Free (V2);
   end Remove;

   ---------
   -- Add --
   ---------

   procedure Add (List : in out Edge_List; E : access Edge'Class) is
      L : Edge_List := List;
   begin
      --  Insert the item in the list so that items with equal ends are next to
      --  each other.

      while L /= null loop
         if L.E.Src = E.Src and then L.E.Dest = E.Dest then
            L.Next := new Edge_List_Record'
              (E => Edge_Access (E), Next => L.Next);
            return;
         end if;
         L := L.Next;
      end loop;

      List := new Edge_List_Record'(E => Edge_Access (E), Next => List);
   end Add;

   ---------
   -- Add --
   ---------

   procedure Add    (List : in out Vertex_List; V : access Vertex'Class) is
   begin
      List := new Vertex_List_Record'(V => Vertex_Access (V), Next => List);
   end Add;

   ------------
   -- Remove --
   ------------

   procedure Remove (List : in out Edge_List; E : access Edge'Class) is
      procedure Internal is new Unchecked_Deallocation
        (Edge_List_Record, Edge_List);
      Tmp      : Edge_List := List;
      Previous : Edge_List;
   begin
      while Tmp /= null
        and then Tmp.E /= Edge_Access (E)
      loop
         Previous := Tmp;
         Tmp := Tmp.Next;
      end loop;

      if Tmp /= null then
         if Previous = null then
            pragma Assert (Tmp = List);
            Previous := List;
            List := List.Next;
            Internal (Previous);
         else
            Previous.Next := Tmp.Next;
            Internal (Tmp);
         end if;
      end if;
   end Remove;

   ------------
   -- Remove --
   ------------

   procedure Internal_Remove (G : in out Graph; V : access Vertex'Class) is
      procedure Internal is new Unchecked_Deallocation
        (Vertex_List_Record, Vertex_List);
      Tmp      : Vertex_List := G.Vertices;
      Previous : Vertex_List := null;
   begin
      while Tmp /= null
        and then Tmp.V /= Vertex_Access (V)
      loop
         Previous := Tmp;
         Tmp := Tmp.Next;
      end loop;

      if Tmp /= null then
         if Previous = null then
            --  The list contains only one item which is the one to be removed.
            --  Once it has been removed the list must be reset to null.
            pragma Assert (Tmp = G.Vertices, "Remove vertex");
            Previous := G.Vertices;
            G.Vertices := G.Vertices.Next;
            Internal (Previous);
         else
            Previous.Next := Tmp.Next;
            Internal (Tmp);
         end if;
         G.Num_Vertices := G.Num_Vertices - 1;
      end if;
   end Internal_Remove;

   -----------
   -- First --
   -----------

   function First (G : Graph) return Vertex_Iterator is
   begin
      return Vertex_Iterator (G.Vertices);
   end First;

   ----------
   -- Next --
   ----------

   procedure Next (V : in out Vertex_Iterator) is
   begin
      V := Vertex_Iterator (V.Next);
   end Next;

   ------------
   -- At_End --
   ------------

   function At_End (V : Vertex_Iterator) return Boolean is
   begin
      return V = null;
   end At_End;

   ---------
   -- Get --
   ---------

   function Get (V : Vertex_Iterator) return Vertex_Access is
   begin
      return V.V;
   end Get;

   -----------
   -- First --
   -----------

   function First (G : Graph;
                   Src, Dest : Vertex_Access := null;
                   Directed : Boolean := True)
      return Edge_Iterator
   is
      Va : Edge_Iterator :=
        (Directed       => Directed and then G.Directed,
         Repeat_Count   => 1,
         Src            => Src,
         Dest           => Dest,
         Current_Vertex => null,
         Current_Edge   => null,
         First_Pass     => True);

   begin
      if Src /= null then
         --  If Src /= null and then Dest = null then
         --     Result is the whole list from Src.Out_Nodes
         --     If not directed: add to it the list of Dest.Out_Nodes
         --     Duplicates in the following case: a given node has two links
         --     to and from Src, and the graph is not oriented.
         --        Src  <----->   B
         --  Elsif Src /= null and then Dest /= null then
         --     Result is the whole list from Src.Out_Nodes that match Dest
         --     If not directed: add to it the list of Dest.In_Nodes that
         --     match Src.
         --     Duplicates when there is a link from src to dest, and one from
         --     dest to src.
         Va.Current_Edge := Src.Out_Edges;

      elsif Dest = null then
         --  If Src = null and then Dest = null then
         --     Result is the concatenation for all edges of Edge.Out_Nodes
         if G.Vertices /= null then
            Va.Current_Vertex := G.Vertices;
            Va.Current_Edge := G.Vertices.V.Out_Edges;
         end if;

      else
         --  If Src = null and then Dest /= null then
         --     Result is the whole list from Dest.In_Nodes
         Va.Current_Edge := Dest.In_Edges;
      end if;

      Move_To_Next (Va);
      return Va;
   end First;

   ------------------
   -- Move_To_Next --
   ------------------

   procedure Move_To_Next (E : in out Edge_Iterator) is
   begin
      if E.Src /= null then
         if E.Dest = null then
            if E.Current_Edge = null
              and then not E.Directed
              and then E.First_Pass
            then
               E.First_Pass   := False;
               E.Current_Edge := E.Src.In_Edges;
            end if;

         else
            while E.Current_Edge /= null
              and then (E.First_Pass or else E.Current_Edge.E.Src /= E.Dest)
              and then (not E.First_Pass
                        or else E.Current_Edge.E.Dest /= E.Dest)
            loop
               E.Current_Edge := E.Current_Edge.Next;
            end loop;

            if E.Current_Edge = null
              and then not E.Directed
              and then E.First_Pass
            then
               E.First_Pass := False;
               E.Current_Edge := E.Src.In_Edges;
               Move_To_Next (E);
            end if;
         end if;

         --  In the second pass, we must ignore the recursive links to the
         --  item, since they have already been counted.
         if not E.First_Pass then
            while E.Current_Edge /= null
              and then E.Current_Edge.E.Src = E.Current_Edge.E.Dest
            loop
               E.Current_Edge := E.Current_Edge.Next;
            end loop;
         end if;

      elsif E.Dest = null then
         if E.Current_Vertex /= null then
            while E.Current_Edge = null loop
               E.Current_Vertex := E.Current_Vertex.Next;
               exit when E.Current_Vertex = null;
               E.Current_Edge := E.Current_Vertex.V.Out_Edges;
            end loop;
         end if;

      else
         if E.Current_Edge = null
           and then not E.Directed
           and then E.First_Pass
         then
            E.First_Pass   := False;
            E.Current_Edge := E.Dest.Out_Edges;
         end if;

         --  In the second pass, we must ignore the recursive links to the
         --  item, since they have already been counted.
         if not E.First_Pass then
            while E.Current_Edge /= null
              and then E.Current_Edge.E.Src = E.Current_Edge.E.Dest
            loop
               E.Current_Edge := E.Current_Edge.Next;
            end loop;
         end if;
      end if;
   end Move_To_Next;

   ----------
   -- Next --
   ----------

   procedure Next (E : in out Edge_Iterator) is
      Save : constant Edge_Access := E.Current_Edge.E;
   begin
      E.Current_Edge := E.Current_Edge.Next;
      Move_To_Next (E);

      if E.Current_Edge /= null then
         if E.Current_Edge.E.Src = Save.Src
           and then E.Current_Edge.E.Dest = Save.Dest
         then
            E.Repeat_Count := E.Repeat_Count + 1;
         else
            E.Repeat_Count := 1;
         end if;
      else
         E.Repeat_Count := 1;
      end if;
   end Next;

   ------------
   -- At_End --
   ------------

   function At_End (E : Edge_Iterator) return Boolean is
   begin
      return E.Current_Vertex = null
        and then E.Current_Edge = null;
   end At_End;

   ------------------
   -- Repeat_Count --
   ------------------

   function Repeat_Count (E : Edge_Iterator) return Positive is
   begin
      return E.Repeat_Count;
   end Repeat_Count;

   ---------
   -- Get --
   ---------

   function Get (E : Edge_Iterator) return Edge_Access is
   begin
      pragma Assert (not At_End (E));
      return E.Current_Edge.E;
   end Get;

   -------------
   -- Get_Src --
   -------------

   function Get_Src (E : access Edge) return Vertex_Access is
   begin
      return E.Src;
   end Get_Src;

   --------------
   -- Get_Dest --
   --------------

   function Get_Dest (E : access Edge) return Vertex_Access is
   begin
      return E.Dest;
   end Get_Dest;

   --------------------------
   -- Breadth_First_Search --
   --------------------------

   function Breadth_First_Search
     (G : Graph; Root : access Vertex'Class)
      return Breadth_Vertices_Array
   is
      Colors : Color_Array (0 .. G.Last_Vertex_Index - 1) := (others => White);
      Distances : array (0 .. G.Last_Vertex_Index - 1) of Natural :=
        (others => Natural'Last);
      Predecessors : Vertices_Array (0 .. G.Last_Vertex_Index - 1) :=
        (others => null);
      Queue : Vertices_Array (0 .. G.Num_Vertices - 1);
      Queue_Index : Integer := 0;
      Queue_First : Integer := 0;
      Result : Breadth_Vertices_Array (0 .. G.Num_Vertices - 1);
      Result_Index : Natural := 0;

      V, U : Vertex_Access;
      Eit : Edge_Iterator;
   begin
      --  Initialize the root
      Distances (Root.Index) := 0;
      Queue (Queue_Index) := Vertex_Access (Root);
      Queue_Index := Queue_Index + 1;

      while Queue_First < Queue_Index loop
         U := Queue (Queue_First);
         Eit := First (G, Src => U);
         while not At_End (Eit) loop
            V := Get_Dest (Get (Eit));
            if V = U then
               V := Get_Src (Get (Eit));
            end if;

            if Colors (V.Index) = White then
               Colors (V.Index) := Gray;
               Distances (V.Index) := Distances (U.Index) + 1;
               Predecessors (V.Index) := U;
               Queue (Queue_Index) := V;
               Queue_Index := Queue_Index + 1;
            end if;
            Next (Eit);
         end loop;
         Queue_First := Queue_First + 1;
         Colors (U.Index) := Black;
         Result (Result_Index) :=
           (U, Distances (U.Index), Predecessors (U.Index));
         Result_Index := Result_Index + 1;
      end loop;

      return Result (Result'First .. Result_Index - 1);
   end Breadth_First_Search;

   ------------------------
   -- Depth_First_Search --
   ------------------------

   function Depth_First_Search (G : Graph) return Depth_Vertices_Array is
      Acyclic : aliased Boolean;
   begin
      return Depth_First_Search (G, Acyclic'Access);
   end Depth_First_Search;

   ------------------------
   -- Depth_First_Search --
   ------------------------

   function Depth_First_Search
     (G : Graph;
      Acyclic : access Boolean;
      Reverse_Edge_Cb : Reverse_Edge_Callback := null)
      return Depth_Vertices_Array
   is
      Colors : Color_Array (0 .. G.Last_Vertex_Index - 1) := (others => White);
      Predecessors : Vertices_Array (0 .. G.Last_Vertex_Index - 1);
      Start : array (0 .. G.Last_Vertex_Index - 1) of Natural;
      Result : Depth_Vertices_Array (0 .. G.Num_Vertices - 1);
      Result_Index : Integer := Result'Last;
      Time : Natural := 0;

      procedure Depth_First_Visit (U : Vertex_Access);
      --  Process the node U

      procedure Depth_First_Visit (U : Vertex_Access) is
         V : Vertex_Access;
         Eit : Edge_Iterator;
      begin
         Colors (U.Index) := Gray;
         Time := Time + 1;
         Start (U.Index) := Time;
         Eit := First (G, Src => U);
         while not At_End (Eit) loop
            V := Get_Dest (Get (Eit));
            if V = U then
               V := Get_Src (Get (Eit));
            end if;

            if Colors (V.Index) = White then
               Predecessors (V.Index) := U;
               --  ??? Would be nice to have a non-recursive implementation, to
               --  ??? support larger graphs
               Depth_First_Visit (V);
               Next (Eit);

            elsif Colors (V.Index) = Gray then
               --  Make the graph acyclic by reversing the edge.
               if Reverse_Edge_Cb /= null then
                  declare
                     E : constant Edge_Access := Get (Eit);
                  begin
                     --  We need to first move the iterator, otherwise it will
                     --  become invalid when the two edges have been reversed.
                     Next (Eit);
                     Reverse_Edge_Cb (G, E);
                  end;
               else
                  Acyclic.all := False;
                  Next (Eit);
               end if;

            else
               Next (Eit);
            end if;
         end loop;
         Colors (U.Index) := Black;
         Time := Time + 1;
         Result (Result_Index) :=
           (U, Start (U.Index), Time, Predecessors (U.Index));
         Result_Index := Result_Index - 1;
      end Depth_First_Visit;

      U : Vertex_List;
   begin
      Acyclic.all := True;
      U := G.Vertices;
      while U /= null loop
         if Colors (U.V.Index) = White then
            Depth_First_Visit (U.V);
         end if;
         U := U.Next;
      end loop;
      return Result;
   end Depth_First_Search;

   ----------------
   -- Is_Acyclic --
   ----------------

   function Is_Acyclic (G : Graph) return Boolean is
      Colors : Color_Array (0 .. G.Last_Vertex_Index - 1) := (others => White);
      Acyclic : Boolean := True;

      procedure Depth_First_Visit (U : Vertex_Access);
      --  Process the node U

      procedure Depth_First_Visit (U : Vertex_Access) is
         V : Vertex_Access;
         Eit : Edge_Iterator;
      begin
         Colors (U.Index) := Gray;
         Eit := First (G, Src => U);
         while not At_End (Eit) loop
            V := Get_Dest (Get (Eit));
            if V = U then
               V := Get_Src (Get (Eit));
            end if;

            if Colors (V.Index) = White then
               Depth_First_Visit (V);
               if not Acyclic then
                  return;
               end if;
            elsif Colors (V.Index) = Gray then
               Acyclic := False;
               return;
            end if;
            Next (Eit);
         end loop;
         Colors (U.Index) := Black;
      end Depth_First_Visit;

      U : Vertex_List;
   begin
      pragma Assert (G.Directed);

      U := G.Vertices;
      while U /= null loop
         if Colors (U.V.Index) = White then
            Depth_First_Visit (U.V);
         end if;
         U := U.Next;
      end loop;
      return Acyclic;
   end Is_Acyclic;

   ----------
   -- Free --
   ----------

   procedure Free (List : in out Connected_Component_List) is
      procedure Internal is new Unchecked_Deallocation
        (Connected_Component, Connected_Component_List);
      L : Connected_Component_List;
   begin
      while List /= null loop
         L := List.Next;
         Internal (List);
         List := L;
      end loop;
   end Free;

   -----------------------------------
   -- Strongly_Connected_Components --
   -----------------------------------

   function Strongly_Connected_Components (G : Graph)
      return Connected_Component_List is
   begin
      return Strongly_Connected_Components (G, Depth_First_Search (G));
   end Strongly_Connected_Components;

   -----------------------------------
   -- Strongly_Connected_Components --
   -----------------------------------
   --  Basically, we do another depth-first search, but on the transpose of
   --  G (i.e with all edges inverted).

   function Strongly_Connected_Components
     (G : Graph; DFS : Depth_Vertices_Array)
      return Connected_Component_List
   is
      Colors : Color_Array (0 .. G.Last_Vertex_Index - 1) := (others => White);
      Result : Vertices_Array (0 .. G.Num_Vertices - 1);
      Result_Index : Integer := Result'Last;

      procedure Depth_First_Visit (U : Vertex_Access);
      --  Process the node U

      procedure Depth_First_Visit (U : Vertex_Access) is
         V : Vertex_Access;
         Eit : Edge_Iterator;
      begin
         Colors (U.Index) := Gray;
         Eit := First (G, Dest => U);
         while not At_End (Eit) loop
            V := Get_Src (Get (Eit));
            if V = U then
               V := Get_Dest (Get (Eit));
            end if;

            if Colors (V.Index) = White then
               --  ??? Would be nice to have a non-recursive implementation, to
               --  ??? support larger graphs
               Depth_First_Visit (V);
            end if;
            Next (Eit);
         end loop;
         Colors (U.Index) := Black;
         Result (Result_Index) := U;
         Result_Index := Result_Index - 1;
      end Depth_First_Visit;

      List : Connected_Component_List := null;
   begin
      pragma Assert (G.Directed);
      for U in DFS'Range loop
         if Colors (DFS (U).Vertex.Index) = White then
            Depth_First_Visit (DFS (U).Vertex);
            List := new Connected_Component'
              (Num_Vertices => Result'Last - Result_Index,
               Vertices     => Result (Result_Index + 1 .. Result'Last),
               Next         => List);
            Result_Index := Result'Last;
         end if;
      end loop;
      return List;
   end Strongly_Connected_Components;

   -------------
   -- Kruskal --
   -------------

   function Kruskal (G : Graph) return Edges_Array is
      Result : Edges_Array (0 .. G.Num_Vertices - 2);
      Result_Index : Natural := Result'First;
      Eit : Edge_Iterator;
      U, V : Vertex_Access;

      Sets : array (0 .. G.Last_Vertex_Index - 1) of Natural;
      --  This is used to represent the sets that will contain the
      --  vertices. Probably not the faster method (the union operation is
      --  quite slow), but the easiest to implement.

      V_Set : Natural;

   begin
      --  First put all vertices in their own set
      for S in Sets'Range loop
         Sets (S) := S;
      end loop;

      --  ??? Should sort the edges by increasing weight
      --  ??? and do the loop in that order

      Eit := First (G, Src => Vertex_Access'(null));
      while not At_End (Eit) loop
         U := Get_Src (Get (Eit));
         V := Get_Dest (Get (Eit));

         if Sets (U.Index) /= Sets (V.Index) then
            Result (Result_Index) := Get (Eit);
            Result_Index := Result_Index + 1;

            --  Merge the two sets
            V_Set := Sets (V.Index);
            for S in Sets'Range loop
               if Sets (S) = V_Set then
                  Sets (S) := Sets (U.Index);
               end if;
            end loop;
         end if;

         Next (Eit);
      end loop;

      return Result;
   end Kruskal;

   ------------
   -- Length --
   ------------

   function Length (List : Edge_List) return Natural is
      E : Edge_List := List;
      Count : Natural := 0;
   begin
      while E /= null loop
         Count := Count + 1;
         E := E.Next;
      end loop;
      return Count;
   end Length;

   ---------------
   -- In_Degree --
   ---------------

   function In_Degree (G : Graph; V : access Vertex'Class) return Natural is
      pragma Unreferenced (G);
   begin
      return Length (V.In_Edges);
   end In_Degree;

   ----------------
   -- Out_Degree --
   ----------------

   function Out_Degree (G : Graph; V : access Vertex'Class) return Natural is
      pragma Unreferenced (G);
   begin
      return Length (V.Out_Edges);
   end Out_Degree;

   -------------------
   -- Move_To_Front --
   -------------------

   procedure Move_To_Front (G : in out Graph; V : access Vertex'Class) is
      Iter : Vertex_List := G.Vertices;
      Tmp : Vertex_List;
   begin
      --  No or only one item => nothing to do
      if G.Vertices = null
        or else G.Vertices.V = Vertex_Access (V)
        or else G.Vertices.Next = null
      then
         return;
      end if;

      while Iter.Next /= null and then Iter.Next.V /= Vertex_Access (V) loop
         Iter := Iter.Next;
      end loop;

      if Iter.Next /= null then
         Tmp := Iter.Next;
         Iter.Next := Tmp.Next;
         Tmp.Next := G.Vertices;
         G.Vertices := Tmp;
      end if;
   end Move_To_Front;

   ------------------
   -- Move_To_Back --
   ------------------

   procedure Move_To_Back (G : in out Graph; V : access Vertex'Class) is
      Iter : Vertex_List;
      Old   : Vertex_List := null;
   begin
      if G.Vertices = null or else G.Vertices.Next = null then
         return;
      end if;

      if G.Vertices.V = Vertex_Access (V) then
         Old := G.Vertices;
         G.Vertices := G.Vertices.Next;
      end if;

      Iter := G.Vertices;

      while Iter.Next /= null loop
         if Iter.Next.V = Vertex_Access (V) then
            Old := Iter.Next;
            Iter.Next := Old.Next;
         else
            Iter := Iter.Next;
         end if;
      end loop;

      if Old /= null then
         Old.Next := null;
         Iter.Next := Old;
      end if;
   end Move_To_Back;

   -----------------
   -- Revert_Edge --
   -----------------

   procedure Revert_Edge (G : Graph; E : Edge_Access) is
      pragma Unreferenced (G);

      Src  : constant Vertex_Access := E.Src;
      Dest : constant Vertex_Access := E.Dest;

   begin
      Remove (E.Src.Out_Edges, E);
      Remove (E.Dest.In_Edges, E);
      E.Src  := Dest;
      E.Dest := Src;
      Add (E.Src.Out_Edges, E);
      Add (E.Dest.In_Edges, E);
   end Revert_Edge;

end Glib.Graphs;